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technical papers are scheduled to be presented from MIT,
University of Southern California, Stanford University,
University of Maryland, Carnegie-Mellon University, SRI
International, University of Massachusetts, Rochester
University, Columbia University, Hughes Research Laboratory,
General Electric Research and Development Center, Advanced
Decision Systems, and Honeywell Systems and Research Center.
In addition, invited papers are planned for presentation from
the University of Illinois, NYU - Courant Institute, University
of Washington, University of Pennsylvania, David Sarnoff
Research Center, and Schlumber Palo Alto Research Center.

As is the normal practice for these workshops all technical
reports submitted by participating organizations are published
in this comprehensive proceedings available for distribution to
the attendees, including both those presented at the workshop
and those for which lack of time precluded presentation.

The figure appearing on the cover was prepared by Dr. J.
Little of the MIT AI Laboratory and represents a block diagram
of the integration stage of the MIT Vision Machine. For
details see "The Vision Machine", authored by Dr. T. Poggio,
et. al., in these proceedings. The cover layout was prepared
by Mr. Tom Dickerson of the Science Applications International
Corporation (SAIC) graphic arts staff. Appreciation is also
extended to Ms. Bethany Moss of SAIC for her work in compiling
the papers into this proceedings and handling the mailings
associated with the 1988 I. U. Workshop.
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ABSTRACT
2. The Vision Machine and Parallel Inte-

Our work in th, p"..t year has concentrated on three gration
main projects, each one representing a complementary

aspect of a complete vision system. The first project The Vision Machine is a computer system that at-

- a parallel Vision Machine - has the goal of develop- tempts to integrate several visual cues to achieve high

ing a system for integrating early vision modules and performance in unstructured environments for the tasks

computing a robust description of the discontinuities of of recognition and navigation. It is also a test-bed for

- the surfaces and of their physical properties. Additional our progress in the theory of early vision algorithms,

goals of the project are the refinement of early vision al- their parallel implementation, and their integration.

gorithrs and their implementation on a massively par- The Vision Machine consists of a movable two-camera

allel architecture such as the Connection Machine Sys- Eye-Head system - the input device - and a 16K Con-

tem. The second project concerns visual recognition: we nection Machine - our main computational engine. We

have developed several schemes for model based recogni- have developed and implemented several parallel early

tion and implemented them. Finally, we have continued vision algorithms computing edge detection, stereo, mo-

our work in autonomous navigation. Around these main tion, texture and color in close to real time. The in-

themes, additional work, at the theoretical and imple- tegration stage is based on coupled Markov Random

menation level, has been done in motion analysis, nay- Field models, and attempts to derive a map of the sur-

igation, photogrammetry, visual routines and learning, face discontinuities in the scene, with a partial labeling

of the intensity edges in terms of their physical origin.

1. Introduction Thus the project has several complementary goals: it

attempts to develop a theory of visual integration and

This report reviews the main results of our work to test it in an unstructured environment; it aims to

in Image Understanding during the past year. We will refine and implement robust early vision algorithms in

first outline our main projects in vision and then sketch a massively parallel architecture; and it tries to build

a few of the other smaller projects. The first project a full vision system. A rather detailed description of

is focused on the problem of integrating different early the present state of the project and its initial promising

vision algorithms to produce a cartoon-like description results is given in another paper in these Proceedings.

of the discontinuities in the surfaces and their physi-

cal properties. The second major effort is in the areas 3. Object Recognition
of model-based recognition. It involves the use of both In earlier reports, we have described several ap-

2D and 3D data and models. These two projects are proaches to the problem of object recognition. Our work

related. We plan to use the output of the integration has proceeded along a number of fronts. O w

sLage as input to the recognition algorithms. The third

project we will describe has a different ultimate goal: 3g rei

autonomous navigation. Finally, we will discuss some

of the other studies that are somewhat less directly re- Earlier reports described the work of Grimson and

iated to the three main projects. Lozano-Pdrez on the recognition of occluded objects
from noisy sensory data under the condition of matched

dimensionality. Specifically, if the objects to be recog-
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nized and localized are laminar and lie on a flat surface, class of objects. For these kinds of parameterization,
or if the objects are volumetric but lie in stable config- the RAF system can be extended by modifying the tree
urations on a flat surface, then the sensory data need search process to pass along the range of feasible values
only be two-dimensional (e.g. a single image); if the ob- for the free parameters as the tree of interpretations is
jects to be recognized and localized are volumetric and explored. In an alternate approach, Gil Ettinger has
lie in arbitrary positions, then the sensory data must developed and tested a system for recognizing objects
be three dimensional (e.g. stereo or motion data, laser that are composed of rigid subparts that can scale, ro-
range data). The original technique (called RAF) was tate and translate relative to one another in composing
designed to recognize polyhedral objects from simple an object. The system uses a hierarchical representa-
measurements of the position and surface orientation of tion of objects, based on the Curvature Primal Sketch
small patches of surface. The technique searches for con- of Brady and coworkers [Asada and Brady, 1984]. The
sistent matchings between the faces of the object models matching process between a model and processed sen-
and the sensory measurements, using constraints on the sory data uses a variation of the constraints of the RAF
relative shape of pairs of model faces and pairs of mea- system. By considering objects as being composed of
surements to reduce the search. subparts, Ettinger has developed a method that allows a

In the past year we have considered a number of for efficient and correct indexing into an automatically
problems in recognition associated with this approach. generated model library, so that his system can deal

First, we have completed several extensions of the sys- with a variety of objects at one time. In addition, the
tem to deal with different classes of objects. We have use of scale and object hierarchies allows the system to
extended the two dimensional system to recognize ob- deal easily with objects that scale in size.
jects composed of circular or straight boundary seg- In a different vein, we have considered some theo-
ments. To extract such segments from edge descrip- retical implications of the constrained search approach
tions of the image, we transform the edge pixels into to recognition. Using a combinatorial analysis, we have
an arclength-orientation space, and then use standard established some bounds on the expected performance e
split-and-merge techniques to extract the straight seg- of an RAF style of system, both in terms of the num-
ments in this transformed representation. From these ber of interpretations, and in terms of the amount of ER

segments, we can derive information about the position search required. We have shown that in the case of data
and orientation of straight segments in the original edge known to come from a single object, the expected num-
description, and about the center, radius and angular ber of interpretations (barring symmetries of the object) I

extent of circular arcs in the original edge description, asymptotically approaches 1 as the number of sensory
Recognition uses an extended version of the constrained data points is increased, where the convergence occurs
search method of RAF, with simple pairwise constraints for as few as three data points. We have also shown that
about the relative shape of circular segments as well in this case, the expected amount of search involves ex-
as linear ones. In three dimensions, we have consid- plicitly considering ms nudes of the tree, where m is
ered extensions to deal with simple curved surfaces, in the number of faces in the object model and s is the
particular, objects that can be locally approximated by number of sensory data points. When we allow for data
cylinders and cones. In this case, we process three di- from multiple objects, so that some of the data points
mensional sensory data, such as can be obtained from are spurious, the results are less strong. We have shown
laser striping systems, to deduce rulings on the surface that the expected number of interpretations is bounded
of an object. From the rulings, the characteristics of the by
axes of the cylinders or cones can be derived. These are 2c + ms + [1 + k]s
then matched, using the RAF formalism, to identify the where k is a constant that depends on the size of the
pose of these 3D objects. object and on the amount of error in the sensory mea-

We have also completed an extension of the sys- surements, and where c is the number of sensory data
tem to deal with some classes of parameterized objects. points that are actually on the object of interest, out
The first set of extensions includes the recognition of of the s total data points. Since any subset of a fea-
objects that can scale in size, the recognition of objects sible interpretation is also a feasible interpretation, the
that are composed of rigid subparts connected through 2c term represents the power set of the correct interpre- ,
rotational degrees of freedom (e.g. a pair of scissors) and tation, and this bound implies that in general the only
the recognition of objects that can undergo a stretching interpretation of length c will be the correct one. The %

deformation along one axis. In each case, one can de- amount of search generally required to find this inter- V
rive expressions for the geometric relationship between pretation is given roughly by (a more precise but more
two edges as a function of the free parameters of the complicated expression actually holds)
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groups of edges, and the relative alignment of groups

m2' + mS ,s\ of edges. The recognition system, since it does not

2 2 directly consider the object model, may occasionally S
be incorrect. However, tests of the system on a van-

which implies that an exponential amount of search is ety of images of two-dimensional and three-dimensional
needed, although the 2' term is considerably reduced scenes shows a remarkable and dramatic reduction in

from the general case of (m + 1)', which holds for uncon- the search required to recognize objects from a library,
strained search. As part of this theoretical analysis, we and also is quite effective at identifying groups of edges

have also considered the effect of using a Hough trans- coming from a single object. The effect of this group-

form to presort subspaces of the search space to explore. ing mechanism is particularly apparent when applied to

We iave shown that the Hough transform reduces the libraries of objects, since the parameters computed by .

search needed by reducing the parameters m and s in the grouping scheme can be used to do effective indexing
the above expression. We have also shown that noise into a library.

characteristics of the Hough transform, in the presence Asor

of noisy data and non-infinitesimal hash buckets, can A separate issue for recognition algorithms con-

lead to a significant probability that the Hough buck- cerns the possibility of using parallel architectures, such

ets with the largest scores may not correspond to the as the Connection Machine, to obtain significant perfor-

correct interpretation, and that the expected number of mance improvements. Todd Cass has completed the de-

spurious pairs hashed into the correct Hough bucket is velopment and implementation of a parallel recognition

non-trivial. This implies that one should not, in general, scheme for two dimensional scenes. The system uses

rely on the Hough transform to fully solve the recog- a careful Hough transform method, followed by a sam-

nition problem, but rather that one should use it as a pling scheme in the parameter space to find instances

preprocessor, selecting out small subspaces within which of an object and its pose. Typical performance of the

the RAF method can be applied effectively, method involves the correct ider.tYication aid localiza-

tion of heavily occluded objects, in scenes in which a
Much of our earlier work with the RAF recogni- large number of other parts are present, in under five

tion system dealt with robotics environments and the seconds, using a 16K processor configuration of the Con-
recognition of industrial parts. Recently, we have be- nection Machine. c-.f C

gun a pilot study of applying the technique to a very

different domain, underwater localization. Specifically, 3.
we have considered the problem of determining the loca- %
tion of an autonomous underwater vehicle by matching A

sensory data obtained by the vehicle against bathymet- %
ric or other maps of the environment. Sensor modalities the domain of matched dimensionality. Another prob- i

include active methods such as sonar, and passive meth- lem concerns the recognition of solid objects undergo-
ods such as pressure readings and doppler data from ing six degrees of positional freedom from a single two-

passing ships. We have conducted some early simulation dimensional image. In the last Proceedings, we reported

experiments using RAF, together with strategies for ac- on an approach by Dan Huttenlocher and Shimon Ull-

quiring sensory data to solve this localization problem, man for addressing this problem.
with excellent results. Huttenlocher and Ullman have shown that a corre- a

One of the difficultieb with the RAF approach to spondence between three points on a rigid solid object
recognition is that it does not deal with the issue of and three points in a two-dimensional image is sufficient

segmentation of the data in a reasonable way. In part, to align the object with the image. The method as-

this is reflected in the theoretical analysis, in which the sumes a "weak perspective" viewing model, where true lb

amount of search increases dramatically when spurious perspective is approximated by orthographic projection

data is allowed. While the Hough transform can help plus a scale factor. The alignment transformation speci-

reduce this problem, it is model driven, and hence po- fies the three-dimensional rotation, the two-dimensional

tentially very expensive when applied to large libraries translation, and the scale factor that bring an object

of objects. As an alternative to this, David Jacobs has model into correspondence with an image. Huttenlocher

directly addressed the issue of grouping in an image, and Ullman have proved that this transformation ex-

Jacobs has derived measures for determining the prob ists, and is unique up to a reflection, for any noncolin-
ability that a set of edge fragments in an image is likely ear triple of corresponding model and image points. A

to have come from a single object. These measures con- closed form solution is given for computing the align-
sid,*r simple measurements such as the separation of ment from a triple of points, two oriented points, or
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three edge fragments. sensors can be mounted on cheap steerable systems. We
can trade cheap computation for deficiencies which arise

To demonstrate the use of alignment in recogni- from avoiding expensive mechanical solutions to sensor
tion, Huttenlocher and Uliman have implemented a sy- steering problems. €

tern for recognizing solid objects with arbitrary three-

dimensional position and orientation from a single two- The foundations of these algorithms, in a world of
dimensional view. The recognizer solves for potential perfect measurement, are quite elementary. The contri-

alignments of a model and an image using features that bution of this work is to make them noise tolerant while

define either two or three points. Every three-point fea- remaining simple computationally. Both the algorithms
ture and each pair of two-point features specify a pos- and the calibration procedure are easy to implement

sible alignment. Each of these potential positions and and have shallow computational depth, making them
orientations is verified by projecting the model into the (1) run at reasonable speed on moderate uni-processors,

image, and counting the number of model features that (2) appear practical to run continuously, maintaining an
lie near similar image features. This recognition algo- up-to-the-second calibration on a mobile robot, and (3)
rithm has a worst case running time of O(m3 i2 ) for m appear to be good candidates for massively parallel im-

model features and i image features, since every pair plementations.
of model and image features may specify an alignment, So far the experiments performed have used im-
and there are m features to check for each alignment. aleThe method is discussed in more detail elsewhere in ages sequences collected from a mobile platform at 7.5 .
these Proceedings. stereo pairs per second followed by offline analysis. The

next task is to integrate processing on board the robot. -

The design goal is onboard processing at a rate of 10

4. A Mobile Robot stereo pairs per second. Next we will take the outputof the vision system and use it as input to the naviga-

tion algorithms previously demonstrated on our mobile
4.1. Integrating Motion and Stereo for Naviga- platforms [Brooks ')6[.
tion

Rodney Brooks, Anita Flynn and Thomas Mar- 5. Topics in Early and High-Level Vision J1
ill have been looking into the problem of building self k
calibrating vision systems for autonomous vehicle nay- 5.1. Direct Motion Vision

igation. Field conditions for autonomous vehicles may Berthold Horn is continuing to study the recovery
be very dynamic, involving rough terrain and powerful of rigid body motion and surface shape directly from
blast events occurring intermittently. A vision system first derivatives of image brightness (these methods ap-

for such a system would either have to be massive and pear to be of great importance in "short-range" motion,
extremely strong structurally towhile feature-based methods are more appropriate in

it wuldhav tobe rapidly self calibrating. The ex-whlfetr-admtosaemreprpiten
it would have to "long-range" motion).
periments Brooks et. al. have done have demonstrated

a system that is capable of self recalibration in a few Several special cases have been solved, and progress

tens of frame times [Brooks, Flynn ard Marill. these has been made in suppressing problems discovered in

Proceedings[. derivative estimation caused by under-sampling in both
image space and time. A very robust method has been

The idea is to use one self calibrating vision pro- developed for the case of pure rotation, and conclusions "

cess (forward motion vision) to calibrate another (stereo have been reached about which of several methods for
vision) without resorting to any external units of mea- the case of pure translation works best (this is a method
surement. Both are calibrated to a velocity dependent that minimizes the integral of estimated depth squared

coordinate system which is natural to the task of obsta- nver the image region). Sensitivity analysis shows the

cle avoidance. The resulting vision system is continually need for a wide field of view and the futility of at-
self calibrating, making it tolerant of normal nechan- tempts to recover full three dimensional motion from

ical drift. But better than that, it is also tolerant of small patches. This implies, for example, that meth-
severe and sudden misalignments. After a few seconds ods based on second partial derivatives of optical flow,
it adapts to its grossly altered sensor alignments, while formally correct, lead to ill-posed problhxils, and,

The algorithms require no pre-knowledge of camera are thus not useful in the presence of noise.

a focal lengths, fine orientation, or stereo baseline sepa- With John Harris at Hughes' Artificial Intelligence

ration. With such quick calibration and adaptation the Center. we are working on an application of this di-

y
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rect approach to range image sequences. In this case, a
clean least-squares solution is possible without ambigu- 5.3. Using Time-to-Collision Estimates
ities. The method leads to a set of linear equations in
the six parameters of motion. The coefficients of these Some visual tasks, such as high- performance nay-
equations are integrals over the image region of prod- igation (negotiating through narrow channels, landing
ucts of first derivatives of range with respect to image aircraft, walking a tightrope) require an accurate model
coordinates and time (range rate). The new method of the 3-D structure and motion of object surfaces, while
will be tested on data generated by the ERIM scanner, others may require only a fast analysis of qualitative or

partial information about the movement of objects in
5.2. Combining Long-Range and Short-Range the environment. Examples of the latter type of task
Motion Measurements include the detection of looming motion, which might

In order to design a flexible and robust motion indicate an object about to collide with the observer, or

measurement system, it may be necessary to integrate the detection of sudden global rotations or translations
mesofmn theem viua fiel tha mightar inict annunepecte

the fast computation of image velocities with a longer of the visual field that might indicate an unexpected

range tracking of localizable image features. The short- observer motion that must be counteracted to maintain
range velocity-based system would serve to detect sud- balance. Such tasks require fast, simple, robust routines
den movements, locate object boundaries defined by for detecting motion discontinuities, rough 3-D shape
motion discontinuities, and provide for the rough es- and motion, which might provide input into reflexive
timate of the 3-D layout of the scene. This short-range mechanisms that control motor behavior underlying ob-
system could also facilitate camera tracking by provid- stacle avoidance, postural control, or locomotion. This
ing a rough indication of the direction and speed of section addresses work by Hildreth on the use of par-
movement of image features. The long-range tracking tial information about the "time-to-collision" with an
system would provide a more accurate measurement of approaching surface for performing certain visual tasks. *4

the motion of image features over a longer time period, A number of behavioral studies suggest that biolog-
for the purpose of recovering the detailed 3-D shape of ical vision systems use estimates of the time-to-collision
objects. with an approaching surface, in the control of visually-

Michael Drumheller and Ellen Hildreth are cur- guided motor behavior [for a review, see Regan, Kauf- _
rently exploring one method by which short-range mo- man and Lincoln, 1986]. For restricted classes of mo- ,S
tion measurements can influence the motion correspon- tion, an approximation of time-to-collision can be com-
dence process. In Ullman's minimal mapping scheme for puted from simple measures on the changing image. If
motion correspondence [Ullman, 1979], the probability we let r denote the size of an object in the image (as-
that a given feature at one moment corresponds to a suming perspective projection), and r denote the rate
particular feature at a later time depends in part on the of change of image size over time, then the time-to-
distance traveled between frames. Ullman also assum 2d collision with an object is given approximately by the %*-
that the probability of particular 2-D displacements Ie- ratio -r. Through theoretical analyses and computer
locities) would decrease monotonically with size (speid), simulations, Hildreth has examined the validity of this
and would be uniformly distributed with respect to di- simple approximation to time-to-collision, and the use
rection. The short-range velocity measurements can be of this measure for two visual tasks: (1) the recovery
used to modify these probability distributions in such of the 3-D trajectory of moving objects from their 2-D
a way that greater weight is given to velocities within projection onto the image, and (2) a simple navigation
a neighborhood of the estimated direction and speed task, in which the observer must move toward a moving IS

of movement. We have implemented Ullman's minimal target while avoiding moving obstacles in the environ-
mapping scheme and have begun testing of the algo- ment.
rithm with natural images of rotating objects, with and In theory, the approximation only holds for ob-
without making use of short-range velocity information. jects that are oriented parallel to the image projec-
Computer simulations show that the combination of ye- tion surface and undergoing pure translation toward the
locity measures with motion correspondence leads to viewer. If, for example, an object of length R at a dis- 1,%
better performance at motion measurement than either tance Z from the observer is slanted with an angle a
strategy on its own. from the orientation parallel to the projection surface,

and is moving directly toward the observer, then the
actual time-to-collision T, is given by the following ex-
pression

%.



the requirements on a representation which can support .

-Z ['[ [4Z 2 + R 2 sin2 a 1 long-term autonomy has led to the design of a two-level

T = - l4Z2R2sin2 a world model which is currently being implemented. InZ is l R a related part of this research, Braunegg is developing aClearly, if Z is large compared to R, or if o is small, method for recognizing world locations based on stereo

then T can be approximated by L. Other expressions d fzon
can be obtained for the cases where the object is not
translating directly toward the observer, or where the 5.5. Photogrammetry
object is rotating as it moves. These relationships can
easily be deriven for the case of spherical projection as A new method for the classic photogrammetric

well. problem of relative orientation that arises in work on

binocular stereo and motion vision has been derived by
Approximations to time-to-collision, which may be Berthold Horn [1987]. While iterative in nature, like

obtained straightforwardly from the changing image, other existing solutions, it does not require a good ii-
can be combined with measures of the projected ve- tial guess, and is able to select the correct solution from "
locities of image features to derive the 3-D heading of among several that minimize the departure from satis-
objects in space. This 3-D heading at each moment in faction of the coplanarity constraint equations. The new
time can then be used to reconstruct the 3-D trajectory method can be implemented using unit quaternions (Eu-
of a moving object, if one assumes an initial depth for ler parameters) to represent rotation, and was inspired
the object (the trajectory scales in depth by this initial by the closed form solution of the absolute orientation
guess). Hildreth has designed a model for performing problem recently discovered.

this recovery of 3-D motion, and has implemented and W
begun to test this model in a computer vision system. We have also continued to study so-called "critical
Perceptual studies are also being conducted to test the surfaces" that lead to difficulties in recovering the rel-

validity of this model for the human visual system. ative orientation. These arise in motion vision as well

with a somewhat different interpretation.
Knowledge of 3-D heading, derived from rough INN

time-to-collision estimates, can also be used in simple 5.6. Regularization and Optimal Filtering
navigation tasks. Information about the 3-D heading
of an object being tracked can be used to compute a Classic optimal filtering methods yield linear shift
desired heading for the observer in order to intercept invariant filters (convolutional operators) that best re-
the target. Similarly, information about the 3-D head- cove' ignal in the least-squares sense. The filter de- e,
ing of obstacles can define a range of observer head- sign i based on the correlation functions or, equiva-
ings that would avoid them, and the time-to-collision lently, power spectra of signal and noise. As originally
estimate itself determines whether the observer should discussed by Tikhonov and others, regularization meth-
bother trying to avoid a particular obstacle. Hildreth ods recently applied widely in machine vision can be in-
is developing a simple simulation system that performs terpreted in terms of such filters [see for instance Bert-
this navigation task in an artificial environment, using cro et al., 1986; Geiger and Poggio, 1987]. Horn has
time-to-collision estimates to derive the 3-D trajectories considered the idea of "reverse engineering" an opti-
of objects in the environment. In the future, we plan to mal filter given a particular regularization term, that
test this model on natural imagery. is, to discover what ratio of signal power spectrum to N0

5.4. Using Recognition for Mobile Robot Local- noise power spectrum leads to an optimal filter like the

ization one obtained using a specific regularization term. This

problem is related to the choice of the optimal regular-

Long-term autonomy for mobile robots presents ization parameter A discussed in our report in the last

problems which are different from those encountered Proceedings (see also Geiger and Poggio, 1987].

with the more limited mission-level autonomy of typ- As already indicated by Tikhonov (and by the
ical mobile robot systems. David Braunegg is research- Bayesian interpretation of regularization), the selection
ing the problem of building and maintaining a world of the regularization stabilizer can be done by a system-
model representation to support the navigation of long- atic procedure provided that some of the statistics of the
term autonomous mobile robots. This research is in- signal and the noise are known. Finally, simple regular- %41
vestigating the use of stereo vision to obtain enough ization terms (such as the integral of the square of the
information about the world to enable path-planning nth derivative) lead only to a small subset of all possible
and navigation-planning to be performed. Analysis of convolutional operators. The optimal filter approach is

not restricted in this way.
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tions - constitute an "instruction set" for spatial anal-
5.7. Surface Discontinuities from Stereo ysis. The capacity for combining these operations in

novel ways makes it possible to extract an open-ended S
Richard Wildes has been studying the recovery of set of abstract spatial entities, properties, and relations.

three-dimensional surface discontinuities from a binoc- Sharing of the machinery implementing these operations
ular disparity map. The initial investigation has re- provides an essential computational efficiency. Visual
stricted consideration to planar surfaces. The approach routines are a satisfying account of the interface be-
is based on an analysis of the differential imaging prop- tween low-level vision (the essentially bottom-up com-
erties of textured surface patches in the neighborhood putation of local scene properties) and high-level vision
of a discontinuity. The formal results have been used to (the recognition of meaningful spatial entities and the
motivate methods which variously use horizontal, verti- establishment of useful spatial relations): high-level pro-
cal and orientational disparities to recover surface dis- cesses like object recognition and spatial reasoning con-

continuities in three- space up to a relief transforma- trol scene analysis by selectively applying basic opera-
tion. Three empirical studies of these methods have tions to the local representations of the scene. In Ma-

been carried out. First, numerical studies of these meth-

ods show that the use of vertical disparities results in honey's [1987] detailed investigations of this idea, some
system of equations which is unstable in the face of important consequences for the organization of low-level

ashte p ferturations toithe isnpustdata.iMethds wch f vision have emerged which are discussed in the followingslight perturbations to the input data. Methods which paragraphs.

make use of only horizontal and orientational disparities

remain stable in the face of such noise perturbations. Image Chunking. At the outset, Ullman observed
Second, psychophysical studies suggest that human ob- that the critical reliance on the basic operations im-
servers do not make use of vertical disparities in this plies that the implementation of these operations must
task. Third, an implementation which makes use of hor- be highly efficient. Thus a number of workers have ex-
izontal and orientational disparities has been developed plored efficient schemes for tracing, coloring, and index-
(vertical disparities were not exploited due to the results ing. Their results converge on the idea that low-level V
of the numerical and psychophysical studies). The im- vision should generate a variety of representations, each %
plementation has been tested with synthetic data, and specialized to support an efficient implementation of a
has yielded positive results. particular basic operation; specialized representation is

the key to the required efficiency. Specifically, it has
5.8. Implications of Visual Routines for Early been shown that tracing, coloring, and indexing oper-
Vision ations can be made very time efficient, in the context

of a simple, local model of parallel computation, by the
Visual perception has at times been viewed as the introduction of specialized representations whose prim-

problem of describing "what is where" in the scene. It itive elements are extended regions of the image, not
may be more productive to regard vision as an ongo- points. Tracing and coloring, for example, become effi-
ing selective readout of meaningful spatial entities and cient for the simple reason that there are very few ele-
their relvant properties and relations, in a sequence ments to be operated in comparison to the number of o
governed by the immediate goals of the observer. This pixels. The process of subdividing the image in paral-
view respects the fact that most scenes are too complex lel into regions which may each be treated as a unit is .

for a single complete description - one satisfying every referred to as image chunking. S
possible momentary requirement of the observer - to be Local Boundary Integration. Scene objects are de-
feasible, fined primarily by discontinuities in image properties at

Shimon Ullman [Ullman 84] proposed a framework their boundaries. Thus boundaries play a crucial role in
to support this more pragmatic statement of the vision the extraction of meaningful figures by visual routines; .5
problem. In his framework, spatial entities and rela- image chunking for tracing, coloring, and indexing is -"
tions are extracted by the goal-directed application of applied to a representation of the scene boundaries. Be- 0
visual routines - sequences of elemental spatial opera- cause of the complexity of real scenes, however, no single
tions drawn from a small fixed set - to local representa- property can generally be expected to provide complete IN_
tions of the scene that have been computed bottom-up boundary information. Thus it is critical that partial
and in a spatially uniform manner. The basic opera- boundary information provided by different properties
tions from which visual routines are assembled - such somehow interact to generate a unified boundary repre-
as boundary tracing, region coloring, location marking, sentation to which chunking processes may be applied. 0
shifts of processing focus, and indexing of salient loca-
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Local Boundary Selec hon/Suppression. The per- to support a particular churiking process, should be de-

formance of chunk-based basic operations (e.g., tracing, fined). The introduction of abstract boundary tokens

coloring, etc.) has proven, in general, to depend on the is reminiscent of Marr's proposal [19821 for the primal

geometric complexity, rather than the size, of the input, sketch, in which abstract place tokens were defined for

That is, the simpler the geometry of the input, the eas- the benefit of explicit grouping processes, rather than

ier it is to build larger image chunks, and the larger the relying exclusively on the grouping implicit in low spa-

chunks, the fewer steps involved in performing some op- tial frequency representations. The difference is that

eration on the input. One important implication of this the grouping is accomplished by the goal-directed appli-

result for low-level vision processing prior to the com- cation of an appropriate sequence of basic operations,

putation of image chunks is that a local, parallel basis not by Marr's spatially uniform, bottom-up, recursive

for singling out or emphasizing relevant boundaries, or grouping processes, for reasons mentioned earlier [see

suppressing irrelevant ones, would improve the perfor- Ullman, 1984 for a thorough discussion].

mance of the basic operations and, consequently, facili- 5.9. The Full Primal Sketch
tate the extraction of meaningful figures. For example,

one might apply the chunking processes selectively to In order to support processes such as recognition 0

discontinuities in depth, color, or texture, or to inten- under general conditions, it is important to extract as

sity boundaries at a particular scale. The notions of much relevant information about the shape of an ob-

selection and suppression are not, as they seem at first, ject as possible. Eric Saund has been developing a new

contradictory with that of integration. There are a va- method for deriving a Full Primal Sketch from an im-

riety of possibilities for reconciling them, the simplest age. Rather than using numerical smoothing methods,

being that selection/suppression should strictly precede such as region smoothing using isotropic operators (such

integration, as the Gaussian), non-isotropic operators (such as Ga- .

bor filters), or contour smoothing techniques, Saund has

Local Boundary Abstraction. The second implica- developed a method for symbolically grouping simple Ix
tion of the fact that input geometry determines the ef- tokens across scales. This symbolic scale space repre-
fectiveness of image chunking is that a local, parallel ba- sentation has proved very useful for preserving sym- N
sis for suppressing irrelevant detail and noise in the (se- bolic tokens capturing relevant information at different
lected) boundaries also would improve the performance scales. By using techniques for dimensionality reduction

of the basic operations. Examples of noise that could to extract relevant parameters, Saund has been able to
be eliminated by local computations include short spu- derive schemes foi building more complex symbolic to-
rious line segments and small spurious gaps in continu- kens, representing higher order shape attributes, such
ous curves. High-frequency information in a boundary as corners, bars and blobs, from more primitive tokens.

often constitutes irrelevant detail for certain purposes, The representations computed in this manner seem to •
such as determining connectivity, enclosure, or overall have several advantages over other more numerically
shape. Blurring, however, is not the only, or always the based schemes, such as Brady's Smooth Local Symme-
best, technique for eliminating irrelevant detail while tries [Brady and Asada, 1983], or Blum's Medial Axis
preserving the useful information. Boundary abstrac- Transform [Blum, 19671. The method is being applied
tion is the problem of generating a representation of the to the recognition of shapes from large libraries, and
scene boundaries which consists of an array of boundary early results appear very promising. S
tokens, each expressing only the information about the

boundary at a particular location that is salient from 5.10. Issues in Learning

the point of view of image chunking (and ultimately for The problem of estimating an input-output map-
extracting a scene entity for a given task by tracing, col- ping from examples has taken on a new interest re-

oring, etc.) The requirements on the boundary tokens, cently because of the peculiar excitement surrounding
then, are determined quite specifically by the chunking ced ealets a bacit hms

process to be supported. In the case of tracing, for ex- thal neural nets and backpropagation algorithms b

ample, the key information items are orientation and that "learn" Tomaso Poggio has considered the prob- poito; nepobem he, stoexlreth ane f lem of learning smooth mappings from the point of view % , ,
position; one problem. then, is to explore the range of of classical approximation and estimation theories, in-
possibilities for determining the local boundary orienta- e %
tion at a specified scale in a way that allows for thick eluding polynomial and spline based estimators.

or textured lines or edges (since chunking processes are The problem of learning a mapping between an in-
specialized to basic operations, it may turn out that sev- put and an output space is essentially equivalent to the
eral abstract boundary representations, each specialized problem of synthesizing an associative memory that re-

8..
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trieves the appropriate output when presented with the
input and generalizes when presented with new inputs. 5.10.2 Learning and Generalization
It is also equivalent to the problem of estimating the V
system that transforms inputs into outputs given a set Of course any reconstruction (or approximation)
of examples of input-output pairs. A classical frame- problem of this type is ill-posed in the sense that the
work for this problem is approximation theory. Related information in the data is not sufficient to reconstruct
methods are system identification techniques (Volterra, uniquely the mapping in regions where data are not
Wiener, etc.), used when it is possible to choose the in- available. In addition, the data are usually noisy. A
put set, and system estimation techniques, used when priori assumptions are needed about the mapping. Gen-
the input-output pairs are given. eralization is not possible if the mapping is completely

Approximation theory deals with the problem of random or local. For instance, knowing examples of the

approximating or interpolating a continuous function mapping represented by a telephone directory (people's r

f(X) by an approximating function F(W, X) having a names onto telephone numbers) does not help in esti-

fixed number of parameters W (X and W are real vec- mating the telephone number corresponding to a new

tors X =X, x 2 , ... , x, and W = w,, w2 ,..., w). For a name. Generalization is based on the fact that the world S
particular choice of F, the problem is then to find the in which we live is usually - at the appropriate level

set of parameters W that provides the best possible ap- of description - redundant. In particular, it may be

proximation of f. This is the learning step. Needless smooth: small changes in the inputs determine a corre-

to say, it is very important to choose an approximat- spondingly small change in the output (it may be nec-

ing function F that is as compatible as possible with f. essary in some cases to accept piecewise smoothness).

There would be little point in trying to learn an approx- T h is is th e m o st gen era l con strain t tha t m a kes p o ssible

imation if the chosen approximation function F(W, X) approximation, and thus this very simple form of gen-

could give only a very poor representation of f(X), even eralization. Other a priori constraints may be known
with optimal parameter values, before approximating a mapping, for instance that the

mapping is linear [see Hurlbert and Poggio, 1987], or

We have suggested that one may usefully consider has a positive range, or a limited domain, or is invari-
the problem of learning, as discussed by connectionists, ant to some group of transformations. Smoothness of
as a problem of approximation, in particular of hyper- a function corresponds to the function being not fully .,FP

surface reconstruction [Poggio, 1988]. Interesting con- local: the value at one point depends on other values
nections with splines, regularization and Bayesian ap- nearby. This means that the input coordinates must

proaches can be immediately established, have been chosen appropriately. The problem of choos-
ing the appropriate input coordinates - the dimensions

5.10.1 Learning an Input-Output Mapping as - is the key problem in learning. •

Hypersurface Reconstruction
Consider again the point of smoothness as the basis

From the point of view of learning as continu- for generalization. It is possible to formulate this aspect
ousFapromtipoint of clerly ofolening of ot -sof the learning problem in the framework of Bayesian es-

ous approximation - clearly only one of the several timation, using the MRF machinery. The prior distri-
facets of learning - we can draw an equivalence with bution expresses smoothness, that is, the possibility ofa standard approximation problem, surface reconstruc- bto xrse mohes htitepsiiiyo

generalizing. If the observation model represents Gaus-
tion from sparse data points. Learning simply means
collecting the examples, i.e., the input coordinates .xi, sian noise, the resulting MAP solution corresponds to
coatnd the ampresponding ., ouuthes t tosediatons ,generalized splines, since it correspond to standard reg-and the corresponding output values at those locations ularization techniques [Poggio et.al., 19851. The prior .x

(the height of the surface) di. This builds a look-up u t1,
table. Generalization means estimating d in locations probability distribution may, however, also represent atabe.Geeino di cata hs emore specific a priori knowledge than just smoothness.
x, y where there are no examples, iPiecewise constancy, for instance, could be used for clas-
quires interpolating or, more generally, approximating sification tasks (clustering is equivalent to the class of
the surface between the data points. Interpolation is mappings that enforce the rule "nearby inputs produce
the limit of approximation when there is no noise in the nearby outputs"). Positivity, convexity, and local be-
data. This example, given for a surface, i.e., the graph
in R R, corresponding to the mapping from R2 to , haviors of various types may be captured by an appro-,..can be immediately extended to mappings from R" to priate prior distribution. In addition, coupled MRFscaneimmedd tmapp s f R" to .allow even more flexibility in the underlying general-
if" (and graphs in R" x R). ization conditions in terms of piecewise smoothness by
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using the line process [see Geman and Geman, 1984;
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ABSTRACT time, we have been working with domain of large commer-

cial airport complexes. Such scenes have a variety of fea-

This paper summarizes the USC Image Understanding re- tures such as the transportation network (runways, taxi-

search projects and provides references to more detailed ways and roads), buildings (terminals, hangars, etc.) and

projects and provides references to more detailed papers. mobile objects (airplanes, trucks, cars, etc.). Our aim is to

Our work has focussed on the topics of: mapping from aerial produce descriptions of the individual objects in the scene

images, robotics vision, motion analysis for ALV, some gen- as well as an integrated description of the entire scene in-

eral techniques and parallel processing. cluding the functional relationships between the parts.

Previously we have reported on our work on extraction ofrA
runways [9]. Our technique consists of hypothesizing run-

1 Introduction ways by using linear segments, forming anti-parallels from

them and then grouping the anti-parallels on the basis of

This paper summarizes our research projects during the continuity and collinearity. The verification of the hypothe-
ses comes from detecting expected markings on the run-

past year. These proceedings contain eight other papers ways. We have applied these techniques to a variety of
from our group that describe our research in more detail airport scenes with success. In recent work, we have fur-

[1,2,3,4,5,6,7,81. Those topics that are covered in detail in ther enhanced our verification technique. In earlier work,
other papers are covered only very briefly in this overview, all processing was performed at one resolution. This reso-

Our research activity has focussed on the following major lution is not adequate to detect all markings on the runway,topics: on the other hand it is very expensive and unnecessary toprocess the entire image at the highest available resolution.

e Mapping from Aerial Images For the task of verification of specific features, however, we
can focus on just selected parts of the image and resegment

* Robotics Vision it at the needed high resolution. Thus, we have a case of the

* Motion Detection for Autonomous Land Vehicle (ALV), results of higher level symbolic processing guiding the low-
and level segmentation on a second pass. We have found this

e Parallel Processing technique to be highly effective in detecting subtle marks A'

on the runway surfaces that increase our confidence in the

In the following we summarize our research in these areas detection of the runways.
and provide references that contain more detail."'" Detected runways are also used to guide the detection of

2 Mapping From Aerial Images taxiways which tend to be adjacent to each other. Verifi-

cation of taxiways can be by examining their relationships

to the runways. This work is in progress at this time.

Our g( al here is to produce high-quality symbolic maps of

complt k, cultural scenes from aerial image data. For some- In another project, funded in part by the Defense Map- '-

ping Agency (DMA), we have been developing methods for

'This research was supported, in part, by the Defense Advanced detection and description of complex building structures.

Research Projects Agency contracts DACA76-85-C-0009 and F33615- We have achieved what we believe is a major success in

87-C-1411, order No 3119 and monitored by the U.S. Army Engineer this effort and we are able to handle buildings with wings
Topographic Laboratories and Air Force Wright Aeronautical Labora- of different heights. The shapes are restricted to being com-
tories respectively, positions of rectangles, however. The key to the method is a
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technique for perceptual grouping of low-level features into In a separate project, we are investigating the computa- .r
meaningful high-level structures. This method is described tion of volume descriptions, in terms of generalized cones,
in detail in a paper in these proceedings [1]. We expect given only sparse and imperfect 3-D data of the scene. Pre-
that this technique can be generalized to work for a broad viously, we have presented techniques that work on the class
classes of objects, in aerial scenes and in other domains, of objects known as linear, straight, homogeneous general-
and is a major focus of our current research. ized cylinders (LSHGCs) [12,13]. Our current focus is on

handling more general objects. We believe that the key is
We are now investigating the systems aspects of the map- in finding the appropriate symmetry axes for the objects.

ping problem. We have modules to detect significant sur- However, in presence of surface markings and with frag-
face structures and significant 3-D structures. We are study- mented boundaries, we also get fragmented and extraneous
ing how these descriptions can aid each other in improv- axes at the first level of analysis. The challenge is to con-
ing the confidence of detected structures, in detecting less nect the fragments in a meaningful by using geometrical
prominent features and how they should be combined to relations between them. We are achieving some success in
give high-level, functional integrated descriptions. this effort but much remains to be done. We hope to report

on this work in the near future.

3 Robotics Vision 4 Motion Detection and Analysis

Our concentration here is on description of 3-D shape and We have a number of ongoing efforts in detection and anal-
recognition of objects based on shape. We are developing ysis of moving objects, primarily in the context of support-
methods for both surface and volume descriptions. Both ing the DARPA Autonomous Land Vehicle (ALV) project, 0
methods rely on same underlying philosophical concepts - though the techniques are of much broader utility. This
that complex shapes need to be described by decomposi- effort is being supported by our "Knowledge-based Vision
tion into "simpler" parts and that the inter-relations of the Techniques" contract as part of the DARPA strategic corn-
parts are a significant aspect of the shape description. The puting program.
decomposition can be carried out successively to the de-
scribed level of detail. We call such descriptions structured, Of the many alternative approaches to motion analysis,
heirarchical descriptions, we have chosen the long range or feature point methods.

This approach involves extracting a set of reliable features
For surfaces, we believe that appropriate places for seg- in a sequence of images (lines, corners, contours, regions,

mentation are at the occluding (or jump) boundaries, slope etc.), finding the corresponding features in the sequence
discontinuities (folds) and "ridges". These features can, in (i.e. by a series of image to image matching operations),
turn, be computed from the curvature properties of sur- and finally the computation of three-dimensional motion
faces and correspond to points or lines where the curvature estimates based on the series of correspondences. We have 0
is a local extremum or goes through a zero-crossing. Actual addressed each of the problems separately and have begun
computation of these properties is made difficult due to the to combine them into a coherent system.
presence of noise in digital range data.

In previous work, we have described a method for us-
Our techniques for computing such descriptions have been ing more than two frames to robustly allow 3-D motion

presented previously [10,11]. parameters [14]. In recent work, we have focussed on the •

In recent work, we have developed techniques for match- following:

ing descriptions derived from two scenes. The two descrip- 1. Establishing Correspondences between features in two
tions can be from different views of the same scene or one images - Primitives we choose to match are super-
description can be from a complex scene and the other from segments which represent connected linear approx-
a set of model descriptions of the objects known to the sys- imations of edge points. These supersegments are
tem. The former is needed for model-building, the latter for matched on the basis of similarity of shape and smooth-
object recognition. We have tested our system on complex ness of displacement. We have obtained good results
scenes of highly complex objects such as a car, a telephone, on real data; details are given in a paper in these
a chair and a table and obtained very satisfactory matching proceedings [3].
results. We believe that this system is a major advance over
previous system in its ability to handle complex shaped ob- 2. System Integration - we have started integration of

jects. This method, with experimental results, is described various modules in a system. This system is describe

in detail in another paper in these proceedings [2]. separately in 14J. Much of the work is still in designing
the system architecture but we are already beginning
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to get some experimental results. Mesh of Meshes, and Reconfigurable VLSI Arrays. The

3. Spatio-Temporal analysis - We have developed a method Mesh with Broadcast Buses can be looked upon as an en-
to analyze a sequence of image frames taken close hanced mesh to support sparse communication between S
apart in time, forming a spatio-temporal volume. The processors. We have studied asymptotic performance im-
assumption that the frames are close allows us to put provements in using such arrays. The Mesh of Meshes is a
a bound on the amount of displacements for each general purpose VLSI based architecture which can provide
point. Using a local process around each edge point linear speed up for a large number of image problems over
(cutting slices at various angles along the time dimen- a wide range of input size. An important feature of this
sions), we show how to compute the normal velocity organization is that the number of processors (which tends
(in the direction normal to the edge). As opposed to to be more expensive compared to memory) can be var-
the study presented by Bolles et al [151, in which the ied, and the speed up remains proportional to the number
whole volume is acquired then processed, we are able of processors. A related organization is the Mesh of Trees
to process the sequence after very few frames, typi- (MOT), which apparently has not been well studied in the
cally 5. We also explicitly model occlusion and dis- context of image processing and vision. We have shown
occlusion, which permits us to segment contours and that poly log solutions to image problems can be obtained
robustly compute the true velocity field. We show on the MOT . In fact, for most image computations the
results on both synthetic and real image sequences. MOT can support divide and conquer more efficiently than
This work is described in [5]. the Pyramid, leading to superior performance on the MOT

4. A new representation - W. Franzen in our group has compared to the Pyramid. The Reconfigurable Mesh is a

suggested a new mathematical representation that universal array which can simulate the mesh, MOT, and

simplifies the representation of a large class of mo- Pyramid computers. It has a compact VLSI layout (O(n 2 )
tions. His representation is a generalization of the for an n x n array) and the reconfiguration feature can lead •

commonly used homogeneous representation commonly to a variety of interconnection patterns among the PEs.
used to describe rigid transformations. However, ho- We have identified certain sparse data movement oper-
mogeneous transformations are not constant for mov- slutionto
ing objects. Franzen suggests an augmentation of the ations which are essential to efficient parallel solutions to

transformation that he calls a chronogeneous trans- many image problems. We have developed efficient tech-

formation that is constant for a class of motions. It niques to implement these operations on the above orga-
seems that this representation is highly general and nizations. Using these techniques, asymptotically superior
should be useful for a variety of tasks including graph- solution times have been obtained to problems related toics animation, robot trajectory planning and motion extracting geometric features of images. Using this, we r W
analysis. For structure from motion problems, the have been able to show that an enhanced mesh is compa- ,fnalyss.For ofructurefrommotn problems, a er arable to a pyramid of corresponding size. We have derived

an optimal integer sorting algorithms and optimal sortinghence they should be easier to solve. The work on
using this representation is only in its preliminary algorithms on the Mesh of Meshes. Using these results,
stages. The representation and the current status areoptimal parallel solutions to problems on an n x n image
dtaesribe io [. tcan be obtained. These solutions use p processors, where

p is in the range 1 to n'/. An interesting feature is that
when p = n, the Mesh of Meshes with n processors can

5 Parallel Processing solve all of the above image problems in the same time as
an n x ni two-dimensional mesh-connected computer with
n processors. Most of our solutions are simple with a small

As vision systems start becoming more practical, we need constant factor which makes them interesting from an im-
to be concerned with the speed of execution. It is clear plementation point of view. The Reconfigurable Mesh can
that the needed speed can only be obtained by the use of support fast sparse data movement leading to asymptoti-
highly parallel machines. The use of parallel machines for cally superior solution times to several image problems. In
the lower levels (the iconic levels) of processing is rather fact, certain techniques on the CRCW PRAM model can
straight-forward, but not so for the higher levels. Tech- be directly implemented on this model. For example, sev-
niques of our group rely heavily on the extraction and use eral graph problems can be solved in 0(logn) time which is
of symbolic descriptions and such techniques are much more the same time taken by the powerful CRCW shared mem- 21.1

difficult to paralleize. We are studying parallel implemen- ory model. The reconfiguration feature can be very useful
tations of such algorithms. Details of some of our work are in mapping image understanding algorithms, which usually
given in [71; following provides a brief summary. have nonregular data flow.

Three parallel architectures have been investigated in the
past year. These are the Meshes with Broadcast Buses, the
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We have studied parallel implementations of the image 9R
and stereo matching techniques developed at USC. Our par- (9] A. Huertas, B. Cole, and R. Nevatia. Detecting run-

allel implementations can run on the meshes, pyramids, or ways in aerial images. In Proceedings of the DARPA

reconfigurable arrays. The simplest of these implementa- Image Understanding Workshop, Los Angeles, Callfor-
tions is on a fixed-size systolic array of size k1/ 2 x k1/2 which nia, February 1987.

can lead to 0(k'/2 ) speed up. This speed up is possible by [10 T.J. Fan, G. Medioni, and R. Nevatia. Surface segmen-
careful partitioning of the input data and allocating them tation and description from curvature features. In Pro-
to support data dependencies in the computations . ceedings of the DARPA Image Understanding Work.

shop, Los Angeles, California, February 1987.
Recently, we have been studying techniques to imple- [11] T.J. Fan, G. Medioni, and R. Nevatia. Segmented de-

ment basic image computations on commercially available scriptions of 3-d surfaces, accepted for publication in
machines such as the Hypercube and the Connection Ma- IEEE Journal of Robotics and Automation, 1987.
chine. We have developed optimal parallel algorithms for
image template matching on the hypercube class of ma- [12] Kashipati G. Rao and R. Nevatia. From sparse 3-d
chines. Our techniques lead to optimal solutions to the data directly to volumetric shape descriptions. In Pro-
template matching problem using fixed memory in each of ceedings of the DARPA Image Understanding Work- 0
the processors. shop, pages 360-369, Los Angeles, California, Febru-

ary 1987.
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IMAGE UNDERSTANDING: INTELLIGENT SYSTEMS

Thomas 0. Bipford

Robotics Laboratory, Computer Science Department,
Stanford University, Stanford, CA 94305, U.S.A.

Abstract curved surfaces is shown. Preliminary results )
on texture segmentation are presented. Edge
segmentation into regions is described, along

This report summarizes progress in model- with global color region segmentation and to- S
based vision, implemented in the SUCCES- cal color segmentation of edges.
SOR system. We present results in three areas.
The first area is representation and geomet-
ric modeling. New generic modeling of object
classes was achieved, models of three classes INTRODUCTION
were built, and a generic model of a hallway
was used to build a model of the hallway of our
building. A general "painted-surface model"
was integrated in SUCCESSOR for metals and SUCCESSOR is intended to be a general,
non-metals, specular and non-specular reflec- model-based vision system. To many, the
tion. A new physical model for diffuse reflec- phrase is a contradiction in terms. The key
tion has been incorporated. Curved-axis solids to generality is to capture general constraints.
of revolution (CSR) and set operations with With weak representation, only specific con-
CSRs have been added. Boundary representa- straints can be implemented. We concen-
tion by "trimmed-surfaces" has been added. trate on generality of representation. We aim

that SUCCESSOR be a comprehensive system
The second area is interpretation of scenes and that it be powerful for applications. For
and data. Initial results were obtained in ex aTp!:alion-, rc p::,-ntation of domain-specific
pressing structural relations, measurement ev- detail is important. Our impression is that
idence, and predictive evidence in a Bayesian some domain-specific information can be ima-
network model. Computational complexity plemented with weak representation methods.
was addressed by basing generation of hypothe- but that strong representation methods pro-
ses on quasi-invariant observables. A new vide an opportunity fo making efficient use of'
generic observability model for diffuse reflec- detailed domain-specific information.
tion from surfaces was obtained. New results
were obtained on differential geometry of gen- We do fundamental research on components
eralized cylinders and ribbons, and on their integration. We also integrate

results of research in an experimental system
The third area is segmentation and building for our own research and to support others in
structured descriptions of scenes. New results the IU community, especially for target recog-
are described from a hierarchical stereo corre- nition. y
spondence system which builds descriptions of
objects and surfaces. Stereo reconstruction of Our objective is to identify similarity among ,k.

members of an object class, not just to match A%
This research Was supported in part by a subcontract to identical individuals. We aim to do it with

Ad,3nced Decision Systems, 51093 S-1 (Phase II). "Knowledge
Based Vision Task B," from a contract to the Defense Advanced methods which have low computational corn-
Research Projects Agency. Partial support was 'rovided by the plexity without sacrificing generality, a concern
Air Force Offce of Scientific Research under contract F33615-85- which has been central throughout our work,
C-5106 e.g. [Nevatia and Binford 73].
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We have made a substantial new step to- introduced and incorporated a general physi-
ward implementing general constraints by cal model for reflectivity which covers specu-
generic, symbolic representation of object lar and non-specular reflection for metals and
classes and general knowledge [Kriegman, Bin- non-metals. A single model appears to be ade-
ford, Sumaneweera 88]. We have designed quate across the entire electromagnetic spec- ,
and implemented an abstract, generic model- trum [Ponce and Iealey 88]. A "painted-
ing capability in SUCCESSOR, implemented surface" model has been added to SUCCES-
three classes of generic models and applied a SOR which models surface optical properties
generic building model to vision for a mobile based on these physical models. A physical
robot. Generic modeling is based on an object- model from [Reichman 73] has been introduced
oriented subsystem for a few geometric types. which is the first non-'.;vial model for diffuse
Figure 1 shows initial success in using a generic reflection used in computer vision.
model of the class of buildings in building a
model of halls and doors in our buiding from Curved-axis solids of revolution (CSR) have
the generic model, using images from our mo- been added to SUCCESSOR Ponce an(l
bile robot, integrating stereo and monocular in- lealey 88]. Solid primitives are built up by
formation. Figure 2 illustrates a generic model an interactive graphic editor and asscmbled by
of the class of screws. Screw types were cho- a simple modeling language into tre - by set
sen to cover classes from a machinery hand- operations, union, intersection, and difference.
book. Figure 2 also shows the generic model of Primitives are related in a graph by aflixment
the hallway. Generic display methods provide by geometric transformations between parts,
views of typical examples from object classes, including symbolic relations between planar

faces. All relations may be general expres-
TWO challenges in generality are in using dif- sions with parameters, which allows motion of "e
ferent sensors, uptical images, depth data, and parts. A boundary representation by trimmed
radar data now that high resolution radar data surface patches has been implemented. The -.
are available, and integrating evidence from adaptive algorithm for computing intersections
multiple sensors. New results on interpretation of SHGCs (straight homogeneous generalized
contribute strongly to integrated interpretation cylinders) by building variable resolution box
[Binford, Levitt, Mann 871. We demonstrated trees has been extended to CSRs. An al-
preliminary results aimed toward generic in- gorithm for consistent set operations despite
l'rpretation by expressing structural relations, deg'nerate cases was implemented. Several
predlictive knowledge from generic models, and new rendering methods have been imtplemented
measurement evidence in a probability network which include large speedups.
in',del. Probability networks are natural meth- -
ods 4, representing constraint structures [Pearl A new generic observability model for diffuse
S6]. The approach appears promising, how- reflection from surfaces was obtained [Binford
ever we work to overcome substantial problems 87]. The model determines that discontinuities
which are apparent, i.e. modeling relations, of surface normal (order 1), surface reflectivity
oll)ut-iat ions of probabilities, and control of (order 0), and illumination (order 0) are visi- 0

hypothesis generation. Our initial efforts dealt ble generically, i.e. except on a set of measure
with computation issues Fv partial instantia- zero, as (iscontinuities in intensity images of
ti on. i.e. by instantiating -nly those hypoth- order 0, i.e. steps in intensity. l)iscontinuities
esis nodes for which evidence was sufficient, in surface curvature (order 2) and slope discon-
and by using quasi-invariants for generating tinuities of reflectivity and illumination (order
hypotheses. We have used quasi-invariants 1) are visible generically as slope discontinu-
widely in stereo vision [Arnold and Binford 80] ities in im, age intensity (order 1). ,

and in ACRONYM [Lim, Chelberg, Cowan 81; [
Brooks 81]. [Ponce 88a] derives uniqueness and equ(ahnce

results for generalized cylinder representations,
To achieve this level of generality, we re- for SIIGCs. lie also compares ribbons of dif-
quire general modeling capability which has ferent classes and finds a practical local test for _
a highly symbolic, compact form. We have curved ribbons with skewed symmetry.
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We describe new results with a hierarchical two is to change the probability network to
stereo vision system which builds monocular an incomplete network. We have not yet ad-
interpretations of surfaces and bodies. Stereo dressed the change which results to the proba- 6:
correspondence is made between surfaces and bility computation from partial instantiation.
bodies to reduce ambiguity and computation In [Nevatia and Binford 73], indexing based I,

[Lim and Binford 88]. The stereo system in- on topology of axes of generalized cylinders
cludes a solution to the long-standing prob- was used for hypothesis generation from depth
lem of correspondence from limbs of featureless data. Hypotheses were verified with statistical
curved surfaces. tests of hypotheses against size ratios of gener-

We also report edge segmentation of images alized cylinders.
into closed regions by curvilinear extension and [Binford 88] derives a generic observability
determining cycles in the connectivity graph. model for non-specular reflection. He consid-
Ribbon determination by projection has also ers the image intensity equation and deter-
been accomplished. The report also describes mines which discontinuities of image intensity
local color region discrimination with curvi- are caused by surface discontinuities of order
linear edgel linking. [Sumaneweera et al 88]. 0, 1, and 2 (discontinuities in depth, tangent,
Texture segmentation remains a great problem. plane, and curvature, respectively), reflectivity
Some preliminary results in texture discrimina- discontinuities of order 0, 1, and 2 and dis-
tion show about 90% success in discriminating continuities in illumination of order 0, 1, and
pairs of very different textures from Brodatz's 2. Generic observables are observable except
collection. [Vistnes 88]. on a compact set of measure zero, the stan-

dard mathematical definition. The results are -

that surface discontinuities of order 0, 1, and 2
INTERPRETATION are generically observable. Reflectivity discon-

tinuities of order 0 and 1 and discontinuities
in illumination of order 0 and 1 are generic
observables. These results have consequences S

Our theme in interpretation is recognition by for perceptually adequate representation, e.g.
structure. Structures are 3d generalized cylin- surface representations must be C2 except at
der primitives linked at joints. Measurements boundaries, otherwise they introduce spurious
provide constraints on ribbons, i.e. images of discontinuities in image intensities. The results
generali;ed cylinders, and constraints on re- have the consequence that it is possible to gen-
lations between them. To relate ribbons to crate generic predictions about image disconti-
generalized cylinders, i.e. to relate images nuities.
to surfaces, we use quasi-invariants and infer-
ence iles [Binford, Levitt, Mann 87]. This [Ponce 88a] uses differential geometry of ""
leads to i network formulation of interpreta- SHGCs to prove several uniqueness results.
tion and recognition which includes geomet- Parabolic lines of an SHGC are either meridi-
ric constraints (non-statistical) and statistical ans or parallels, i.e. either constant z or con- S
measurement uncertainty. Figure 3 shows ob- stant 0. If a surface is described by two SHGCs
jects from the class of plumbing fittings from with the same axis and cross section plane,
that exercise. The Bayesian network proba- then the SHGCs are equivalent. A surface de-
bility formulation of [Pearl 86] was used to scribed by an StIGC with two parabolic merid-
solve for overall probabilities of hypotheses in ians and two parabolic parallels has no other
a test case generated interactively from edge non-equivalent SHGC description. For a non-
segments as test data. linear SHGC, the direction of the axis is de-

termined by the direction of the cross-section,
A key issue is control of interpretation within and the converse. A surface with at least (wo
the network. This was addressed in two ways in parabolic lines has at most one SHGC descrip-
that work. First, hypotheses were instantiated tion if these lines are parallel, and at, most three
only based on measurement data or prior evi- if they intersect. An SIIGC is not necessarily
dence. Second, quasi-invariants limited the set regular; necessary and sufficient conditions are
of hypotheses generated. The effect of these
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derived for regularity, generic building model. The particular exam-pie was chosen in part as a simple example to
[Ponce 88b] finds a local condition for skewed demonstrate effective use of a generic model
symmetries for curved ribbons. It extends the to guide perception in building a model of our
angular bisector condition for straight ribbons particular building. Even at an early stage,
to a condition on curvatures. He proposes an initial results gave a much richer perception of
algorithm for finding them. He also compares the hallway than the special purpose vision sys-
three classes of ribbons and extends previous tem from the mobile robot. Important parts of
results in relating them. the model were functional, not geometric. Ge-

ometric constraints are derived from the func-
tional constraints. Major functions included

REPRESENTATION were: 1. Environmental isolation generates en-
closure and dictates connection of rooms to
a hallway. 2. Human movement and occu-
pancy places constraints on height and width

GENERIC MODELS of doors, width of hallway, and height of rooms.
3. Gravity affects construction to make walls
and doors vertical and floors horizontal. 4.

The generic models in SUCCESSOR ex- Cost limits the size of construction to slightly
tend the representation mechanisms by which larger than human dimensions.
generic models of object class are implemented, The next step is to use generic models in other
compared to ACRONYM. In ACRONYM, model-based vision domains, especially the do-
class models were implemented by constraints main of pipe fittings.
on number of elements nd parameters, e.g.
number of engines on aircraft, and range of
sizes. In the new work reported here, the
basis for constraints is larger. Instead of PHYSICAL MODELS OF SURFACES
varying numbers, variants for components can
be within a type structure. The underly-
ing object-oriented subsystem has classes, sets,
numbers and mappings There is a type sys-
tem. Inheritance is based on subclasses, i.e. Modeling of optical properties of surface ma-
specializations, similar to ACRONYM. Curves terials and of sources has now been imple-
and surfaces are represented at a level of ab- mented in SUCCESSOR [Ponce and Healey
straction. Geometric constraints can be in- 88]. The surface material model is based on a
stantiated as algebraic constraints on which comprehensive model which is imported from
symbolic manipulation can be performed. A physics. The model includes homogeneous ma-
generic model of generalized cylinders was im- terials like metals and inhomogeneous materi-
plemented to provide an interface to the ge- als like plastic, specular and non-specular re-
ometric modeling part of SUCCESSOR. This flection. Non-specular reflection from inhomo-
model represents generalized cylinders explic- geneous materials is important for the vast ma-
itly as a spine curve and a cross section surface. jority of surfaces seen in everyday life. A new
Constraints are more difficult to show in a fig- model from [Reichman 73] is an extension of
ure than the set operations shown. About 90% Kubelka-Munk theory which we have used for
of screw types in a machinery handbook have spectral properties to date. The new model
been modeled. A number of constraints do not has great significance in prediction and recogni-
show up in figure 2: e.g. head and shaft are tion of materials. Surface reflection, specular-
coaxial: there are scaling rules, ratios of sizes, ity, is modeled by Fresnel reflection augmented
which determine how components of different by the analysis of [Torrance and Sparrow 67].
sizes of a screw type scale. The result is re- Body reflection is given by Reichman's major
markably compact and powerful. extension of the Kubelka-Munk theory. This is

the first non-trivial model for diffuse reflection
The generic hallway model is to be part of a from the body of an inhomogeneous material
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in vision or graphics. pressions with parameters such as time. Thus,
articulated objects which move in time are rou-

The model has some immediate consequences. tinely modeled.
It allows discrimination of metals from non-
metals from color images [Healey and Bin- A boundary representation by trimmed sur-
ford 88]. The model predicts color variation face patches has been implemented. Trimmed
with geometry of body reflection from inho- surface patches are subsets of the 2-d param-
mogeneous materials, a variation overlooked so eter space of the surface, limited by intersec-
far by other treatments. Another consequence tions and other restrictions. The adaptive al-
of the model is that reflection from homoge- gorithm for computing intersections of SHGCs
neous surfaces should have the same spectral by building variable resolution box trees has
response over the surface, whether at a specu- been extended to CSRs (curved-axis solids of
larity or far from one, over an intensity range revolution). Intersections are represented by
of several orders of magnitude. Figure 4 shows polygons in the parameter space of general-
results of experiments carried out which con- ized cylinder primitives. To maintain consis-
firmed this prediction. We are unaware of any tent representation despite degenerate cases,
such previous result. an analysis of [Ladlaw, Trumbore, and Hughes

86]was implemented. The intersection algo-
rit hm is of order \rn in the number of poly-
hedral faces necessary to approximate the sur-

GEOMETRIC MODELS OF SURFACES faces uniformly to the desired resolution.

Cross sections and axes of CSRs are formed
of curve segments which are now straight lines
and cubic splines, joined at knots which may

Geometric models in SUCCESSOR be C°,CoorC2. i.e. with 0, 1, or 2 continuous
are part-whole graphs with generalized cylin- derivatives.
ders as volume primitives. The class of gen-
eralized cylinders implemented in SUCCES- Several new rendering methods have been ir-
SOR previously included star-shaped SHGCs, plemented. Previously, limbs of SHGCs and
i.e. straight homogeneous generalized cylin- tubes were calculated in closed-form analytic .,
ders, which have straight axis, star-shaped solutions. Z-buffer methods and ray tracing _X

cross section, and arbitrary scaling along the were implemented for hidden surface display.
axis. Curved-axis solids of revolution 'CSR) Now, back-to-front facet painting for single ob-
have been added and integrated [Ponce and jects has been implemented. The method is
Healey 88]. They have circular cross section quite efficient. Ray tracing is performed with
with variable radius, i.e. swept with a scal- the quadtree representation of surface patches.
ing function along an arbitrary curved axis in Also, the screen is organized as a quadtree.
3-space. Some speedups have been incorporated for ray

tracing for line drawing display. Ray tracing
Solid primitives are built up by an interactive is performed only at limbs of surfaces. Fig-
graphic editor and stored as files. Primitives ure 5 shows an example. Further, visibility of
are assembled by a simple modeling language contours changes only at occlusions, i.e. T-
into CSG trees (computational solid geometry) junctions. This has been implemented.
with primitives connected by set operations,
union, intersection, and difference. Primitives
are related in a graph by affixment relations SEGMENTATION .
which represent geometric transformations be-
tween coordinate systems of the parts. Geo-
metric relations between parts may be specified
by symbolic geometric relations between planar [Lim and Binford 88a] show results from an al-
faces of primitives, e.g. "with face iface1, in gorithm which presents a solution to the long-
contact with face iface2,". These relations and standing problem of stereo surface reconstruc-
other affixment relations may be general ex- tion from two views of a featureless curved sur-
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face. Figure 6 shows the problem, two views normalized color has been demonstrated.
of the limb of a curved surface do not corre-
spond. The limb depends on viewpoint. The
solution is to make accurate constraints, i.e.
without surface marks, the constraint is that TEXTURE
we have four rays which are tangent to the sur-
face on an epipolar plane. These are four con-
straints. Surface marks for which correspon-
dences are established provide additional con- Currently, edge segmentation works passably
straints. One choice for cross section curve is forsentl rge exeless agergos
a conic, which has five parameters. Four tan- for scenes with large textureless image regions.
gents alone have only four constraints. Adding There is still room for improvement for texture-

a constraint which minimizes perimeter to area less scenes, but segmentation is weak for scenes

provides a unique solution. There may be other with texture. [Vistnes 88] reports progress
evidence in an image, e.g. edges which termi- in discriminating textures by some functions
nate the surface. By assuming a generalized which have been beleved to be important.
cylinder which scales along the image, the ter- They do seem effective in discrimination.
minating edge puts additional constraints on A dense set of directional operators were ap-
the curved surface estimate from the image. plied at a set of lengths, elongations, and di-
Figure 7 shows a result for a cylinder. rections to estimate local length, elongation,
[Lim and Binford 88b] show new results from direction, and intensity [Vistnes 88]. Two •

a hierarchical stereo system which builds high types of operators were employed, much as in
level interpretations from separate monocular the visual cortex of animals, namely elongated
images. It organizes the image into extended center-surround operators and edge operators.

For each individual operator, the significanceedges which are organized into vertices [Nalwa o icniut ntema au a si
and Binford 86, Nalwa and Pauchon 87]. The of a discontinuity in the mean value was esti-
accuracy of vertex determination is improved mated by summing along strips along the oper-
by extrapolating edges into vertices. Figure 8 a dictin in veof two linfitne
shows this organization. Three-dimensional in- o iter i e of t n Fige fitshows
terpretation enables grouping extended edges on either side of the center. Figure 11 shows
into surfaces, accounting for occlusion. Sur- the form of the operator.
faces are grouped into bodies. Figure 9 shows Overall significance was estimated by assum-
left and right images of a scene grouped into ing that each operator was independent. A
bodies. Stereo correspondence is made at the ingrthatceachoper ineed A
level of bodies, rather than at the level of epipo- four-forced-choice experiment tested discrima-
lar edge elements, which is typical. There are tion between all pairs of 10 images from Bro-

about two orders of magnitude fewer bodies dtz Thseprmnwarutretistan w oresomgndence fe bodies ires for different numbers of lengths, elongations,
than edgels. Correspondence of bodies requires and orientations of center-surround operators, a
about four orders of magnitude less computa- and lengths and orientations of edge operators
tion than matching of edgels. Discrimination was high, above 90% for typi-

An algorithm which finds regions as cycles cal preferred choice of operator set. To com-
of curvilinear elements has been implemented. pare with a standard texture operator, Laws
First, edge elements are extended over gaps operator was run on the same experiment. It

Firt, dgeeleent ar exendd oer aps achieved 40% discrimination. The texturesby curvilinearity. Intersecting curvilinear el- used were quite varied and did not have small-
ements are determined. Cycles are determined se tere Thse res are nouagn for
in the connectivity graph of intersecting edges. scale texture. These results are encouraging for
Preliminary results are shown in figure 10. An- further research.
other algorithm finds ribbons using smooth lo-
cal symmetry [Sumaneweera et al 88]. It uses a
projection method to cut computational com-
plexity. Local segmentation along edges using
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Figure 4: spectra of reflection for metals
at specular peak and far from the peak A
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Figure 6: two views of the limb of a
Figure 5: line drawing of curved surfaces. curved surface do not correspond.
Ray tracing was done only at boundaries. The limb is viewpoint dependent.
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Figure 7: curved surface estimate using
stereo with tangent constraints.
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Figure 10: Cycles of edge elements. 
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An edge detector. It divides its receptive field

into I slices (here, N -- 4) on either side of a hypothesized 
A texture edge formed from images D23 (peb-O

edge, as shown. 
bles) and D94 (bricks).

Figure 11: Texture discrimination
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IMAGE UNDERSTANDING RESEARCH
AT THE UNIVERSITY OF MARYLAND

(December i986 - January 1988)

Azriel Rosenfeld
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College Park, MD 20742-34!11

ABSTRACT traditional approach of corresponding microfeatures
(interesting points-highlights, corners, hilgh curvature

This report briefly summarizes research in image points, etc.) has shortcomings. We have obtained a
understanding conducted at the University of Maryland closed form solution to the motion and structure deter-
during the 14-month period December 1986 through mination problem from line correspondences in three
January 1988. The areas covered incluud motion views. The theory has been compared with preouq
analysis, 3D vision, range sensing, navigation, interpreta- ones that are based on nonlinear equations and iterative
tion of aerial images, digital and computational methods. [2, 3]
geometry, parallel algorithms, "pyramid" techniques, In the area of "correspondenceless" techniques, a
and other topics. method has been developed for the recovery of the

three-dimensional translation of a rigidly translating
object. The novelty of the method consists of the fact
that four cameras are used in order to avoid the solution

1. MOTION ANALYSIS of the correspondence problem. The method is immune
Our research on the structure fr'om motion problem to low levels of noise and has good behavior when the

has dealt with the case of rigid motion using point noise increases. The noise immunity is so high that even
correspondences (microfeatures) or line or contour though the algorithm is intended only for translating
correspondences (macrofeatures), as well as "correspon- objects, its accuracy is very high even if the object is
denceless" methods. We have also studied the nonrigid rotating (with a small rotation) as well. [4[
motion problem, or in general, the problem of determin- Given the perspective images of an object before
ing the transformation parameters when an object and after a 3D rigid motion of finite magnitude, together
undergoes a transformation as seen in a sequence of with the depth information of the object before motion,
images. We have developed a novel method of determin- a method has been developed to recover the motion
ing an observer's motion parameters when a full (4r parameters without having to solve the correspondence
steradian) image flow field is available. [Other motion, problem. Let image features be defined as functionalsrelateblem work imsg desaribed be defne astin on D vsion ,
related work is described in the sections on 3D vision over images containing outstanding points, line seg- %
and navigation.] ments, or surface regions on the object. The infini-

In connection with point correspondences, we have tesimal variation of an image feature can be expressed as
obtained new results on how many points in how many a linear constraint on the motion parameters. Thus, an "%
views are necessary and sufficient to recover structure, infinitesimal motion can be estimated by solving a set of
The constraints in the cases where the velocities of the simultaneous linear equations. Ilence, if an appropriate
image points are known, and the positions of the image initial value is given, a finite motion can be recovered by
points are known with the correspondence between them iteratively applying above infinitesimal estimation; after
established, are different and have to be studied each iteration, the image is transformed, according to
separately. In the case of two projections of any number the estimated motion, to get closer and closer to the tar-
of points there are infinitely many solutions but if we get image. The appropriate initial values can be chosen
regularize the problem we get. a unique solution under finitely from a bounded parameter space which is
certain assumptions. Finally, we have developed an obtained from the given images. Both synthetic data
algorithm for learning this particular kind of regulariza- and real images have been used in expeiments. [5'
tion. [1h Determining 3-D motion from a time-varying 2-D

We have also developed a theory of the computa- image is an ill-posed prol)lem: Unless we impose addi-
tion of three dimensional motion and structure from tional constraints, an inlinite number of solutions is pos-
dynamic imagery, using only line correspondences. The sible. The usual constraint is rigidity, and most of our
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previous work used it. But many naturally occurring 20% in the input, and errors of less than 20% for pertur-
motions are not rigid and not even piecewise rigid. A bations of up to 200%. [8]
more general assumption is that the parameters (or some The fundamental assumption of almost all existing
of the parameters) characterizing the motion are approx- computational theories for the perception of structure
imately (but not exactly) constant in any sufficiently from motion is that moving elements on the retina
small region of Lie image. If ve know the shape of a correspond projectively to identifiable moving points in
surface we can uniquely recover the smoothest motion three-dimensional space. Furthermore, these computa-
consistent with image data and the known structure of tional theories are based on the fundamental idea of reti-
the object, through regularization. We have developed a nal motion, i.e., they use as their input the velocity with
general paradigm for the analysis of nonrigid motion. which image points are moving (optic flow or discrete
The variational condition we obtain includes maximizing displacements). We have investigated the possibility of
isometry, rigidity, and planarity as special cases. If the developing computational theories for the perception of
variational condition is applied at multiple scales of reso- structure from motion that are not based on the concept A

lution. it can be applied to turbulent motion. Finally, it of the velocity of individual image elements, i.e., they do
is worth noting that this theory does not require the not use optic flow or displacements as input. A paper
computation of correspondence (optic flow or discrete on this work appears in these Proceedings.
displacements), and it is effective in the presence of oc
motion discontinuities. [6] 2. 3D VISION

In related work, we have developed a theory for the We have been concerned with the derivation of 3D
determination of the three dimensional transformation shape information from single or multiple cues available
parameters of an object from its images. The input to in a single image or a sequence of images.
this process is the image intensity function and its tem-
poral derivative. In particular, our results are: Our research involving single cues has dealt with

1) If the st. uture of the transforming object in view is deriving shape from pattern or texture information. We
have developed a theory for the recovery of the shape ofknown, then the rarsformation parameters are

deteminedn, th the rsfoution arlinetesarsyse. a surface covered with small elements (texels). The

Rigid motion is a special case of this theory. theory is based on the apparent surface-pattern distor-

2) If the structure of the object in view is not known, tion in the image and fits the regularization paradigm,

then both the structure and transformation parame- recently introducd in computer vision by Poggio et al.
A mapping is defined based on the measurement of the

ters may be computed through a hill climbing or local distortions of a repeated u'"nown texture pattern
simulated annealing algorithm. [7] due to the image projection. '1,.. mapping maps an

In the area of optical flow analysis, we have apparent shape on the image to a locus of possible sur-

developed a theory for determining the motion of an face orientations in gradient space. The analysis is done

observer given the flow field over a full 360 degree image under an approximation of the perspective projection
sphere.called paraperspective. The resulting algorithm has been

expansion and contraction for an observer moving applied to several synthetic and real images to demon-

without rotation are 180 degrees opposed; and on the s i r c

observation that if the flow field on the sphere is con-
sidered around three equators defining the three princi- A central goal for visual perception is the recovery
pal axes of rotation, then the effects of the three rota- of the three-dimensional structure of the surfaces dep-
tional motions decouple. The three rotational parame- icted in an image. Crucial information about three-
ters can thus be determined independently by searching, dimensional structure is provided by the spatial distribu-
in each case, for a rotational value for which the dero- tion of surface markings, particularly for static monocu-
tated equatorial flow field can be partitioned into dis- lar views: projection distorts texture geometry in a
joint 180 degree arcs of clockwise and counterclockwise manner that depends systematically on surface shape
flow. The direction of translation is obtained as a by- and orientation. To isolate and measure this projective
product of this analysis. Since this search is two dimen- distortion in an image is to recover the three dimensional
sional in the motion parameters, it can be performed structure of the textured surface. For natural textures,
relatively efficiently. Because information is correlated we have shown that the uniform density assumption
over large distances, the method can be considered a pat- (texels are uniformly distributed) is enough to recover
tern recognition rather than a numerical algorithm. The the orientation of a single textured plane in view, under
algorithm has been shown to be robust and relatively perspective projection. Furthermore, when the texels
insensitive to noise and to missing data. Both theoreti- cannot be found, the edges of the image are enough to J'

cal and empirical studies of the error sensitivity have determine shape, under a more general assumption, that
been conducted. The theoretical analysis shows that for the sum of the lengths of the contours on the world
white noise of bounded magnitude Al, the expected error plane is about the same everywhere. Finally, experimen- S
is at worst linearly proportional to Al. Empirical tests tal results have been obtained for synthetic and natural
demonstrate negligible error for perturbations of up to images. [10]
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In connection with the general problem of 3D vision, Specific areas studied during the past year include
we have studied an approximation of perspective projec- shape from shading and motion 1131, shape from contour
tion, called paraperspective. It turns out that it is a and motion [141, and shape from shading and contour
very good approximation of perspectivity under a variety [15]. This work is briefly summarized in the following
of situations, aud it ca- be use,' vcry successfully in tex- paragraphs.
ture, contour and motion analysis, as well as object Most of the basic problems in computer vision, as
recognition. We have analyzed paraperspective projec- formulated, admit infinitely many solutions. An example
tion, compared it with orthography and perspective, of this is the shape from shading problem. But vision is
applied it to problems that have been addressed in a full of redundancy and there are several sources of infor-
different way in the literature, and used it to discover mation that if combined can provide unique solutions for
invariant geometric relations that were unknown up to a problem. We have combined shading and motion to
now. Our main contribution lies in the conclusion that uniquely recover the light source direction and the shape
very good results are obtained by applying to perspective of the object in view.
images algorithms developed from a computational (lntheory based on paraperspective projection. This, along (1) We have developed a constraint among retinal ,,
with the simplicity of paraperspective n. thi along motion displacements, local shape, and the direc-
this projection leads to the discovery of perspective tion of the light source. It is worth noting that
thvrisnprojecti les tothe tudisoveryofperspective this constraint does not involve the albedo of the
invariants, motivates the study of paraperspective pro- imgdsrae hscnsriti fiprac

jection in the context of image understanding. [I1] imaged surface. This constraint is of importance
in its own right, and can be used in related
research on computer or human vision.

While we continue our research on the relation of

shape to specific cues, we are aware of problems with (2) We have developed a constraint between retinal

passive monocular reconstruction from single cues. The displacements and local shape. Again, this con-

theory of discontinuous regularization addresses these straint is important on its own, and it lies at the

problems, which are basically the following. heart of the algorithms presented in this paper.

(3) We have formulated algorithms for the unique
(1) The assumptions employed are usually very strong compuato f te lgtig dirt anqte

(they are not present in a large subset of real computation of the lighting direction and the

images), and so some of the algorithms fail when shape of the object in view.

applied to real images. (4) Finally, we have obtained experimental results,

(2) Usually the constraints from the geometry and the using synthetic images, that test the theory.

physics of the problem are not enough to guarantee The problem of shape from contour has also been
uniqueness of the computed parameters. In this examined. In traditional passive perception approaches,
case, strong additional assumptions about the world this problem has infinitely many solutions; and special
are used, in order to restrict the space of all solu- assumptions or ad hoc heuristics must be employed in
tions to a unique value, order to reduce the space of solutions to a unique value,

and there is excellent research on this topic. An alterna-(3) Even if no assumptions at all are used and the phy- tive approach is to consider an active observer, i.e., an

sical constraints are enough to guarantee uniqueness osveroah ms i a n ay oreo soe a

of the computed parameters, then in most cases the observer thqt moves in a known way or employs some a •

resulting algorithms are not robust, in the sense priori knowledge which will enable a unique computationresutin alorihmsarenot obut, n te snse of shape. The theory we have developed shows how to "

that if there is a slight error in the input (i.e., a

image), this results in a recover shape from contour by utilizing invariant proper- %
small amount of noise in the pu t esuts a ties of contours in different perspective projections.ctstropndhiserro inshe o utpud (om pueds pCorrespondence of features among images is not used.
ters), and this is observed from experiments. In particular, our results are: 1) A monocular observer

ran uniquely determine from one view the shape of a
It turns out that if several available cues are com- planar surface which contains multiple contours (at least

bined. then the above mentioned problems disappear in two), provided the 3D area and length ratio of contours
most cases; the resulting algorithms compute robustly are given. 2) An active monocular observer can deter-
and uniquely the intrinsic parameters (shape, depth, mine the shape of a planar contour from two views. 3) If
motion, etc.). the 3D area and length are given (model based applica-

We have developed a general mathematical theory tions), the shape of a planar contour can be determined
for the unique and robust computation of intrinsic from one view by a monocuiar observer. We have also
parameters. The computational aspect of the theory obtaiiied experimental results in this area.
envisages a cooperative highly parallel implementation, We have developed an algorithm for reconstructing
bringing in information from five different sources (shad- the shape of a cylindrical object from contour and shad-
ing, texture, motion, contour and stereo), to resolve ing without knowing the surface albedo of the object or
ambiguities and ensure uniqueness of the intrinsic the lighting conditions of the scene. The input image is
parameters. 1121 A paper on this work appears in segmented into spherical, cylindrical, or planar surfaces
these Proceedings.
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by analyzing local shading. The cylindrical surface is simple and strong violations affect the perception of
characterized by the direction of the generating lines, transparency, and (c) the occurrence of transparency
determined from spatial derivatives in the image. The with and without color constancy, i.e., the color seen
brightest generating line has strong constraints on the through the transparent surface looks or fails to lock the
shading analysis on the cylindrical surface and leads to a same as the color seen directly. [17]
simplification of the equation which represents the rela- We are also studying issues connected with the
tion between the contour shape and the shading. representation of 3D objects. In particular, we have
Although there remains one degree of freedom between developed a representation for polyhedra that does not
the surface normal of the base plane and the slant angle depend on any external coordinate system. The
of the generating line, we can uniquely recover the representation contains the complete metrical as well as
cylindrical shape from this solution (up to reflection). topological information from which a polyhedron can be
Experimental results for a synthetic image have beeni reconstructed. Moreover, the representation is unique.
obtained. We have also developed algorithms for finding all of the

We have also studied qualitative aspects of 3D rotational and reflectional symmetries of a polyhedron
vision, based on cues such as color, shading, highlights, using this representation. These algorithms do not per-
and transparency. form any numerical computation, they are practical and

Recently many researchers have described methods have been implemented in Franz Lisp. [18]

for the segmentation and analysis of static scenes with A major goal of computer vision is object recogni-
shading and highlights. By taking advantage of color tion, which involves matching of images of an object,
and the constraints inherent in the reflection model, seg- obtained from different, unknown points of view. Since %
mentation algorithms that aspire to dealing with natural there are infinitely many points of view, one is faced
scenes have been presented. However, practical with the problem of a search in a multidimensional

considerations and the variety of lighting situations and parameter space. A related problem is the stereo recon-
surface types commonplace in the natural world weaken struction of 3-D surfaces from multiple 2-D images. We
these quantitative photometric methods. The lack of propose to solve these fundamental problems by using

constraints in the natural world suggests strategies based geometrical properties of the visible shape that are

on the classification of step edges, and on more robust invariant to a change in the point of view. To obtain

qualitative photometric techniques. The latter resemble such invariants, we start from classical theories for

the types of qualitative photometry seemingly performed differential and algebraic invariants not previously used

by the human visual system. [16] in image understanding. As they stand, these theories
are not directly applicable to vision. We suggest exten-

In connection with transparency, Metelli made an sions and adaptation of these methods to the needs of
important contribution by identifying order and magni- machine vision. \Ve study general projective transforma-
tude restrictions for a pattern of intensities and showing tion, which include both perspective and orthographic

that when they are satisfied the perception of tran- projections as special cases. [191 A paper on this work
sparency readily occurs. These restrictions were derived pe as seialce s.
from a physical model of transparency. We claim that appears in these Proceedings.
the visual system does not use intensity information to 3. RANGE SENSING
compute indices of transmittance and reflectance analo-
gous to what an optical engineer might do in describing We hive developed a laboratory range sensor capa- N
a physical instance of transparency. Rather, a lightness ble of producing dense range images [201, and are using

pattern affects perceptual transparency, just as geometric it to collect range data for a variety of applications. We
properties do, through processes that impose an organi- have also developed algorithms for constructing 3D

zation on sensory information rather than through models of a scene based on analysis of range data (21, •
processes that recover quantitative descriptions. In the 22].
absence of (lepth cues, such as stereopsis and motion Our range sensor is able to produce 512 X 512 range
parallax, the perception of transparency occurs when images of model scenes in tile laboratory. This ranging
the lightness relations in a pattern favor the perception instrument, which comprises a light-emitting slit, a
of a continuous boundary across x-junctions. We have cylindrical lens, a step-motor controlled muirror and a
presented evidence for two kinds of violations of the CCD camera, is compact enough to be mounted on the
order and magnitude restrictions, simple and strong. tool plate of a robot arm. The light source itself is
ansparency judgments, though reduced in number, still mounted away from this structure, and the light is
occur for simple violations of the order and the magni- brought to the slit bv a flexible fiberoptic light guide.
tude restrictions. Transparency judgments occur rela- The robot arm's motion can be controlled by inputs from Nl%

tively infrequently for strong violations. A physical the range scanner, for simulation of autonomous vehicles
model of transparency fails to capture the difference equipped with rangers. This system is programmed to
between simple and strong violations of the order and produce range images which are comparable in many
magnitude restrictions. \Ve have formulated (a) the respects to range images produced by laser range
basis for differentiating between simple and strong viola- scanners. \Vith this similitude of formiats, software for
tions of the order and magnitude restrictions, (b) how edge detection, object recognition, dynamic patlh plan- N
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ning or data fusion with video images call be developed surfaces, cones, and cylinders. The program simulates V 0I.

on range iniages produced by this laboratory equipnment the movement (if an Autonomous Land Vehicle and coni-
and can be easily ported to laser ranging system, struets video and range iina~ges based on the MAV's fieldWe have developed a simple method which deter- of view .,- thc vc M 'le lnoves through the world. Ground

mines the shape of an object by projecting a stripe pat- inaps, of the world, ws pe,-eeived by the ALV, are also
tern on to it. Assuming orthographical projection as a created. [211

camera model and parallel light projection of the stripe Specific areas of research related to navigation are
pattern, the method obtains a 2(1/2)D representation of' concerned with path planning [251, road following [26,
objects by estimating surface normals from the slopes 271, and obstacle avoidance 128, 291.
and intervals of the stripes in the image. The 2(1/2)D A mobile robot navigates with a firaiteA knowledgeimage is further divided into planar or singly curved sur- of its environment because of the restricted field of vievfaces by examining the distribution of the surface nor- and range of its sensors, and the occlusion of parts of the!
mals in gradient space. The error in surface orientation environment 'in any single image. Most path planning ,
has been evaluated. algorithms consider only free regions and obstacles in the ;

More generally, we have developed a method for robot's world for path phanining. We have extended the
building a 3-D world model for a mobile robot from classical path planning paradigmn to include occluded 1range sensor data. The 3-D world model consists of regions. This introduces the new problem of deciding

three kinds of m-aps: a sensor map, a local map and a when (or whether) to employ the sensor system (luringglobal map. A range image (sensor map) is transformed the execution of the path to, potentially, reveal the
to a height map (local map) with respect to a mobile occluded regions gs obstacles or free space for the pu-

robot. First, the height map is segmented into four pose of replanning.categories (unexplored. occluded, traversable, and obstf- In the area of road following, whe wrdeveloped a

Next, obstaclpe on obeclassified into artificial objects boundaries from consecutive images. First, we estimate
(buildings, cars, road signs, etc.) or natural objects ete [bo t

pattern, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ det thiehdotisa2i2Drpeetto f c ncerned i path plning 125mtroad folleown [2tho

(trees, buses, etc.) using both the height image and to consecutivae iae, 29].inter-
video image. O th drawback of the height map-the frame motion. The relation between depth, motion and
recovery of vertical planes--is overcome by the utiliza- ois i ecuse of the d e
tion of multiple height maps which include the max- depends on the disparity range. Next, the error of the

inum an~d minhnum eight or each point, and the estimated road structure due to quantzation errors andnumber of points in the range image mapped into one motion estimation errors is evaluated. Finall a
point in the height hap. The multiple height map is representation for road boundaries is used that makes

orefu n eralnly, wer hadigvertdeve lpe a mthod fohootswrdeoiatglhin.Wthv xene h

bseuiln a y 3-D orld odel frt amobilrical paexplicit the error of the road edge location in 3- ) space.

gloal mta.o Ao rang maeenino map) ie transored. h xcto ftept o oetalrva h

toa heigt ap loc semnainthepec to aioie. Experimental results have been obtained for n input
o Finally, the height maps are integrated into a globar pose ofqreaning.

categories ~ ~ ~ ~ ~ ~ ~ ~ img (uepordecluetrvraleuneosa n c e ae f road following, to weot hav deeodr

map 1by ,natchig geometrical properties and updating laboratory.region la fols. The metho i hai been tested on a model
ncluding maly objects srh e s trees, buildings, artif c as. b de fro coseuti e esirt we simate

(buildings, ~ ~ ~ ~ ~ ~ ~ ~ W cas odsgs t. rntrlojcs dp hav fraio byke applng doion ofvsteon metho

'4. NAV1GATIO' "  ten by which ain autolnonious land vehicle (ALV) navl-(treesnbushes c.) ising bt t he eigh agee gates roads. The AgV vison tank coists of hypothesiz-
vroject, we ne been concerned with eour mai areas: Ing objects in a stene model and verifying these

hypotheses using the vehficle's sensors. Objectr) Deve pment of a viscan sysern or auteomous yl)othesis generat is Le c oof the local navigation
naviat o of roads annt road inetorksd task, an a prior road rap, and the contents of the scene

2) Support o Martin Marietta Aerospace, Denver, the model. Verification of an object hypothesis involves

integrating contractor oil DARtPA's AIV prograin, directing the sensors toward the exp~ected location of the3) Experinintsg ith the vision syst e developed at object, collecting evi ence in support of the object, and
Marland on the Mrarti Tarietta AI m. rerseoning about the evbence. Constructing the scene

4) Dvelomentand mpleenttionof pralll alo- odel cons.Ists or building a senantie network of object,si) eful ont lay f vind g tinali parallel nen Ire - frahtes exhiitlng cmponent, spatiio, and ieritance
rmpbut ls for segirnavatiori of the video i . xrelationships. The control structure is provded by a set I
i rs developed under the DAIA Strategiv ('ogput- of coi n unicating modutie systelLn s ir ipleenlt ing a tatI
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In connection with obstacle detection and been denionstrated by iniccrporatlug it ito the SIGMA
avoidance, we have developed algorthiis which segment inage understandiig syste whiecl uses doilain-specifie ..

range images and classify regions as being navigable or knowledge for interpreting aerial iniages of suburban
unnavigable by a land vehicle. The algorithms have housing developments. The databases of the system are
been applied to data collected from the laser range sen- orgaiized based oil the new scheme. The projections of r
sor mounted on the autonomous land vehicle. The sensi- the predictions, or hypotheses, along two perpendicular p.
tivity of the algorithms to uncertainty in the orientation axes are used to integrate related hypotheses. With this e.-*,
of the range sensor has been studied. Experiments on refinement, there is a significant improvement in the per- .. .

sensor calibration and image enhancement have been forinance of the system SIGMA. The application domain
conducted. A computer model of an autonomous land of the systen has been broadened to more complex
vehicle and its environment is used which provides a image.s which include road intersections. [30] -

valuable tool for investigating many issues of navigation \Ve have also developed a system for identifying

with range sensors. Obstacle detection algorithms are small clouds and their shadows on aerial photographs. "
used in conjunction with the model to demonstrate a The system segments an image into homogeneous
vehicle navigating itself through ail obstacle strewn regions; selects bright and dark regions as cloud and sha-
world to a goal location. dow candidates, respectively; and finds acceptable

The practical recovery of quantitative structural (cloud, shadow) pairs based on consistent relative posi-
information about the world from visual data has proven tion. The systen performed quite well on three portions .
to be a very dilfeult task. In particular, the recovery of of aerial photographs each of which contained 10-20
motion information which is sufficiently accurate to small clouds (out of 25-60 bright regions). Other clues
allow practical application of theoretical shape from could have been used to aid in cloud identification; for
motion results has so far been infeasible. Yet a large example, clouds have irregular shapes, do not have long
body of evidence suggests that use of motion is an straight edges, and may occlude edges or curves on the
extremely important process in biological vision systems. terrain. However, it was not found necessary to use such
It has been suggested that qualitative visual measure- clues in the image that we used. [31]
ments can provide powerful perceptual cues, and that We have done further work on a method of detect-
practical operations can be performed on the basis of ing thin curvilinear features in an image based on a ,
such clues without the need for a quantitative recon- detailed analysis of the local gray level patterns at each P
struction of the world. 'file use of such information is pixel. This allows operations such as thinning and gap -

termed "inexact vision". 'We have investigated one such filling to be based on more accurate information. 1321 A
approach to the analysis of visual motion. Specifically, paper summarizing this work appears in these ' /
the use of certain measures of flow field divergence were Proceedings.
investigated as a qualitative cue for obstacle avoidance We have also developed a logic programming based '
during visual navigation. \Ve have shown that a quail- system for interpreting aerial photographs using search ".
tity ternied the direcional divergence of the 2-D motion techniques to ind segmentations that match descriptions .-4 0

field can be used as a reliable indicator of the presence of of ima er t lire g. A m a th is workon
obstacles in the visual field of an observer undergoiig o pmger fatures. A paper summarizing this work

generalized rotational and translational motion. Nlore- appears in these Proceedings.

over, the necessary measurements can be robustly 6. DIGITAL AND COMPUTATIONAL
obtained from real imige sequences. A simple GEOMETRY %
differential procedure for robustly extracting divergence
inforinatIion froi iuage s cesi which can le per- Iii support of our research on image understan *ng, .

formed using a highly parallel, cm nectionist architecture we have continued to investigate a variety of problems
has beein developed. Tie procedure is based oi tie twin in digital and computationial geometry. We will not
principles of directional separation of optical flow coni review this work here in detail, but will present only' a %

ponents and temporal aecuiinulation of iiformation. brief summary of the areas stidied during the past year.
Exllerimental reslilts sIo that the system respods as \We Iiave developed methods (,f constructing visibil-
expected to divergence in real world i iage sequelles, ity polygoms [331 and have aplied them to a number of
and the use of the systern to navigate between obstaches problcins in comutational geoniletry * , including tie coil- .

is demonstrated. A paper on this work appears in str.ction of a convex polygon nested between two given
these Proceedings. polygoas and Iia iig tie fewest possibIe vertices. and

finding a polygonal latl bletween two points that lies
5. AERIAL PIIOTOINTERPRETATION inside a polygon and has the l'est possiblr segments
Thill representatilll aild iiluiag('i('ient of lomaiii- [31]. We have also de\eloped an elficient method (If

s,,.e1 ific knowledge is on, of the mmijor problemiis ill con- c(miipuItiiig tlie visihilit gral,ph of a set of polgoms [35].
s rictiili hlelligent ilmige n 'undhr* ta ing systeis. \We Other recent area.; (If investigation deal with l ndin
have dl'vellped in 'i cient Itplroacht t his prolehmni packings and coverings of the plane by translates of a
which is ,idoil the method of projections tsed ill colivex iolvgon [36] and de(lliiosing q convex polygon
rall'-' s,: ing. The o'li('hlCv (If tlie new schelie hits into a vector suii of simtler coilvex polygos [:37]. We
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have also developed simple algorithms for recovering an to link the masks into features [50]. We have also
orthogonal region (in space) from the set of its corner developed a new set of template-matching edge operators
vertices, together with a specification of their numbers of using an associative mapping between ideal step edges
incident edges and faces [38]. and an orthonormal basis [601. We have developed an

Digital geometry deals with geometric properties of efficient algorithm for computing two-dimensional Gaus-

subsets of digital images. A general introduction to digi- sian weights that requires only two multiplications per

tal geometry can be found in [?()[, and an abstract for- pixel [61].
mulation in terms of "oriented graphs" is presented in On a more global level, we have investigated the
[40]. Specific topics studied during the past year include importance of treating edges and curves two-
metrics [-11], straightness, and connectedness [42]. dimensioi ally, r'the" than analyzii!g them as functions

rf a sing!e parameter [621. We have applied heuristic
7. PARALLEL ALGORITHMS search techniques to the tracking of region boundaries in

Another ongoing research area is the study of t)aral- sets of serial section images [63[. We have developed
lel algorithms for geometric computations a-d other nonparametric methods of fitting a strai.cht iue to noisy
vision-related tasks, using various models of p,•allel image data [64], and have more recently extended it to
computation. During the past year, work was done, in the fitting of multiple lines or plane [661.
particular, on the following topics: b) Matching
a) .Mesh-connected computer algorithms for construct- We have investigated the problem of image match-

ing and analyzing quadtree representations of ing from a theoretical point of view. We have studied
images [43]. the problem of computation of visual correspondence,

b) Ilypercube algorithms for performing various basic given that we already know some values of the
data communication tasks, including parallel prefix correspondence function. We have determined the
[44] and permutation routing [45], which have appli- mathematical constraints that enable us to grow a solu-
cations (among others) to the manipulation of tion for the correspondence function from a point where
gcometric data structures. its value is known, using the image intensity function.

c) Shared-memory algorithms for processing medial The results are applicable to many image matching prob-
axis (MAT) (46] and quadtree [47] image representa- lems, such as stereo image interpretation, object analysis,

tions. motion analysis, change detection and the like. [661

\Te have also studied efficient algorithms for two-ticular, branch-and-hound) when implemented in dimensional pattern matching in the presence of errorsparallel on shared-memory machines [m8]. [67], in both sequential and parallel implementations[68]. 
, 

am

8. PYRAMID TECHNIQUES
\Ve are also analyzing various types of matching ¢

We are continuing to investigate divide-and-conquer e an g i
techniques for fast segmentation and analysis of images, tasks from a probabilistic standpoint. In particular, we

suitable for implement ation on 'pyramuid' or hypercuhe have studied two-stage matching procedures as applied
machines. An overview of this work can be found in to labelled graphs and other domains relevant to com-

[18]. Specific areas studied during the past year include puter vision. We do not re.uire that the match be exact.
histogramniing [5], bimodality detection [51], texture- but only that it satisfy a specified error criterion. We el
based image segmentation [52], curve detection [5] and have shown that it is computationally more efficient tobescrip.tion [5-1] and corner detection [55]. 3e are also initially match a subgraph and check the rest of the

studying the sensitivity of these algorithms to "noisi- graph only when this match succeeds. A probabilistic

ness" in the architecture. In this connection, we have analysis of the expected cost of this procedure has been
developed methods of generating "stochastic" pyramids given with the aim of determining the optimum sub-

-561 and have applied them to the fast generation of graph size which minimizes this cost. The results were

[6]and hav random temltons oextended to graph inatching with geometric constraintshierarchies of random tessellations of an image (57].aswlasttepte.[6as well as to templates. [69]

9. OTHER TOPICS

Duiring le pal-st year we hiive also done work on a latching of data structures such as digital images

nliumber of other topics rel1ted to iniage analysis and or hbeled graphs is comlputationally expensive, because

COinput er vision. This work is Irielly outlined in the fol- it requires node- y- node coin arisois of the lahels. If we
have probabilistic nodels for the classes of data strute-tur.s being matlched, we( can reduce the expected coinpu-

:a) Feature detection tational cost of muatching ,v comparing the nodes in an.-

li the r,': of fiture detection, we have developed approlpriate order. We ha.ve established some general
:t imask-m:tething, :tllrocm' to the local detcteiotn of results aboiut this allroach, and :lso obtained experi-
cuI'v-s aid edlges, l:ive Stutd(cd its lehmavior for noisy meni al results, for digital imaes, when we know the pro--

illges [5]. l nll ve us,.d cl msi-st lit labe1ling Incl ds lability densities of th(ir gray hvels, or more generally.
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the probability densities of arrays of local property approach will yield unacceptable results. The tools that
values derived from the images. A paper on this work we have developed can be used in the analysis of the
appears in these Proceedings. applicability of a given algorithm, hence revealing the

c) Miscellaneous intrinsic limitations of the approach. [73] A paper on

In the area of texture analysis, we have studied the this work appears in these Proceedings.
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CMU Image Understanding Program

Takeo Kanade

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract manipulation, require algorithms that can estimate depth in an

on-line, incremental fashion. This requires a representation S
The CMU Image Understanding Program covers a wide range that records the uncertainty, as well as the depth value itself, in
of topics ranging from the basic computer vision issues in depth estimates, and a mechanism that integrates new
color, motion, and shape to the vision system issues in parallel measurements with existing depth estimates to reduce the
architectures and outdoor navigation systems. This report uncertainty over time. We (Matthies, Szeliski, and Kanade) 1
reviews our progress since the December 1987 Image have developed an algorithm that estimates depth and depth
Understanding Workshop. Highlights of our progress in this uncertainty, and incrementally refines these estimates over
period include. time. S

*Continuous Stereo by Kalman Filtering
The Matthies-Szeliski-Kanade on-line depth estimator is

" Color Image Segmentation by Dichromatic based on Kalman filtering. A correlation-based flow
Reflection Model algorithm measures both the local displacement at each pixel

" Sensor Modeling for Model-Based Vision or feature position and the confidence (or variance) of the
displacement. These two "measurement images" are

" 3D FORM Systemfor Geometric Reasoning integrated with predicted depth and variance maps using a
" Navlab Demonstration Systems weighted least squares technique derived from the Kalman
* Range Data Analysis for Outdoor Scenes filter. Regularization-based smoothing [Szeliski 87] is used to

reduce the noise in the flow estimates and to fill in areas of
" Precise Camera Calibration Process unknown disparity. The current maps of depth and uncertainty \

are extrapolated to the next frame by image warping, using the
" Microscopic Traffic Simulator knowledge of the camera motion, and are resampled to keep
* Parallel Vision Software on Warp the maps iconic. The algorithm processes an image sequence

* Scan Line Array Processors (SLAP) taken with small inter-frame displacements and produces an
on-line estimate of depth that is refined over time. The
algorithm can be either iconic, where the depth and
uncertainty estimates are maintained at all the pixels, or
feature-based where they are maintained at feature (ie., edge) A.

1. Physical and Computational Models for points. Unlike most previous work [Broida , Chellapa
Low-Level Vision

O o 86] [Faugeras et al 861 [Matthies, Shafer 87] [Rives, Breuil, W_ -One of our successful approaches in low-level vision is to Espiau 861 which used Kalman filtering to keep track of a %,

transform the physical and optical processes which underlie spau 86] which use teng tprac of a
vison ntocomutaionl mdes. hisappoac reult i sparse set of trackabie features, the new approach produces a

vision into computational models. This approach results n dense map of depth and uncertainty estimations.
algorithms that are more powerful and revealing than
traditional adhoc methods based solely on heuristic This work has revealed an interesting relationship which
knowledge. The Calibrated Imaging Laboratory of CMU exists among the length of the baseline, the number of images,
[Shafer 85a] has proven to provide critical support for the and the amount of uncertainty in stereo. In figure l(a), assume
development and testing of those new physics- and optics- we have a binocular stereo system with camera L and camera
based algorithms. We have made substantial progress in the R separated by a baseline B. The dilemma in stereo is that as
area of continuous motion stereo and color understanding. the baseline becomes longer, the depth measurement of the

scene point P becomes more accurate, but at the same time the

1.1 Continuous Stereo by Kalman Filtering matching (correspondence) becomes more difficult. Now,
Using known camera motion to estimate depth from image assume we place one more camera M in the middle of the

singes known cameramto olesma depbth fso. iMage baseline as shown in figure l(b). This creates two more stereo
sequences is an important problem in robot vision. ManyM and the other with
applications of depth from motion, including navigation and p : ha ne
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cameras M and R. The matching problems for these '

intermediate two stereos must be easier than the original one
with Land R, even though the depth measurements by them
would not be as good as that by the original stereo. If,
however, the two new problems can be solved successfully,
the original matching problem must have been be solved, too,
because of the transitivity property. In fact, trinocular (three-
eye) stereo systems that have been studied by several
researchers exploit the additional constraints that the middle
camera provides. The EPI analysis by Bolles and others
[Bolles, Baker, Marimont 87] also exploits the geometrical

constraints that the locus of P must satisfy in the image
sequence obtained by moving camera M from position L to R.

However, another interesting question here is whether the
new middle camera M helps reduce the uncertainty (or
increase the accuracy) in the depth measurement of P. The
answer is yes, and therefore putting the third camera helps to
both simplify the original matching problem and reduce the
uncertainty. Therefore we can add more camera positions

' B" .. between L, M, and R for further improvement. The analysis
by Matthies, Szeliski, and Kanade proves that, if we assume an

L R uncertainty a,2 in the pixel positions, the uncertainty aY2(N) in
dhe depth measurement by using N cameras is,

(a) a 2 (N) -

N,

and that this is N times better (smaller) than the uncertainty
obtained by the original stereo, This decrease of uncertainty at
the rate of N3 by using Matthies-Szeliski-Kanade on-line depth
estimator has been experimentally verified: see [Matthies,
Szeliski, Kanade 88]. An important advantage of this
estimator is that it is incremental and does not require the
processing of all N images at once.

The above equation also has a practical significance. The
decrease of uncertainty by using multiple images can be used
for shortening the baseline, which reduces occlusion and
matching problems. The experiments performed by Matthies,
Szeliski and Kanade used ten images in which two consecutive
images were taken with only 0.05 inches (1.27 mam) apart.
Thus the total baseline was only 0.5 inches (1.27 cm), while
the distance to the scene was about 20 to 40 inches (50 cm to
100 cm). The triangle for triangulation is a very sharp one; the
ratio of the baseline to the height is approximately 1:80. Yet,
they achieved accuracy up to 0.5 %.

1.2 Color Understanding
L M R When we look at a color image, we can interpret it as a .'e

collection of shiny and mattc surfaces, smooth and rough,
interacting with light, shape, and shadow. However, computer

(b) vision has not yet been successful at deriving a similar
description of surface and illumination properties from an
image. The key reason for this failure has been a lack of

Figure 1: Stereo, baseline and unrelainty: (a) The wider the models rich enough to relate pixels and pixel-aggregates to %.%

baseline B is, the more accurate is the depth measurement, but scene characteristics. In the past, with few exceptions, most
the more difficult is the matching; (b) The middle camera work with color images has considered object color to be a
generates two more stereo matching problems, each of which is constant property of an object, and color variation on an object
easier, but less accurate than the original one. was attributed to noise. However, color variation in real
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scenes depends to a much larger degree on the optical which is used in the subsequent step to separate color images W,

reflection properties of the scene. This variation causes the into two intrinsic reflection images: a body reflection image
perception of object color, highlights, shadows and shading and a highlight image. The body reflection image can be used
scene properties that can be determined and used by color to generate hypotheses about object shapes and about the
vision algorithms, object materials [Healey, Binford 87]. The highlight image

We (Klinker, Shafer, and Kanade) have taken an approach to will also provide strong evidence for the position and color of

color image understanding that accounts for color variations the light source.

due to highlights and shading. The approach is based on The hypothesis-based approach that Klinker, Shafer and
Shafer's dichromatic reflection model which describes pixel Kanade took for image segmentation provides a new paradigm
colors as a linear combination of an object color and a for low-level image understanding. The method gains its
highlight color [Shafer 85b]. All color pixels from one object strength from using an intrinsic model of physical processes
then form a planar cluster in the color space. The cluster that occur in the scene. The results are intrinsic images and .

shape is determined by the object and highlight colors and by hypotheses which are closely related in their interpretation to
the object shape and illumination geometry. In addition to the the intrinsic model, being instantiations of concepts
color reflection model, we also use a sensor model which formulated in the model. The analysis alternates between a
accounts for camera properties, such as a limited dynamic bottom-up step which generates hypotheses and a top-down .
range, blooming, gamma-correction, and chromatic aberration. step which applies the hypotheses to the images. The analysis
Such a model allowed us to obtain high quality color images thus consists of many small, complete interpretation cycles
(through color balancing and spectral linearization) in which that combine bottom-up processing with feedback in top-down
most pixels maintain the linear properties of light reflection, processing. This approach stands in contrast to traditional
As a result, our algorithms for color understanding are image segmentation methods which do not relate their analysis
applicable to real images, instead of only to synthesized to intrinsic models and that also generally have a strictly
images. bottom-up control structure. We feel that many low-level

In the 1987 Image Understanding workshop, Klinker, image understanding methods such as shape-from-x methods,

stereo and motion analysis may be viewed and approachedShafer, and Kanade reported [Klinker, Shafer and Kanade under this paradigm.

87] how the theory can be used to separate color images into u p
two intrinsic images, one showing the scene without
highlights, and the other one showing only the hiuhlights. 1.3 Regular Repetitive Texture
Previously, the method was applied to hand-segmented Texture is also a vital clue to surface and object properties
images. Since then, Klinker and others have developed an for low-level vision. For understanding texture, we (Hamey)
automatic segmentation method that is based on the extended are studying the perception of regular texture repetitions. The
dichromatic reflection model; for details see [Klinker, Shafei, central problem of regular repetitive textures in analysis is a
Kanade 88] in these proceedings. The method alternates chicken-and-egg problem: the texture element is difficult to
between generating hypotheses about the scene from the define until the repetition has been detected, but at the same
image data and verifying whether the hypotheses fit the image. time the repetition cannot be found until the texture element is
The hypotheses relate object color, shading, highlights and defined. The difficulty is compounded when the regular
camera limitations to the shapes of color clusters in local placement pattem is not strictly constant, but drifts in
image areas. Using this control structure, driven by a physical frequency and phase. Past work based on Fourier analysis and
model of light reflection, local and global properties of the co-occurrence matrices had a severe limitation in the kind of
scene, such as object and illumination colors, are repetitions that it could deal with.
incrementally identified, and individual pixels in the images
are interpreted according to color and intensity changes at Hamey has developed a method to analyze a range of
different places in the image. This method has successfully repetitive patterns [Hamey 88]. His method is based on two
segmented images of multiple objects with different colors, central ideas. The first of these is the Dominant Feature
which contain shading and highlights, into individual colored Assumption, which states that a repetitive texture pattern

objects. should contain some particular feature within the texture
element that is more visually prominent than all the others. By

When compared with the traditional heuristic segmentation looking for repetitions of just this feature, it is possible to
methods, this Klinker-Shafer-Kanade method is superior in a screen away the other data and arrive at a computationally
few important ways. The traditional color segmentation tractable algorithm for texture analysis. The Dominant
methods base their analysis on intensity or color differences or Feature Assumption does produce a limitation on our systems,
on a fixed set of user-defined features, such as intensity, hue but it is still very general. In particular, textures that are easy
and saturation. The new method can analyze color variations for people to perceive seem to correspond in general to
along arbitrary color axes and in arbitrary color planes. textures that obey this assumption.
Traditional algorithms also cannot distinguish reliably
between different edge types, such as highlight edges, material The second is a theory of repetition description that show
edges and shading or shadow edges, and they cannot account how any two-dimensional repetition can be characterized -
for camera limitations. In contrast, the Klinker-Shafer-Kanade using two particular vectors in the image. The theory has led 4 %
method generates such physical information about the scene, to a simple algorithm that detects the vectors to describe any
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regular two-dimensional repetition. This algorithm uses a new features under different circumstances. Past work in computer

definition of image connectedness based on the six-connected vision has mostly been based on an assumption of a single

neighborhood graph, a graph that connects the nearest type of sensor. This has created a built-in dependence on the

neighbor within each 60-degree sector around the feature sensor that makes existing vision programs restricted to the

points in the image. This graph has simple and important sensor for which they were designed. Our research in

properties of computational geometry that make it easy to use automatically generating algorithms for recognizing objects

for analyzing repetitive texture patterns. Furthermore, rather has revealed the necessity and the potential to break out of this

than imposing a single grid structure on the texture in an restriction by using an explicit sensor model in addition to the

image region, the method allows the structure to vary explicit object model, allowing us to automatically generate

systematically across the region. This allows it to be applied appropriate algorithms to recognize an object from several

to the deformations that arise in real-world image texture such different sensors.

as patterns on fabric or perspective texture gradients

(foreshortening) on a tall building. Figure 2 is an example of Ikeuchi and Kanade [Ikeuchikanade 87, Ikeuchikanade

analysis results. 881 have developed a model for sensor properties that can
specify two important characteristics: detectability and
reliability. Detectability refers to the kind of features that can

be detected, such as faces, edges, and vertices. For example,
an edge detector is sensitive to edges; a laser range scanner is
sensitive to faces; SAR is most sensitive to concave corners.

2. Model-Based Vision We have developed a uniform representation for such
We have been working on two topics in this area: automatic

generation of objection recognition programs from models and
development of a general framework for geometrical
reasoning for vision.

2.1 Automatic Generation of Object Recognition
Algorithms

Traditionally, a recognition program is generated by a

human expert who examines the features of an object,
develops a strategy for a recognition procedure, and writes a
specialized program for the individual object. However, this
"hand writing" of a recognition program requires a long time
for programming and testing. We (Ikeuchi) have been
working on precompilation techniques to automatically N

generate recognition programs from object models [Ikeuchi
87]. A bin-picking hand-eye system has been demonstrated at

CMU; using photometric stereo as a major sensor, the
generated recognition program of a part runs and locates parts (a)
in a pile and a PUMA arm picks it up and places it at a
predefined location and orientation.

Automatic generation of a recognition program requires
several key components:

* object models to describe the geometric and
photometric properties of an object to be
recognized;

* sensor models to predict object appearances from
the object model under a given sensor;

* strategy generation using the predicted
appearances to produce a recognition strategy;

*program generation converting the recognition
strategy to executable program.

During the last year, we have made a progress in sensor
modeling and in program generation. (b)

2.1.1 Sensor Modeling Figure 2: Result of analysis of regular repetitive textures. (a)
Different sensors, such as a video camera, light-stripe input image; (b) Extracted grid patterns are overlaid. The grid

projector, or SA. (synthetic apertire radar), have very on the side of the telephone is due to refletion of the textile

different properties and respond to different types of object pattern on the table.
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detectability properties that allows many different sensor 2.2 3D FORM: A Framework for Geometrical
modalities to be described in a single framework. Reliability Reasoning
specifies a confidence value for the detection process, as well Three-dimensional object description and geometrical -U

as a measure of how errors are propagated from the measured reasoning is critical for many applications of image
data to the ihferred gcometrc features. understanding, because geometric relationships among objects

We have used this sensor modeling methodology to are a rich source of knowledge and constraints for imageanlyis Unoruntey most this sensor undeergstthaoloyng
construct a survey of commonly available sensors, and analysis. Unfortunately, most 31) image understanding

systems have utilized very limited solid or surface models andproduced detailed descriptions of photometric stereo and light- limited reasoning capabilities, and therefore cannot take
stripe range finders as examples. We plan to use these sensor advantage of the specific properties and relationships of any
models in conjunction with our previous methodology for given image Our research in this area is aimed at developing a
generating recognition programs from solid models of objects, moe ge Ou r rese ti D mdels ain order to produce a system that can operate with diverse more general framework for representing 3D models and ,
snors.r this pcailitywe imprant oeraseno sion oir relationships, so that vision systems can use the specific
sensors. This capability will be important for sensor fusion or information contained in each image to its best advantage. bI.
integration tasks that involve the use of many sensors to
recognize a single object, and will also be important in robot We (Walker) have been developing a geometric reasoning
system design as an automated aid to sensor selection for system called 3DFORM fWalker, Hferman, Kanade 871. using
specific applications. While doing this research, we canme to the franme language Fraunekit defined on CommonLISP. 31) 1
realize the limitations of currently available geometric FORM system includes a number of features that make it ;n
modeling systems, and have developed a frame-based improvement over past systems:
geometrical modeling system VANTAGE which has a 3DFORM uses frames to model object parts and
completely open architecture [Kanadeetal 881. geometric relations, which allows the system to be

extended easily to incorporate new features.

2.1.2 Object-Oriented Programming * It is possible to specify shapes incompletely or by
A recognition strategy for an object specifies the kinds and constraints on them, rather than direct complete ..- 4

the order of features to be used for classifying an input image description.
into one ot several representative appearance groups (called 3DFORM includes explicit modeling of the
aspects). In our method, the recognition strategy is given as an projections from the 3D scene to the 21) image .-
interpretation tree in which each node represents a step of and back, which allows a program to reason back-
feature matching and classification. and-forth as needed.

Chang has been working on a systematic method to covert Active procedures can be attached to tile frames to

this strategy into an executable program which can actually (ynaunically compute values as needed. avoiding

access the images, compute the features, and make decisions unnecessary cotputations.

IChang 871. Their method is based on an object-oriented *°The "rder of computation is controlled by
programming technique. An object in object-oriented accessing objects' attribute values, which allows
progratmming is a processing unit, which can store several the system to perform top-down and bottom-up V?

internal values in slots. We can define demon functions for reasoning as needed. 0
each slot, where a demon function will be invoked implicitly * There is no need for an external "focus of ' a

whenever we retrieve a value from the slot or insert a valte attention" mechanism, which in past systems has
into the slot. In our implementation, we use iodified sometimes been a complex and problematic item
Framekit+, developed at CMU (Carbonell. Joseph 861. to construct.

Two kinds of objects have been prepared: data ohf'bct. and During the last year, we have been extending the capabilities
event objects. A data object is used for representing geometric oif 31)FORM to model more complex parts and relationships,
objects (such as edge and region) and extracting features froo such as the relationship of polygon vertices to the lines that
geometric objects. An event object is used for feature forn the edges of the polygon. When these relationships are
matching and attitude detemaination. A library of prototypical evaluated, the side-effects include creating hypotheses for the
objects is prepared and the executable program is constructed missing or incomplete parts of each object. We have also been
by properly selecting and instantiating modules from it. The adding at mechanism for relationships at different levels of the
object-oriented prograniming paradigm provides modularity part-whole hierarchy to interact with each other. Then when
and extensibility. one feature is added to the interpretation, it can tripger

reasoning processes at other levels of the hierarchy. 'ITis
his nmethod has been applied to the generation of' a provides ai rich structure for cotbining top down and b ittill-

recognition program for ai toy wagon. 'he toy wagon has it up reasoning in a single niechanisln. ()ur k .i lasks for
fairly complex shape witl seventeen attiludes. The resultant 31)"( )RM include completing a description of flat roofed %
recognition program contains two kinds of daia object.s and six buitdings front partial specificalions, and reasoning about al l%
kinds of event objects. The generated program has been tested object's shape front shadow and light source icaltionships.
with real scenes and has recognize(] the wagon in ai pile. 4
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3. Vision and System for Navigation This system was successfully demonstrated at the beginning of %
3. eSagopi Vision andogrammworN(Thor December 1987 at a very slow speed of 10 to 15 cm/sec.
In the Strategic Computing Vision program, we (Thorpe Figure 3 shows the initial map and the results of map revision

et.al) have been working on developing vision techniques and at different detail levels.
integrating them into a demonstrable vehicle [Kanade, Thorpe,
Whittaker 86, Thorpe, Hebert, Kanade, Shafer 87, Goto,

Stentz 87]. Duiing 1987, we have worked on several 3.2 Range Data Analysis for Outdoor Navigation
component technologies including range data analysis, object The analysis of range data is an important sensory

(car) recognition, calibration, map revision, and path planning. component for an autonomous vehicle which navigates in an
In addition, we have demonstrated two integrated systems, one environment with many three-dimensional features such as
in May and another in December, each of which integrated trees, uneven terrain, and man-made objects. The Navlab is

new advanced features of component technologies. Work was equipped with a scanning laser range finder which provides a
also begun on a simulator for research on driving on public range image of 256x64 pixels in half a second, together with

streets. an intrinsic reflectance image. We have been developing a

variety of techniques of range data analysis for obstacle

3.1 Navlab and Demonstrations of Integrated detection, surface description, terrain map building, and object
recognition [Hebert, Kanade 86]. Figure 4 shows the flow of

Systems , analysis. The paper [Hebert, Kanade 881 in these proceedings
The Navlab, short for Navigation Laboratory, is CMU's describes the recent development in detail.

mobile robot for integration research. It is a self-contained

laboratory, based on a commercial van chassis, with hydraulic Obstacle detection is a minimal capability required by an
drive and electric steering. Computers can steer and drive the autonomous vehicle in order to navigate safely. This is done

van by electric and hydraulic servos, or a human driver can by first transforming the raw ERIM image into a bucket

take over control if necessary. It is even licensed in representation of an elevation map, and then identifying
Pennsylvania, so we can drive it by hand to our remote test positions at which the elevation exhibits a large discontinuity

sites. The feature of the Navlab that distinguishes it from and points at which the surface slope is above a given
other mobile robot research testbeds is that it can carry threshold.
computers, sensors, and researchers onboard. Current major
onboard equipment includes four SUN 3 workstations, a 100- For navigating on uneven terrain or recognizing 3D objects,
MFLOP Warp systolic array computer, two color cameras, and a more accurate description of the environment is required.
an ERIM scanning laser range finder. We describe surfaces by a set of connected surface patches.

Each patch corresponds to a smooth portion of the surface and
In May and December 1987, we demonstrated two is approximated by a parameterized surface. In addition to the

integrated systems. The May 87 system used exactly the same parameters and the neighbors, each region has two uncertainty
algorithms for road following with obstacle detection as the factors: Ga and Gd. Ga is the variance of the angle between
November 86 system, but the color processing component was the measured surface normal and the surface normal of the

converted to Warp programs to increase the navigation speed. approximating surface at each point. Gd is the variance of the .

We have achieved the speed of 50 to 100 cm/sec which is five distance between the measured points and the approximating 

to ten times faster than the November 86 system. surface.

The December 87 system had a much more ambitious goal We build a terrain map building by integrating surface %
and integrated several new capabilities. The new features of descriptions from different vantage points into a consistent 3D

the December 87 system include: map. We have included the map building techniques in the

* The system is based on the second version of Carnegie-Mellon NAVLAB system. A terrain map was
CODGER [Shafer, Stentz, Thorpe 86, Stentz 88]. maintained over a hundred meters while the vehicle was

* The road following program with color analysis running autonomously under control of the road following

recognizes intersections explicitly, program. Registration of terrain descriptions between frames
e The range aialysis compiles a terrain map from a is done by matching. The current vehicle estimate was used as

an initial estimate for the matching. The features used for the
matching part are the primitives of the surface description, the

* The path planner also uses uncertainty of road location of discrete objects, and location of the road edges ...-

positions and vehicle controllability in planning a extracted from the reflectance channel. The features are
path [Stentz 88). weighted according to their uncertainty; for example, the

e The system starts with a topologically correct, but variance Ga is the weight in the case of planar features.
rough sketch of the road map, and as it navigates,
the map reviser revises the map to include more
precise geometry of the road and location of 3.3 Object Recognition: Range and Color
objects (mostly tress). Car recognition was selected as a sample problem of three-

dimensional object recognition in the context of outdoor
e The Warp system is divided into two 5-cell navigation. We have written two programs for that task- one

systems, which processes color images and range uses range data as input and the other uses a color image. The
images individually. car recognition program by range data searches for a
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Figure 3: Map revision. The initial schematic map is only
topologically correct. The revised map includes a detailed shape
of the road as well as detected 3D objects (most of Lh,a, trees
and others are people.)

Pa.

combination of surface patches (Sit .. ,Sj,) from the surface A color image-based car recognition program has been also
description of the input scene which matches with the model, written. This program starts by detecting color edges. Lines
The model has two components: a set of surface primitives and ellipses are extracted. The program searches for a
(MI ,. Mn ) and a set of constraints Ck. The constraints combinatic of two or three trapezoids and ellipses which
encapsulate knowledge about the object's shape, such as satisfy certain geometrical constraints so that they could be .
'surfaces M, and M are orthogonal". A constraint, c, roof, windows, or car wheels. Once such a combination is
associated with a set of regions (Mil ... Mi,,) can be viewed found, hypotheses about possible car orientations are .,'
as a function that evaluates whether a partial matching generated. Other features to support or reject the hypotheses
((Mil ,Sjl)... ,(Min,Sjn)) is acceptable. A rule-based matcher are searched in top-down manner. Figure 5 shows several
has been developed and tested with range images which may examples of the results from this program. We plan to
contain cars in various orientations. [Hebert, Kanade combine these two programs, range-based and color-based, so
881 described the details. that the recognition is reliable and fast. 1"
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robot actions. PHAROS will then move the robot in
3.4 Camera Calibration simuiation. The simulator will allow us to study planning

Geometric camera calibration is the process of determining a architectures and driving algorithms in parallel with our work
mapping between points in world coordinates and the in basic vision.
corresponding image locations of the points. Calibration must
provide answers to both the projection problem (i.e., given the
location of a point in space, predict its location in the image)
and the back-projection problem (i.e., given a pixel in the

image, compute the line-of-sight vector through the pixel). In 4. Parallel Architectures and Algorithms for
previous methods, calibration typically involved the iterative Vision
solution to a system of non-linear equations, and some We continue to develop tools and application software for
methods provide only a solution to one of the above two parallel vision on Warp. In addition, we have been
problems. We (Gremban, Thorpe and Kanade) have cooperating with VLSI group for their development of a new
developed a method for performing camera calibration that parallel vision architecture called SLAP.
provides a complete, accurate solution, using only linear
systems of equations [Gremban, Thorpe, Kanade 88].

4.1 Parallel Vision on Warp
The method is based on the two-plane calibration method Warp is the Camegie Mellon Systolic Array Machine

[Martins, Birk, Kelley 81]. By using two calibration planes, a providing 100 MFLOP. Warp was designed by the Warp
line-of-sight vector is defined for each pixel in the image. The group at CMU and production (PC) Warp machines are
effective focal point of a camera can be obtained by solving manufactured by GE. As part of Strategic Computing Vision,
the system that defines the intersection point of the line-of- we (Webb et. al) have been developing vision software for use
sight vectors. Once the focal point has been determined, a by vision researchers [Annaratone, et al. 87]. As the software
complete camera model can be obtained with a straightforward environment improves, Warp has begun to be used extensively
least squares procedure. This method of geometric camera for both Navlab computation and everyda- vision research
calibration has the advantages of being accurate, efficient, and activities.
practical for a wide variety of applications. The tests of the
method were conducted using the Calibrated Imaging In 1987, Warp was installed on Navlab, and was used as a
Laboratory (CIL) at CMU [Shafer 85a]. Positions of critical component in both the May 87 and December 87
calibration points in the CIL were measured by the use of systems. Programs which run on Warp include color image
theodolites (surveyor's transits) Objects to be measured are processing for road following and ERIM range data analysis

placed at one end of an optical bench; the theodolites are fixed for obstacle detection and surface description. In addition to
to the other end, separated by a little more than 1 meter. outdoor navigation problems, Warp has been used for NMR

image processing and adaptive beam forming for sonar by
The test results show that the accuracy achievable with a singular value decomposition.

standard commercial CCD (Sony AVC-D1) using the standard
16mm lens supplied with the camera is as good as 1 part in WEB library is a collection of low to intermediate level
1400 (0.4 mm over 530 mm) to 1 part in 3500 (0.15 mm over vision routines which run on Warp. It currently contains more
530 mm) depending the interpolation functions used. We plan than 130 routines. The average speed-up obtained is a factor
to use this calibration method for calibrating and registering of 250 relative to the speed of a VAX 11/780. About half of
three cameras and a laser range finder mounted on the CMU WEB library has working validation procedures that record the
Naviab. actual execution times, so that they can be used to monitor the

change made to the Warp system both in software and
hardware.

3.5 Traffic Simulation
A microscopic traffic simulator called PHAROS was The main high-level programming language for vision on

developed to study robot driving on public streets [Reece. Warp is Apply. One of the most important obstacles standing
Shafer 87]. PHAROS encodes detailed information about the in the way of widespread use of parallel computers for low-
topology of the street network, the geometry of the streets, the level vision is the lack of a programming language that can be
nature of all surface markings, the locations of signs, and the mapped efficiently onto different computer architectures
indications of traffic signals. In addition, PHAROS simulates which is suited for low-level vision. Apply [Hamey, Webb,
a fleet of vehicles moving realistically through the network: Wu 87] was developed to generate efficient programs for a
these vehicles accelerate, brake, negotiate intersections, and variety of parallel machines given a single source code. By
change lanes according to a simple driver model. The simply describing the local operations on a local window, the
sizulated network and vehicles are displayed in near ,Lal-tilne Apply compiler can generate codes for the Warp machine (in
with animated graphics so that vehicle behavior can be W2) which execute the operations on the whole image
observed directly. efficiently. In fact, 80% of routines in WEB library are

written in Apply. Currently Apply can generate code for not
The appearance of the streets and the positions of the only the Warp machine, but also the Hughes Aircraft

vehicles is used to compute the perceptual input that a robot Corporation Hierarchical Bus Architecture and the Sun 3
driver would receive. A driving program will be developed to workstation. A paper by Wallace. Hamey and Webb in these
interpret the perceptual input and compute the appropriate proceedings [Wallace, Webb, Wu 881 describes a recent
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progress in Apply. 4.2 Scan Line Array Processors, SLAP

Because of the machine independence of the Apply Fisher, Highnam, and Rockoff of the VLSI group have been V
language, programs written in Apply can be ported from one developing a Scan Line Array Processor (SLAP) for computer

machine to another simply by recompilation. Moreover, the vision. It is a special-purpose VLSI processor array which

Apply compiler and the WEB library allow the comparison of includes one processing element (PE) for each pixel on a

the performance of vision machines, since the same source single image si.,n line, arranged in a linear array. Each PE has

code will be running on both machine. This is the strongest internal fixed-point functional units and a register bank. A "
possible basis for comparison of two computers. SLAP operates in SIMD fashion, with a system controller

broadcasting a single instruction to all PEs in each cycle.

Apply addresses the needs of the vision community for a Adjacent processing elements can exchange data in each cycle,

simple, machine-independent, language for programming low- and a dedicated video shift register performs concurrent image

level vision algorithms. We are interested it seeing it mapped 1/0. ,

onto other architectures, and, in fact, a number of groups have ,.,

already expressed interest. We are exchanging software with The simple control structure and linear topology of a SLAP
these groups to help them in developing Apply and WEB on lend themselves to cheap, fast implementations and to easy

scaling with technology improvements. Given this promise of

great cost effectiveness, a key issue is the efficiency with
The next step is to develop a machine-independent language which problems can be mapped onto the array. We have

for other parts of computer vision. This language should be designed a number of algorithms and algorithm mapping

able to perform operations in low, mid, and feature-levt' schemes that demonstrate efficient mappings for a broad range

vision, should be simple to program in, and potentially be of important image operations, both local and global.

mapped to a many diverse computer architectures. We are .5._,-
develnfor this language, which will be In order to fully assess the practical value of the SLAP -

called Adapt, and are beginning implementation efforts. approach, we are constructing a prototype array with 512
processing elements. Built around custom 2 micron CMOS
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chips, the array and its controller will occupy three standard- [Fisher, Highnam, Rockoff 88]

size circuit cards and deliver some 4 billion 16-bit integer A. L. Fisher, P. T. Highnam, and

operations per second. Performance estimates on some T. E. Rockoff.

commonly used algorithms indicate that this raw throughput Scan Line Array Processors: Work in

can be put to good use. In addition to developing hardware Progress.

and algorithms, we are also building low-level programming In Proc. of Image Understanding Workshop

tools and an optimizing compiler for a high-level parallel 1988, pages (in these proceedings).

language tailored for image processing. A paper by Fisher, Morgan Kaufmann Publishers, inc.,

Highnam, and Rockoff [Fisher, Highnam, Rockoff 88] in these Cambridge, Massachusetts, April, 1988.

proceedings gives an overview of the SLAP concept and the [Goto, Stentz 87] Y. Goto and A. Stentz.

current implementation work, and provides some comparative Mobile Robot Navigation: The CMU

performance predictions. System.

IEEE Expert :44-54, Winter, 1987.

[Gremban, Thorpe, Kanade 88]
K. D. Gremban, C. E. Thorpe, and
T. Kanade.
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IMAGE UNDERSTANDING RESEARCH
AT SRI INTERNATIONAL

Martin A. Fischler and Robert C. Bolles

Artificial Intelligence Center
SRI International

333 Ravenswood Avenue, Menlo Park, California 94025

February 5, 1988 1

Abstract complix natural and man-made objects; and the construction
of a core knowledge structure (CKS), which can serve as the

The Image Understanding research program at SRI Interna- integrating mechanism for a new generation of generic vision
tional is a broad effort spanning the entire range of machine systems. These systems will be knowledge-base driven, rather
vision research. In this report we describe the progress in two than task-specific, using techniques in which domain knowledge
programs: the first is concerned with modeling the earth's sur- is compiled into the interpretative algorithms.
face from aerial photographs; the second is concerned with vi-
sual interpretation for land navigation. In particular, we de-
scribe progress in the design of a core knowledge structure; rep- 2 DESIGN OF A CORE KNOWLEDGE
resenting, recognizing, and rendering complex natural and man- STRUCTURE
made objects; recognizing and modeling terrain features and
man-made objects in image sequences; interactive techniques for
scene modeling and scene generation; automated detection and The natural outdoor environment imposes significant obsta-
delineation of cultural objects in aerial imagery; and automated des to the design and successful integration of the interpreta-
terrain modeling from aerial imagery. tion, planning, navigational, and control functions of a general-

purpose vision system. Many of these functions cannot yet be
performed at a level of competence and reliability necessary to

1 INTRODUCTION satisfy the needs of an autonomous robotic device. Part of the
problem lies in the inability of available techniques, especially

The overall goal of the Image Understanding research pro- those involved in sensory interpretation, to use contextual infor-
gram at SRI International is to obtain solutions to fundamental mation and stored knowledge in recognizing objects and environ-
problems in computer vision that are necessary to allow ma- mental features. Our goal in this effort, described in a previous
chines to model, manipulate, and understand their environment paper [Smith&Strat87], is to design a core knowledge structure

from sensor-acquired data and stored knowledge. that can support a new generation of knowledge-based generic

In this report we describe progress in two programs.' The vision systems.
first is concerned with modeling the earth's surface from aerial A key scientific problem we address in this task is to devise
photographs; the second is concerned with allowing a robotic a way of describing the appearance and characteristics of any
device to successfully navigate through, and interact with, a given physical environment so thoroughly that we are assured
natural 3-D environment based on real-time interpretation of that deficiencies in available perception (vision) techniques can
sensory data. be overcome by access to such prior knowledge. We cannot resort

to the equivalent of using a pixel-level description as the omijy or
In the discussion of the first program we describe our progress ~ltimate solution because such detailed data would be imprac-

in developing techniques for automated terrain modeling from tical to obtain, store, retrieve, or use in the interpretive process;
aerial imagery; automated detection and delineation of cultural h low-level data would almost certainly be inaccurate when
objects in aerial imagery; and interactive techniques for sc,(, obtained, and would quickly degrade as physical changes occur.
modeling and scene generation. (Even illumination changes would cause a pixel-level description

In the discussion of the second program we describe progress of appearance to become useless.) Finally, accurate interpreta-
. in developing techniques for automated real-time recognition of tion must be based on more than just image appearance, and
"2 terrain features and man-made objects from image sequences there is no immediately obvious way of describing and storing

acquired by a combination of ranging and photographic sensors, such semantic (nonpictorial) information at arbitrary levels of

Common to both programs, we describe progress in develop- detail.
ing new techniques for representing, recognizing, and rendering The CKS is designed as a community of independent inter- 0

'Supported by the Defense Mapping Agency and Defense Advanced te acting processes that cooperate in achieving the goals of the

search Projects Agency under contracts MDAg03-86-C-0084 and DACA76- scene modeling system. These processes may represent sensors
s5-C-0004. interpreters, controllers, user interface drivers, or any other in-
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formation processor. Each process can be both a producer and a supports description at multiple levels of resolution -- concepts
consumer of information. Each has access to, and control over, are described and data are retrieved at the level of abstraction
a certain limited portion of the knowledge/database resources. that is most appropriate for the purpose at hand. The semantic .
The CKS architecture permits access to stored knowledge by directory also serves as a blackboard whereby one computational
both geographic location and by semantic content. process can communicate with another in terms of semantic de-

An initial implementation of the CKS was completed early scriptions about which it is knowledgeable.

in 1987, and subsequent activity has had two objectives: ap- The implementation of the semantic directory consists of two
plying the CKS to a variety of distinct perception problems, components: a vocabulary of terms and a set of connections
and improving and extending its capabilities (based on evalua- among them that serve to define their inherent relationships
tion by potential users and by lessons learned in our application and properties. The vocabulary consists of a carefully cho-
efforts). In May 1987, a document specifying the initial CKS de- sen, domain-specific set of terms that have been identified as
sign was distributed to researchers in the Image Understanding being both useful for, and instantiable by, the computational
and Strategic Computing vision communities for critical review, processes. Relationships and properties are specified by several
Most of the resulting comments focused on four aspects of the methods. A semantic network is used to encode the specializa-
design: choice of the coordinate systems for representing spatial tion lattice of the concepts and the physical decomposition of
data, the encoding of semantic knowledge, the encoding of teni- composite objects. Procedural definitions are provided when it
poral data, and truth maintenance and the resolution of conflict. is necessary to do so. A relational database is used to retain
The relevant issues are briefly summarized below, semantic relationships that are explicitly provided. These rela-

tionships allow class properties to be inherited and alternative
semantic classes to be enumerated. Each process that interacts

2.1 Coordinate Systems with this knowledge base need only know how to translate to

A dilemma is posed in selecting a coordinate system that is used and from this vocabulary in order to share information with

both for specifying locational information and for indexing data any other process. This avoids the need for direct translation
of data between the knowledge representation of every pair of -

tokens. Is it better to use local coordinate systems in which iidepeident processes. The key motivation for this al)l)roaci is
eiiis'd data are easily specified or shoul a glob~al coordinate to facilitate the integration of independent processes and sub-',

system be employed that forces all data into one uniform in-
dexing system? To utilize stored spatial knowledge of the world pocse th ore ge e iy
while interpreting sensory information, there must be a nieans (a ti
coordinate transformation) for relating the two. If such a trans-
formation in fact exists, one can store and retrieve information 2.3 The Dynamic World
relative to a single world-coordinate system. However, at times
one may have only an approximate understanding of that trans- Since the world has a temporal nature, the task of building an
formation; consequently, to insert data into the world coordinate adequate model of that world must treat time as a full variable,
system when its precise position is known only locally would ap- just as space is in the CKS. In our initial implementation of the
pear to sacrifice that precision by virtue of the uncertainty in CKS, we have not been so much concerned with modeling the
the transformation. In the CKS, this loss of precision will be in dynamics present in the world as we have been with representa-
the location of the data in the spatial directory, not in the local tional adequacy of the static world. lowever, we are pursuing
information stored within the data token. The saatial directory a parallel effort whose specific objective is to enhance tile CS
is there to facilitate retrieval, not to encode the spatial local ion. with facilities for storing, accessing, and reasoning about dy-

'onsequiently, the technique emiployed allows the data toketi to nainic enities. This research has focused oil two riuehaisrius to
include whatever local coordinate information is available yet, provide such capabilities.
at tIme same time, the spatial retrieval uechanisin is iiade to I ,b
uniforin (albeit with a certain lack of precision) across all infir I
nation sources. It shou l Iep noted that spat ial reasoning slioul h v[i'ialaca l seltiultir net work ud by thi ('KS ac-
properly be applied to thi data token's al ribultes, ts lisi Iis b(,iig iXlia1!dli to i el ni such teriis i s ruinic, turn, roi, ,
cOntain the precise local informiiation rat her Iha the lociation plai), r,fuI, triurs-roul(, anl iolide. Each primitiv,- S -.

of the token within tw directory. The initial ('IKM iiiileiii,,it action s('iiia (militl is slot s fir assi-isted ilatia sach as
tiuiil was ciicerned solely with tlt, desigi and il i teiiatce of a time, ag'iit, and extent. More complx procedures (; I
siiigle worlil directory. Now that the i i tial iimplimitatioi is ,described as composites f primitive actions. This vocali-siunplete, we are desigNig ithar ies for scifyi g rtati vi ulary can ie used both for describing events that are tak-pisieteion fur i ntegratin g it o i tiif (s'cin. i ig place iii the world and for representing knowledge of

prototypical procedures (e.g., how to navigate around an
olistacle ). ,

2.2 The Semantic Directory
2. 'lhe second niechanisi involves representing dynamic oh-

'lI' semantic dlirectory i privides a Inas s of a(css to the uhlata jects by a voluie oif space swept out iver a time interval.
that is orthogonal to that provided by thi miorn conventiiiml Thus a moving object can Ie stored il the spatial directory
spaiial dir-cory. While lw spatial dirtcursr- allows rapid r,' as the Ioration of its trcrt. A( niss routines will retrieve the
triv;l of relivan ilat Iasi 1 ujiiii spati;l Iicaitii,. tw si.l1;11 olijeit nly if it salisfi's the qu , ery at the si'cifii'd tin '. A '. . _

tic iireiih Y provides ' i, thlie s;timi dit; b;,d ' ilpoii ih,, divers' cillectioi if representations is b'ing evhnalatd fur .5.

-i'm ntic altribiutes of tlisi ,ldt;i. Liki thi, sp;tial ilii'i,(tim ., it its ilililY to pl r vid this iliirl iti)in eiici',itly for imany "
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types of motion. Some of these are representations of phys- This approach has three advantages: it eliminates the res-
ical motions, such as a cow whose movement is bounded olution of conflicts that are irrelevant to the task at hand;
by a fence, but is otherwise unconstrained. Still others de- it permits each process to take an action that the process
pict movement through a conceptual space, such as the ap- deems appropriate; it is capable of using more appropriate
pearance of a leaf in the progression of seasons: growing, information by delaying conflict resolution as long as pos-
changing color, then separating from a tree. sible. While this strategy may return more tokens as solu-

tions to a query than would be the case if conflict resolution
2were performed at insertion time, it allows the CKS and its
2.4 Conflict Resolution and Truth Maintenance associated inference mechanisms to perform effectively even

In any database, the question of conflict resolution and truth when confronted with conflicting data.

maintenance is an important one. The CKS stores opinions that Whether one resolves conflicts at insertion or at the time of
do not have to be consistent (see [Smith&Strat]). As a conse- het her oe remin s th qu s ertion o o r es ii it

quence, the CKS does not need a globally consistent database, retrieval, there remains the question of whose responsibility itnor is it necessary to perform truth maintenance when opinions is to perform that function. Resolving conflicts requires knowl-,'

nor s i neessry o pefor trth ainenane wen pinons edge of the distinctions among semantic categories as well as
are changed. If a process is particularly interested in knowing a detailed understanding of the capabilities and limitations of
whether belief in its premises has changed, so that it can re-
tract a conclusion or perform an action, it can make use of the each data source. The CKS cannot bear the entire responsibil-

CKS's daemon mechanism. The daemon is installed on the oh- ity for conflict resolution because it is generally ignorant about
jects in the conclusion's support set and take the appropriate the processes that provide the data. Furthermore, it would notjectson in they oncls nge. srte abe reasonable to require each sensory process to have domain
action when they are changed. This provides a process with a knwegeabigttorslellcfitsewentsda

flexible capability for performing truth maintenance only when knowledge enabling it to resolve all conflicts between its data

necessary. However, while the database does not have to be and the CES. The approach taken by the CKS is to allow pro-

globally consistent, a process may need to recognize a conflict cesses that are capable of resolving some types of conflict to

so that it can take appropriate action. Conflicts may occur be- examine the data in the database, and then enter their opinions

cause a single entity in the world has been described by different regarding such resolution into the database. Once this has been

processes using different data tokens, or different processes may done, it is up to the user processes to decide whether to use the

have described the same object in contradictory ways. While resolved opinion or carry out the analysis themselves.

such descriptions are obviously related, each must be considered Two CKS application efforts have been initiated: first, an in-
separately. ternal effort to use the CKS in support of object recognition,

planning, and navigation for an alitonomous robotic device or

1. The Reference Problem - Whenever two agents (processes) weapon system (this work will be described in a later publica-

desire to communicate about entities in the world, deter- tion), and second, a cooperative effort with GE to use the CKS

mining whether they are referring to the same entity will in an intelligence application (described in a separater paper by

always be difficult. In terms of the CKS, the reference prob- J. Muody et al., in these proceedings).
lem is having to decide whether a token used by one process
refers to the same object as does a token created by another. 3 REPRESENTING,
This is a serious philosophical problem for which we have
not yet found a general solution. Failure to resolve instances RECOGNIZING, AND RENDERING
of the problem result in a multiplicity of tokens, an inability COMPLEX NATURAL AND MAN-
to draw certain inferences, and a potential for reaching false MADE OBJECTS
conclusions. However, we feel that, in practice, the CKS will
not proliferate many tokens referring to the same objects. The main theoretical issue we address in this effort is how to
Rather, most sensory processes, especially vision modules, model a large class of natural and man-made objects in a func-
will probably be model-driven, attempting to instantiate tionally useful way. The domain for our research is outdoor
in their imagery objects already represented in the CKS. navigation in which a robotic device starts with an initial model
Only when these processes discover something unexplained of its environment and incrementally updates this model (and
by prior expectations will they abandon their verification its relative position) as it moves to gather data or perform some
mode and create a new data token. Moreover, because a task. We require the device to improve its performance by in-
process is unable to find a token that explains that piece of creasing its ability to recognize objects and/or decreasing its
data, it is unlikely that an existing token actually refers to pt
the same object. processing time as it sees things over and over again.

We have partitioned this type of perception task into three

2. The Characterization Problem - When two processes are stages: model instantiaticn. mission planning, and execution.
t . -'ject. but (liffer as to its semantic In the instantiation stage, a user gathers as much a priori infor-

characterization or spatial location, we have an instance of mation as possible about the area of interest. This may include
the characterization problem. The mechanismis the (KS selections from a standard set of cartographic items, such as
uses to cope with this common reference are described in terrain maps, soil classification maps, and road networks. In ad-
the CKS specifications document [Strat&Smnith87]. Usiin, dition, given a specific mission, tle user may interactively aug-
multiple opinions on the slots of data tokens is central t mnt this database with higher-resolution descriptions of a few
the CKS's design. Many difficulties are avoided because the key features. In the mission-planning stage, the user explores
CKS defers conflict resolution until information is retrieved. possible vehicle paths and evaluates their viability in terms of
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several factors, one of which is the interaction of the control sys- height of the terrain under large objects by interactively clip- .4'.

tern with the perception system. The planning stage provides ping them out of the height map and then filling the resulting
such things as a list of expected landmarks and descriptions holes by interpolation. We used an interactive modeling system,
of their visibility and shape. In the third stage, the execution developed at SRI [Hanson&Quam], to build three-dimensional
stage, the vehicle performs its mission, navigating around ob- models of the key features, which we then entered into the CKS
stacles and updating its position estimates as it heads towards for permanent storage. N
its objective. The individual objects are represented by superquadrics with N

A key to successful performance in all three stages is the set fractal textures or as faceted volumes. They are entered in the
of representations used to describe the environment. An object CRS according to their semantic category and location in the
may be sketched in the model instantiation stage, projected into world. Our initial model of the red-rock region includes about
synthetic images during the planning stage, and matched in the ten large trees, bushes, and rocks. In the future we plan to
execution stage. Therefore, the representations, in addition to extend our list of semantic descriptions and develop recognition
covering a wide variety of man-made and natural objects, must techniques that are specific to these new classes.
be able to express a range of abstraction and precision. Our
strategy for exploring these representation issues is three-fold. 3.2 Mission Planning
First, we are developing a set of representations for classes of
features, such as terrain patches, rocks, and trees. Second, we The planning system has two purposes: one is to suggest and 0
are developing a Core Knowledge System (see section 2) to serve evaluate vehicle paths for accomplishing a mission; the second is
as an integrating mechanism for all the information about an en- to compute and "down load" mission-specific data and instruc-
vironment. And third, we are performing experiments using real tions to the vehicle control system. A typical instruction might
data obtained from the "red-rock" area at the Martin-Marietta be to aim a sensor in a certain direction and start looking for a
site outside Denver. particular object at a specific time. So far we have concentrated

In September 1987, three SRI researchers spent a few days on the interactive evaluation of paths and have just begun to
at Martin Marietta surveying prominent features in the selected produce data and instructions for the execution-time perception
area and gathering range and intensity data consistent with our system. e
navigation scenario. Martin-Marietta scientists modified their Our int !:t .-C e evaluation system is built on top of the CKS
data acquisition programs as required and interactively drove and the TerrainCalc system, which was designed and imple-
the vehicle several times through the region to gather data. We mented at SRI [Quam85]. It provides the user with the ability
are using these data as part of a demonstration in which we to generate sequences of images (i.e., movies) that correspond to 111
bring together several techniques produced by our longer-term the data that would be gathered by the vehicle's sensors if the S
investigations. In the subsections below we describe both the vehicle followed the proposed path through a modeled world.
long-term research and its application to the demonstration task These synthetic images provide a dramatic way to visualize a
of navigating through the red-rock area. proposed path. The system can highlight key landmarks so the

user can easily determine the range of vehicle positions from
3.1 Model Instantiation which they are visible, their range of shapes, and so on. With --

this system we "drive through" our model of the red-rock region
The goal of the model instantiation stage is to compile as coin- and select navigational landmarks for use during the execution
plete a model of the environment as possible prior to the defi- stage.
nition or start of a mission. Given a specific mission, the user We have implemented projection models for two types of sen-
will interactively add mission-specific information to the envi- sors: a conventional color camera and the ERIM range sensor. %
ronmental model. In our modeling of the red-rock region, we We have also implemented a model of the ERIM sensor's behav- . - -

started with ETL's 30-meter and 5-meter digital terrain maps ior when two surfaces at different ranges are within its beam.
of the area, computed a 0.3-meter terrain model of the smaller This level of detail is necessary to predict sensor output at occlu-
red-rock region, and then added models of prominent discrete sion boundaries and on thin objects. We have not incorporated
terrain features, such as trees and rocks. The low-resolution this detailed model into the synthetic image generation because
terrain maps provided the global context. The high-resolution it is computationally expensive. However, in the future we plan
map supplied a detailed grour.d model and key parameters for to invoke it for special types of objects, such as thin posts or
the specific object models. tree trunks.

We constructed the high-resolution elevation map of the red-
rock region by applying a stereo technique developed by our . Execution S
group at SRI [Barnard88]. The resulting map provides a height
estimate for each pixel in the original aerial images. For our During the execution stage, the vehicle navigates towards its
images, a pixel corresponds to approximately one square foot destination by interpreting sensed data in terms of its predicted
on the ground. Although this map contains some errors, the model of the world. To accomplish this, it performs, among - N

majority of the heights are reasonable and at a resolution nmuch other things, the following five functions: it detects unknown ob-
higher than is available from any other source. The prominent jects, classifies them, recognizes landmarks, tracks objects from ,4,
rocks and trees are plainly visible. one image to t lie next, and updates its world dnd vehicle models.

We used the detailed height map to construct our initial model Several groups, including Hughes [Daily] and Carnegie-Mellon
of the red-rock region, which consists of a terrain map and a University [Thorpe] have demonstrated techniques for detect- ,
set of labeled objects sitting on the terrain. We estimated the ing unknown objects in range data. However, it is significantly
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harder to classify these objects into their semantic catagories cedures. In one method we apply extensive bottom-up analysis
(e.g., rock, bush). Classification is important for navigation be- to build as complete a description as possible of each image be-
cause the vehicle can operate more effectively if it is done re- fore attempting recognition. In another we predict as much as
liably. For example, the vehicle may be able to cautiously run possible from one image to the next and attempt to limit the
over bushes (but not rocks). We are currently investigating ways low-level analysis to key portions of the images. Our goal is
to perform this type of object classification by using the CKS to to determine the appropriateness of these techniques, and vari-
access the semantic properties of an object and the relationships ations of them, as a function of such things as the accuracy
between objects. of the inertial navigation information, the type of object being

A capability mentioned above is the updating of the world and recognized, and the reliability of the bottom-up analysis.
vehicle models after the perception system has recognized and In [Bolles,Baker,&Marimont87] we presented a motion analy-
located objects. However, once a landmark has been located, sis technique, which we call Epipolar-Plane Image (EPI) Anal-
it is relatively easy to track it from one image to the next. In ysis. It is based on considering a dense sequence of images as
the past, we have used three-dimensional normal distributions forming a solid block of data. Slices through this solid at appro-
to represent the uncertainties associated with the world position priately chosen angles intermix time and spatial data in such a
of both the vehicle and perceived objects [Barnard86]. We are way as to simplify the partitiolnig problem: These slices have
now developing a Kalman technique to maintain local vehicle- more explicit structure than the conventional images from which
centered models in addition to the global ones. they were obtained. In the paper we demonstrated the feasibility

of this novel technique for building structured, three-dimensional
descriptions of the world. Recently we have extended this tech-

4 RECOGNITION AND MODELING nique (see [Baker&Bolles88)) to locate surfaces in the spatio-
OF TERRAIN FEATURES AND temporal solid of data, instead of analyzing slices, in order to

maintain the spatial continuity of edges from one slice to the
MAN-MADE OBJECTS FROM IM- next. In addition, we have reimplemented the analysis to work

AGE SEQUENCES incrementally, applying a Kalman filter to update the three-
dimensional description of the world each time a new image is

Our goal in this research effort is to develop automated meth- received. As a result of these changes the program produces
extended three-dimensional conitiurs instead of sets of isolatedods for producing a labeled three-dimensional scene model from pits. thee-c on tours ime Whe on is

many images recorded from different viewpoints and from image points. These contours evolve over time. When a contour is

sequences. We view the image-sequence approach as an impor- initially detected, its location is only coarsely estimated. How-

tant way to avoid many of the problems that hamper conven- ever, as it is tracked through several images, its shape typically

tional stereo techniques because it provides the machine with changes into a smooth three-dimensional curve that accurately
previously unavailable information about the scene. The "re- describes the corresponding feature in the world. In the future

dundant" information can be used to increase the precision of we plan to develop descriptions of the surfaces between the con-thdata and filter out artifacts; the new information provided tours, explore a parallel implementation of our surface-building %
the data an ie cn he to informatn p or algorithm, and apply it to other types of data, such as computed
by the additional images can help to disambiguate matches for tmgah rmgei eoac mgn aa
features that occur along occlusion boundaries and in the midst tomography or magnetic resonance imaging data.

of periodic structures.

We have developed two techniques for building three- 5 INTERACTIVE TECHNIQUES FOR
* dimensional descriptions from multiple images. One is a range- SCENE MODELING AND SCENE

based technique that builds scene models from a sequence of
range images; the second is a motion analysis technique that GENERATION
analyzes long sequences of intensity images. The range tech-
nique uses data from an inertial guidance sensor on the vehicle Manual photointerpretation is a difficult and time-consuming
to compenstate for vehicle attitude and position changes caused step in the compilation of cartographic information. On the
by bumps, curves, and speed changes. As a result the range data other hand, fully automated techniques for this purpose are cur-

01 are transformed into a static world-coordinate system, which is rently incapable of matching the human's ability to employ back-
a necessary first step for almost all further analysis. By com- ground knowledge, common sense, and reasoning in the image-
bining the data from multiple images, we are able to filter out interpretation task. Near-term solutions to computer-based car-
artifacts and produce a more complete map of the region in tography must include both irteractive extraction techniques
front of the vehicle. We have developed several representations and new ways of using computer technology to provide the end-
of these three-dimensional data, including height maps, orien- user with useful information in a primarily iconic, rather than
tation images, and voxel arrays, each of which offers distinct symbolic, format.
coherence and resolution advantages to the analysis procedures, In order to support research in semiautomated and autom-

In the past we have developed techniques that analyze these mated computer-based cartography, we have developed the SRI
representations of the range data to identify such features as Cartographic Modeling Environment. In the context of this
support surfaces, ditches, and thin raised objects. We are cur- interactive workstation-type system, the user can manipulate
rently extending these techniques to track such objects through multiple images; camera models; digital terrain elevation data;
sequences of images and gradually transform their shape and point, line, and area cartographic features; and a wide assort-
position models. As part of this updating procedure, we are ex- ment of three-dimensional objects. Interactive capabilities in-
ploring the trade-offs associated with alternative matching pro- cude free-hand feature entry and editing, altering features while
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constraining them to conform to the terrain and lighting geom- SRI Cartographic Modeling Environment described earlier. In
etry, and adjustment of the scene viewpoint. Synthetic views an interactive mode, the user supplies an initial estimate of the
of a scene from arbitrary viewpoints may be constructed using boundary of some object (which may be quite complex, like the
terrain and feature models in combination with texture maps outline of a tree) and then, if need be, corrects the optimized
acquired from aerial imagery. This ability to provide an end- curve by applying forces to the curve or by changing one of a
user with an interactively controlled scene-viewing capability few optimization/model parameters.
could eliminate the need to produce hard-copy (symbolic) maps For the important cartographic task of extracting cultural fea-
in many application contexts. Additional applications include tures and vegetation from aerial imagery, [Fua&Hanson88] de-
high-resolution cartographic compilation, direct utilization of scribe a technique which involves optimizing the evidence for
cartographic products in digital form, and generation of mission- model instances in the image data. As basic model compo-
planning and training scenarios. nents are assembled into more complex structures, semantic con-

A summary of our progress in this area is described in two straints are used to optimize the state of the model and to by-
papers: the basic design issues for this system can be found in pothesize missing model components in the image itself. This
[Hanson,Pentland,&Quam87]. An overview of the current iml)le- approach to shape extraction contrasts strongly with current
mentation is presented in a separate paper in these proceedings, model-based vision techniques that rely on passive interpreta-
[Hanson&Quam88]. tion of precomputed syntactic image features. Possible parses S

of a scene are ranked using a measure related to the cost of en-
coding the scene information in terms of (languages of) generic

6 AUTOMATED DETECTION AND models. As examples of generic shapes, models of buildings,
roads and vegetation clumps are introduced. The model defi-

DELINEATION OF CULTURAL OB- nitions include edge characteristics, two- and three-dimensional

JECTS IN AERIAL IMAGERY edge and face relationships, region characteristics, and proce-
dures for predicting and discovering nris ing shape components.

The detection, delineation, and recognition of any signifi- We believe that both the Leclerc and the Hanson and Fua
cantly broad class of objects (e.g., buildings, airports, cultivated techniques represent significant advances in the state-of-the-art
land) in aerial imagery has proven to be an extremely difficult in their respective areas of image partitioning and delineation of
problem. In fact, a nominal component in the solution of this cultural features. Both systems have been able to produce excel-
problem, image partitioning, is considered to be one of the most lent results in complex situations where existing (typically local)
refractory problems in machine vision, approaches fail. Future work (both systems) involves vocabulary

We have recently formulated an optimization-based approach, extensions and devising more effective optimization procedures.

applicable both to image partitioning and to subsequent steps 'e-
in the scene analysis process, that involves finding the "best" ATE IL
description of the image in ternis of some specified descriptive 4OD
language. ING FROM AERIAL IMAGERY %

In the case of image partitioning [LeclercSS], we employ a
language that describes the image in ternis of regions having a Stereo reconstruction is a critical task in cartography that S
low-order polynomial intensity variation plus white noise; region has received a great deal of attention in the iiage understanding

)oundaries are described by a differential chain code. A "con- cornmunity. Its importance goes beyond its obvious application

tinuation" technique is used to find a "best" description, in tlie to constructing geonietric models: Understanding scene geome-
sense of least encoding length, that is both stable (i.e., minor try is necessary for effective feature extraction and other scene

perturbations in the viewing conditions should not alter the de analysis tasks. While considerable success has been achieved

scription) and complete (i.e., the image, including any noise or il important parts of the problemi, there is no complete stereo-

errors, must be completely explained by the description). mapping systeln that can perform reliably in a wide variety of

In situations where the required image description must pro- scene domains. oe m r n-

ceed beyond that of a delineation of coherent regions, we re-
quire an extended vocabulary relevant to the semantics of the volves finding pairs of corresponding scene points in two images I

given task. [Fua&Leclerc88] deal with the problem of bound- (which depict the scene from different spatial locations) and us-

ary/shape detection given a rough estimate of where the bound- ing triangulation to determine scene depth. Various factors asso- 6

ary is located and a set of photometric (intensity-gradient) and ciated with viewing conditions and scene content can cause the

geometric (shape-constraint) models for a given class of objects. natching process to fail; these factors int lude occlusion, projec- 0
They define an energy (objective) function that assumes a inn- tive or imagining distortion, featureless areas, and repeated or

imal value when the models are exactly satisfied. An initial periodic scene structures. Some of these problems can only be

estimate of the shape and location of the curve is used as the solved by providing the machine with miore information, which

starting point for findin, - !,,cal oIinimumn of the energy func- may take the form of additional images or descriptions of the

ion by embedding this curve in ;i viscous lledium aldI solving glol)al context.

the dvranic equations. This enorgy-iliiniization echnique. Our research strategy ii this 'ask is to developt new techniques
whi(h evolved front a less eflicient. gradivllt-descevt approiach. foi Iho key steps iii the stereo process. such as latching and
has been applied to straight-line Ioundary% Illlilsf 111d to r '',, itit,,rlpolatioui, and, ill parallel, to inv stigat' ways to integrate
(oniplx milodels that iI: 111d, collst raitts ,i 11 loo hilt'ss. 1); ;1' w,, . id ', with ,'Xi i ,ig tAchiti ,, ... \' lalt of this process
le nist. and rectilinarity. It has also ben incor ,,rited in, it , ,i v, have iInpllliiititel.[ll;i itllhall-5] and ev aliited [I;llmilahNxI a
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complete high-performance stereo system. In a test of existing technique to produce dense elevation maps of the ALV test site
stereo systems on 12 pairs of digital images, conducted by the -- we can map on 0.3 meter centers as compared with 5 meters
International Society of Photogrammetry, Hannah's system was in the best previously available DTMs.)
able to successfully process more of the images than any other While the stereo problem will remain a focus of a portion of
system (11 out of the 12 pairs); while full evaluation of the test our research effort, our main concern is to develop an under-
results is still not complete, it appears that her system will rank standing of how knowledge of scene depth information can be
first (or very near the top) in the competition, effectively used in the scene-partitioning and object-recognition

We are currently investigating two novel approaches to stereo tasks.
depth recovery, which are significant departures from the con-
ventional paradigm and which have important implications for
other problems in scene analysis. 8 ACKNOWLEDGMENT
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Summary of Image Understanding Research
at the University of Massachusetts1

Edward M. Riseman and Allen R. Hanson

Computer and Information Science Department
University of Massachusetts at Amherst A

ABSTRACT A primary characteristic of this work is the utilization of

This paper summarizes several areas of research at the Uni- coarse-grained parallelism at the semantic level, where modular

versity of Massachusetts that are partially or entirely supported processes called schemas provide object-specific control strategies

under the DARPA Image Understanding Program. Many of the for recognition of object instances in expected contexts. Schemas S
individual efforts discussed below are further developed in other partition both knowledge and computation in terms of natural ,.

papers in these proceedings. The summary is divided into several object classes for a given domain; (note that the term "object" is

areas: used loosely to include object parts, objects, and scene contexts
comprised of sets of objects). Each object class has a correspond-

I. Knowledge-Based Vision ing schema which contains declarative and control knowledge spe-

2. Database Support for Symbolic Vision Processing cific to that class. To identify an instance of the object class in
an image, a schema instance is created, which is an executable

3. Motion Processing copy of the schema associated with the object class. One schema

4. Perceptual Organization (Grouping) instance is invoked for each object instance hypothesized to be "
in the scene. ,".\

5. Image Understanding Architecture Schemas run as independent concurrent processes. Commu-

6. Integrated Vision Benchmark for Parallel Architectures nication between schema instances is carried out asynchronously
by means of a global blackboard through which schemas coop-

7. Mobile Vehicle Navigation. erate and compete 'o identify and locate the significant objects 0
Although we discuss each area separately, a fundamental goal present in the scene. Consistency is enforced by the requirement

of the computer vision research environment at UMass is the in- that each spatial area of the image is to have only one interpre-

tegration of a diverse set of research efforts into a system that tation, and that all such local interpretations are to be mutually .'.

is ultimately intended to achieve real-time image interpretation, compatible.

Two of our major system integration efforts are the VISIONS There is now a serious effort getting underway to bring the

static interpretation system, which is a knowledge-based com- Schema System up on a shared-memory multiprocessor (a Se-

purter vision system utilizing parallel modular processes that quent) to begin to explore these ideas on a real machine. The

communicate via a blackboard jDRA87b,HAN87a1. The sec- issues here significantly overlap much of what appears in the re-

ond systerr integration effort involves an autnotoou.,r -rhile maining areas of this summary since those systems will be the -

vehicle for navigating through a partially known ei nviroonneit components controlled by the interpretation system In part-

ARK87a.ARK87b,ARK87c
'  ilar this research effort complements that of the Image Under-

standing Architecture (IUA) IWEE88a,WEE88b . since only a

1 Knowledge-Based Vision vertical slice of the IWA is being constructed vith a ingle sYi-

bolic prorcessr at the the top of the three-level arrhilitet tre

1.1 VISIONS Scene Interpretation Thus, the multiprocessor investigation of schemas and the ex-

Research in knowledge-based vision has cootinued via the perimental experience of applying it should give insight into lie
top-level design of the IUA before any atten t is toade to scale

hr'velrneiut of tite VISIONS Sihenr Systein anid its apphica- i i sescin5o hssmay

tirn to a variety f dloiIain. ineIcidmug r oad scenes, hIrise sc it tp (see section 5 of this su mar)

anda,,rialirmages I)RA8T7a.)RA871i.IlAN57a.REY57 u Integat-
ing rinemit , froni art1i5t ial intpllign, e air

1 
comipiotr viqion. to- 1.2 )bject Recognition h(sing 3D Models
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structural detail that will appear in the various views of an ob-
ject. 1.4 Information Fusion

The design is based on two ideas. The firqt iq thtt before A constraint based approach to uniformly combining in-
recognition, in an off-line process, the three-dimensional mode! formation from multiple representations and sources of sensory ,
base can be precompiled into descriptions, called predictions, of data has been developed BEL6,RS87 . The approach is impor-

the potential appearance of all objects from all viewpoints. This at to reen e med lBel The apoach isp

reduces the recognition process during interpretation to a 2D tant to research in intermediate level grouping, knowledge-based
model matching, and information fusion. The terhniques extendmatching process and avoids the more complex 3D-to-2D trans- the capabilities of an earlier system IHAN87b that applied con-

formations between 3D models and 2D images. The second is to straints to attributes of single types of extracted image events,
represent all the predictions in a prediction hierarchy. The nodes called tokens. Relational measures are defined between symbolic

in this hierarchy are partial 2D descriptions that are common
to multiple object views and hence constitute shared processing tean o ue th sb es of scosr ntantions aned
subgoals during matching. Thus, at any stage of extracting 2D selected and grouped on the basis of constraint functions applied~~to these relational measures. '
geometric structure, the prediction hierarchy provides an index-
ing path to the 3D models that mi.ht hSince typical low-level representations involve hundreds or %
ing pa th oc 3Dmodel thato migh onhve pru c tem - thousands of tokens in each representation, even binary rela-

A current focus of this work is on the automatic compila- tional measures can involve very large numbers of token pairs.

tion of a prediction hierarchy from a 3D model base. A pro- Cnrlsrtge o reigadfleigtknbsduo
totype system using a set of polyhedral objects and projections Control strategies for ordering and filtering tokens, based upon
from an unc-,strained range of viewpoints is under development constraints on token attributes and token relationships, can be
[BUR8. formed to reduce the computation involved in producing token

[aggregations. The system was demonstrated using region and

line data and a simple set of relational measures. The approach
1.3 Goal-Directed Control of Low-Level Processes can be naturally extended to include tokens extracted from mo-

for Image Interpretation tion, stereo, and range data.

In a recently completed thesis, Kohl [KOH88,KOH871 adopted V
the view that the task of image interpretation should be viewed 1.5 Evidential-Based Control in Knowledge-Based

as a coordinated process in which high-level interpretation strate- System

gies and low-level image segmentation processes interact through Wesley [WES82,WES83,WES86,WES88] takes a somewhat

the intermediate-level of processing. He developed a system different view of control in knowledge-based systems. Arguing

called GOLDIE (Goal-Directed Intermediate Level Executive) that such systems which operate in real-world environments must
which mediates this interaction and which provides top-down necessarily reason about their actions from information that is

control over low- and intermediate-level processes. Requests for inherently uncertain, impecise, and occasionally incorrect, he de-

low-level processing are represented in the form of a goal, which velops a systei_ all,.J CCULUS in which control related infor-
contains in its structure constraints on the form of the resulting mation is viewed as evidence for and against hypothesized con-
data. Posting a goal to GOLDIE results in the creation of an trol decisions. Using the Shafer-Dempster theory of evidence
intermediate level process which is an instantiation of a schema !DEM68,SIA761 as the mathematical foundation for evidential

control strategy for achieving the goal. Thus, the set of schernas reasoning, OCULUS derives control related evidence from con-
represented at the intermediate level define the types of goals trol knowledge sources which make measurements on the state
which may be processed. of a knowledge-based interpretation system. Evidential decision

The active schemas utilize knowledge of the image domain as measures were developed to help choose an action based upon
well as measurements on the image itself to translate the goals the results of the inference process.

into appropriate low-level process specifications, which include A simulated vision environment was constructed using results -,

the identification of the image features, algorithms, and algo- of the VISIONS system interpretation. Simulated KSs were pa-

rithm parameters to be used by the system to accomplish the rameterized via characteristics such as accuracy and ambiguity.
task The low-level process specifications are then executed by a Wesley's results demonstate that an evidential approach to con- .

pricess ciii roller, which returns the results to the interiedliate- trol can improve OCULUS's ability to correctly interpret images
level control process. The constraints on the results are then by as much as 30% in most cases, with less than a 10% increase in

iherked art<l, if satisfied, the results are rel urned to the request- effort. Furthermore, the system is shown to degrade gracefully as
ing high-level schenia If the results are insatisfactory, a new t . u ty ro t e sytema i s hown t h e racefullyedg

process specifiration is generated and the cycle repeats nt il all tie quality of the intormation supplied by the control knowledge
sources decreases Wesley suggests that the domain independent

possible avenues art- exhausted. Execution of a process may re- control strategies developed in O., l.S might he f-ffvtlixe il

quit it the general tn of subgoals, causing a recursive ivocation kniwledge-based systemis that operate In other real-Aorld t ask

of (t l()LIF_ .f ;( )l~ )IF:do mlains "

hhI u gh Ii .111 Ass devehoped pritiiarily I controt the

prie,s of r .ein -sKnlgr ltat ion, tt(i. develpntill of the seginell- -

tat, i..I...., ri t,, t ,1 It g ee artl Ie I, rIa,, i.t I, i aon rII il.ir 2 Database Support for Symbolic Vision "
tie niT~t lalh;at si schva whi ; )I.l)I. ahuch is (xeluit d at vtri Processing
Rt art Alp in I tie ab sen cP if Ill ih level goals. us es both represent a-

ti ris s ia I i i r , te l a very 'ffet i., regin gotuit nta t I i h Is tiectrui t ( rtuinr tnglA, Ie l(,uhil tt t iti(rtu ha ,iu..l•

algornt 1iii hItuire ,'rsins ,f ( ;(L.I E A Ill exteind t 1 q(heiia N ,sit. and i h,' peri,pl iial gripiup g priursses ec-ir pased, are
bas , ',itr,, l arativmr t, iclute all of t li ,. t) an

d  
it,.rtu iat p

; Iag,)rut Itil- ci r reut I~ i u~-

.'
;';';-':-':- "::i: :-::';%:: : -:-:": :"'i'::i "-:'%:-:"" :-:":"- -:-



an extremely important component of any knowledge-based in- e,
terpretation system. Our current view is that a major goal of * points: endpoints, points of high curvature, vertices, virtual
the perceptual organization processes is to reduce the substan- points, etc;
tial gap which exists between the extracted image descriptors * lines and curves: edges, straight lines, curve segments; ic I
and the high level knowledge representations of the objects. The
more abstract the intermediate level tokens are, the more compu- * areas: regions, surface patches, focus of attention areas,
tationally efficent the matching is between high level descriptions etc.;
and the intermediate level tokens, where general world knowledger ais
is used to constrain the set of possible interpretations. * relations: adjacency, containment, intersection, etc;

The intermediate level may be viewed as simply a sym- * structures: grouped lines and edges, edge-vertex tuples
bolic representation of primitive image 'events' as points, re- (e.g.corners), line chains, geometric structures, and gen-
gions, lines, contours, areas, surfaces, etc. and their fea- erally subsets of tokens defined by a relation.
tures, created by an iconic to symbolic transformationi of
the image data. However, recent work in vision has shown Each has an associated set of features, or descriptors, whose
it to be much more than a passive level of data repre- definition may vary as research progresses. Consequently, there
sentation. Many of the recently developed grouping opera- are two fundamental types of data access that must be supported:
tors, for example, function at the intermediate level by build- access to tokens by name and by feature value (associative ac-
ing more abstract structures from the primitive descriptions cess); note that we also treat relations as features. It is rarely
1BOL87,DOL88,DOL86,FIS86,LOW85,REY87,WIL88b,WIT83]. the case that a token definition stays constant over the course

Consequently, we view the intermediate level as hosting active of an interpretation. Tokens may be split or merged with other
processes which construct more abstract tokens from less abstract tokens, features recomputed, and tokens may take part in many
ones. Universally applicable similarity operators and geomet- set relationships with other tokens.
ric constraints are employed on the evolving spatial structures.
In order to facilitate research on image interpretation systems, 2.1 ISRI
where data and control are closely coupled throughout all three
stages, mechanisms must be provided for efficient structuring of Research into intermediate level grouping mech-
the data and processes. anisms BOL87,DOL88,FIS86,LOW85,REY87,WIL88bWIT83]

In addition, the complexity of many vision systems requires and the development of the VISIONS schema system
the cooperation and interaction of many researchers and the in- [DRA87aDRA87b,DRA88,HAN78a,HAN78b,HAN78c,HAN86]
tegration of their subsystems. The applications are far too large [HAN87al have 'ed us towards the development of a flexible and
for an individual to solve on his own. Thus, the intermediate efficient intermediate level of representation called the Intermedi- I"e.

level representations and software environment must support, at ate Symbolic Representation (ISR) IBRO88,DRA87a,HAN87a].
a minimum, the following: ISRI was implemented in 1985 primarily as a data interface

between the output of the low-level image segmentation and fea- "
* a single uniform data interface to both high and low levels; ture extraction processes running in C on a DEC VAX and the

high-level symbolic interpretation system running in Lisp on a
TI Explorer. The unit of representation in ISRI is the token,

all levels; composed of a name and a list of features. The features are de-
" integration of research results into a monolithic system: scribed through a lexicon and tokens sharing a common lexicon 0

are organized into a tokenset. Each feature entry in the lexicon
* standard handling of common relational and geometric consists of a datatype and an optional on-demand function for

queries, to reduce the programming overhead of coding computing the feature value. Standard feature datatypes include
them from scratch; type real, integer, pointer, extents, and bitplane. Extents is sim-

• distribution of data and processes over several machines ply the coordinates of the bounding rectangle of the token in the
adistriutiond in seve a d p rocesse languagvres ( LS Fimage plane. Features of type bitplane are binary masks defining
and in several computer languages (C, LISP, FORTRAN) the spatial coverage of the token in the image.

* an efficient programming environment for intermediate Since a tokenset may be viewed as a two-dimensional array,

level algorithm development, access to elements in the array are by token name (the rows) and
constraints on feature values (the columns) Associative access of

Unfortunately, current understanding of this level of vision elements are returned as a list or as an array. One of the major
makes it impossible to predict the kind of structures which must design deficiencies of ISRI was that there were no convenient
be represented, the types of access to these structures, the kinds mechanisms for representing and storing these elements.
of relationships which might exist between them, or the range Standard 1/O and file handling utilities are provided for crest- S
and type of descriptive features attached to thzm. At this point ing libraries of tokensets and lexicons. File transfer is a common
it appears that quite a diverse set of representations and mech- method of communication among the diffeent proe.esors in our 

%

anisms are employ ed in various vision system components We environment.

can minimally assume that the intermedir te level unlust support %

known methods of information fusion and perceptual organiza- 2.2 ISR2
lion. and puovide the flexibility ito support the representation
and manipm t i,,n of geronetric and structural relat ins For ex. ISR I was used heavily o(ver a perio:t of years b, researchers S
ample, the tvpes of data which should he representable at this whose individual research focus was distributed reasnal:, umi-

level inchide fornuly over all t hree levels of abstraction Diirtng this period ,f
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time, a number of design deficiencies were noted in ISRI; two of Over the last 7 years, our research group has developed a '.

the major problems which necessitated the redesign were: variety of motion algorithms, and in most cases applied them
to real-world image sequences, including domain- of ,okot arm

The separation of the lexicon from a tokenset created prob- workspaces, indoor hallways, and outdoor sidewalk/road scenes.
lems. When the lexicon had to be modified, old tokensets In particular, experimental investigations of translational motion
no longer had valid descriptions; (for example, when a fea- sequences demonstrated some degree of robustness. Anandan
ture was added to a set of region tokens). Short-term so- [ANA85b,ANA87a,ANA87b,ANA88 developed an algorithm for
lutions resulted in a proliferation of stored tokensets and a determining feature point correspondences between frames that

great, deal of confusion at the application level, allowed the computation cf dense displacement fields with as-
sociated confidences. This capability could be used to effec-

* Sets of associatively accessed tokens could not be conve- tively track points across frames. Lawton [LAW83,LAW84
niently manipulated, made into tokensets, nor stcred as showed that the focus-of-expansion (FOE) often could be ex-
features of other tokens. In particular, it was difficult to tracted from a sensor undergoing pure translational motion (i.e
relate tokens across token types (such as regions and lines). two degrees of freedom) to within a few degrees of accuracy.

In response to these problems a decision was made to design th
a new version of the symbolic database [BRO88]. ISR2 retains Glazer [GLA87a,GLA87b, in his recently completed Ph.D. the-

sis, developed two algorithms for the efficient computation of
the basic flavor of ISRI, including tokensets, the basic token ac- oper-
cess functions, and features and feature datatypes. The lexicon inge mions pyramidss
concept was eliminated in favor of associating the feature descrip- ating over inage data pyramids.
tions with the tokenset itself. Recognizing that there were other rithm for depth extraction under kiope translational motion
pieces of information which apply to the tokenset as a whole (such which iteratively predicts the image motion of a feature point
as generation dates, image information, and processing history), in future frames, determines correspondence by a search over the
each tokenset is now organized as a simple frame, with slots for imite pred eterminestcorrefinente by sate the

the various features of the tokenset. Frame features include the limited predicted area, and then refines the depth estimate using
simple types integer, real, string, frame, and tokenset and the the new match. Snyder tSNY86 analyzed the effects of uncer-
complex types composite, sort, slice, and virtual. The frame fea- o n the o ation of th, and ed oins is could
tureon the computation of depth, and showed how this analysis could
etore allos frm ther tokee onsuetasciated wth tokse be used to quantitatively provide predictions for c,,nstraining the
feature points to the tokeriset or tokensubset associated with the sac idwue o acigteepit nftr rmssearch window used for matching these points in future frames.
frame. The composite feature is a generalization of feature types Adiv [ADI85aADI85bAD185c] developed an algorithm for
like bitplane and extents from ISRI (i.e. they are multi-valued ge ia soIonafive deeo ed an evirogeneral sensor motion (five degrees of freedom) in an environ-
features). Virtual features are features whose values can be cal-
culated but not stored, hence they are always calculated on de- ment with objects undergoing independent general motion, the
mand. They serve much the same purpose as methods in an goal being to recover the motion parameters of both the sensor
object-oriented programming language. Sort and slice datatypes and any visible moving objects. This latter problem is much
provide facilities for defining and maintaining partitions lased harder, and although there was some empirical demonstration of.,%

on feature values; for example, a typical application for a slice capabilities, there was an assumption that this algorithm would
feature might be to create and maintain a grid for fast 2D spatial be computationally more complex, and perhaps less robust, than

access to tokens from the image coordinates. Other modifications the algorithms for translational motion.

to ISRI include a more comprehensive file management system In this volume research is presented on extracting depth from
to deal with the frame hierarchies, the addition of several types of approximate translational motion, intended for practical use if)

demons (on-demand functions), and extensions to the command obstacle avoidance on the ALV [DUT88]; extracting depth from

language to support the new capabilities. stereoscopic motion [BAL88]; and motion analysis that is simpli-
Like ISRI, much of ISR2 will be implemented in C with a fled by assumptions of constant motion IPAV88; and depth corn-

LISP user interface. Implementation is expected to begin in the putation from grouped geo etric structures WlL88a.WI,88bi
near future. Since vision is such a dynamic research environment, We will discuss each of these briefly below.
it would not be unreasonable to expect ISR3 after experience with 3.2 Processing Approximate Translational Motion
ISR2 is obtained. for the ALV

Previous research in motion analysis led us to attempt to

3 Motion deal with a real application subsystem for the CMIU NAVLAB
ITHOR87. The goal was to detect obstacles in the path of the

3.1 Background vehicle at distances beyond the limits of the ERIM range sensor,

In the area of motion analysis, research has rontinild ,owo ie. at distances beyond 40 feet. Initial results from Bharwani's

several avenues: a subsystem for extracting depth froil apprIxi- algorithm implied the possibility of extracting usable depth of

mate translational motion for the CMUi NAVLA. an algorithin obstacles at distances between 40 and 80 feet. By applying an

for binocular motion analysis, a closed for'n solutiorn for recovery FOE extraction algorithm prior to the depth extraction algo-

of general nootion parameters under assunptions of noo anl iII)- rithn, there was an expectation that an effective subsystem could

tIon. and an algorithm for spatio-temporal grouping and tracking be developed To accomplish this in actual imaging sit uations on

of linear structures and recovery of their associated depth a moving vehicle has turned out to be far iolre difficult,
In dynamic imaging situations where the senlsir is undergo-

ing primarily translational motion with a relatively small rota-
tional conlmp nent, it liight seei likely that "apllrXiilfate" trans-

%
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lational motion algorithms can be effective in determining depth. motion parameters, whose solution requires a Gauss-Newton non-

Although translational motion is the dominant form of motion linear least-squares method with carefully designed initial guess

and is approximately constant over a long sequence of frames, schemes. Pavlin IPAV881 has derived a closed-form solution for

there usually are local variations due to irregularities in the road the rigid object trajectory by integrating the differential equa-

surface (bunips, holes, and undulations), as well as minor rota- tions describing the motion of a point on the tracked object. The
tion of the vehicle as it translates. This is often manifested in integrated equations are non-linear only in angular velocity, and

changes in the location of the FOE (i.e. effectively it produces are linear in all other motion parameters. These equations allow

a different translational motion), and in rotational motions that the use of a simple least-square error minimization criterion in

must be removed if correct values of depth are to be extracted an iterative search for the motion parameters.

from the feature displacements. An attempt to correct for these ( p
effects via a relatively simple preprocessing algorithm, without 4 Perceptual Organization (Grouping)
utilizing full analysis of the general motion problem, also led to 4.1 Token-Based Approaches to Motion and Per-
difficulties. The issues and our experimental efforts to deal with

what we considered to be the relatively simple problem ot ap- ceptual Organization

proximate translational motion are discussed in [DUT88] in this The problems cited in Section 3 with respect to the ex-
volume, traction of motion and depth information using traditional opti-

The problems led us recently to apply the Anandan and Adiv cal flow techniques have led us toward the exploration of meth-

algorithms for general motion to the sequences of approximate ods for combining the local flow/displacement fields with larger
translational motion with significantly improved results; this ap- token-like structures. It is our position that the inherently local

proach is also reported in IDUT881. The conclusion is that while measurement of visual motion provided by optical flow is insuf-

the FOE might be approximately extracted, in many real situ- ficient to meet the varied requirements of dynamic image under-

ations general motion analysis must be applied in order to ie- standing. The approach we are developing involves computing

termine depth of points, even when sensor motion is primarily the correspondence between tokens of arbitrary spatial scale pro-

translational with only small amounts of rotation. One obvious duced by perceptual organization processes. Such tokens often

hardware solution (at significantly increased cost) is the use of a map directly to environmental structure, and descriptions of their

gyro-stabilized platform so that sensor motion typically will be movement often correlate more closely with the motion of phys-

much closer to the case of pure translational motion. Alterna- ical objects than does the local motion information contained in

tives to these approaches to motion processing to extract motion the displacement field. A token match represents more than just %

parameters and depth are outlined in the next two subsections, a spatial displacement; also explicit in this representation are the ,e

and in the perceptual organization section where spatio-temporal time-varying values of those parameters which define the token

grouping is used to derive depth from geometric structures, or which can be extracted frory hc -ructu- ol tht t,,ken.
In two papers in this volume, Williams and Hanson ,-_%

33 S r o M[WIL88a,WIL88b] describe work in progress toward this goal. ..
Steroscopic Motion Analysis The premise of this work is that the structure obtained from

By carrying out motion analysis with a pair of cameras - perceptual organization processes can be combined with the lo-

stereoscopic motion - the additional constraints can significantly cal motion information contained in the flow field to provide a .,

reduce the complexity of the analysis on a theoretical level. Bala- more robust estimate of motion and depth parameter- The ap-
subramanyan and Snyder !BAL87a,BAL87b,BAL881 have devel- proach can be viewed as augmenting the rather limited use of

oped an algorithm to extract the parameters of motion in depth: spatial structure in tradional approaches with the richer descrip-
the single component of translation in depth (i.e. parallel to tive vocabulary of spatial structure provided by the perceptual

the line of sight) and the two components of rotation in depth organizational processes over both space and time. In this sense.

(i.e. rotations that are not around the line of sight). This is the spatially organized structures (such as lines, regions, curves,
achieved by building upon the work of Adiv for segmenting the vertices, intersections, rectangular groups, etc.), which are ac-

flow field into rigid independently moving objects JADI85a], and tively constructed from the image, can be considered to be inter-

the formulation of Waxman and Duncan !WAX861 of the ratio est operators of large spatial extent..
of the relative optic flow between a stereo pair of images to the In the first paper IWILg8a], a method for compiitin. the tern- %

disparity between them as a linear function of the image coor- poral correspondence between straight line segments is presented."%

dinates. Experimental results are presented for simulated data We consider the two frame case here, but the method is exten-

of general mnotion of both the sensor and independently moving sible and has been extended to multiple franes. A s1raighi line

objects. Work is currently underway to test the effectiveness on perceptual organization process, developed by Boldt and Weiss %

real scenes. BOL87,WF 86]. is applied to both frames indepentdentlv to pro- %

vide straight lines in each frame. A displacement field is also At
3.4 Analysis of Constant General Motion computed from the two frames using the algorithm developed hb

Another way to introduce additional constraints to the prob- Anandan !ANA87b,ANA881. After filtering the straight lines onil
lem of general motion analysis in an effort to achieve practical, length and constrast to reduce the line set in both images, the '

robust algorithms is via Shariat's formulation: constant but ar- displacment field is used to construct a search area in frame 2 for

bitrary general motion of a rigid object. SIA861. This leads to each line in frame I Since a one-to-one correspondence between

a set of difference equations across a sequence of images. relat- lines is unilikely, a minimal mapping approach LULL79 is used

ing the positions of a feature in the image plane to the totion to compute the correspondence between the fralne I and fratme

parameters of the projected point The solutit obtained is a 2 line sets: such a niapping is called a mninial bipartite rover

set of 5th order non-linear polynomial equations ru the unknown The siitlarit y toeasrie ise
1

t r, compute Ihe cmver im vol is Ihe

sitilarit., and spatial separatitn of the candidate token machec P
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By computing the connected components of the bipartite graph, straight line extraction algorithm developed by Burns, Hanson, I

the global matching problem is conveniently divided into smaller, and Riseman JBUR861. The lines are represented as nodes in

individually tractable pieces which reflect thre scope of potential a graph. The grouping criteria are the geometric relations of

interactions; a simple blind search of the subgraphs is used to ex- spatially proximate collinear, spatially proximate parallel, spa.-"

tract the bipartite cover minimizing the positional and similarity tially proximate orthogonal, or any subset of these relations; the

discrepancy metric, relations form the links in the graph.

The matching results obtained are quite good. Tirhe systeml Line groups are generated using a connected components

has been run repeatedly on successive framies of several mrulti- analysis of the chosen geometric links. Finally, individual ge-

frame sequences. In the mnulti-framne case, a directed acyclic ometric structures (e.g. rectangles, collinear lines, paraliel line

graph is constructed which represents tire splitting and rnerg- pairs, corners, etc.) may be identified as subgraphs of the con-

ing patterns of line segments over time. Work is in progress t~o riected components. These techniques have been applied to ex-

ainalyze the trajectories of thre tokens over time, traction of objects such as road networks in serial imiages. -

In the second paper 1WIL88b], a method for computing depth Object recognition strategies can be represented as relational%

from the line correspondences is described using thre temporal graphs to be matched to extracted data. The problems associ-%

change in thf- length of virtual lines constructed fromt the inter- ated with fragmentation, as well as merged and missing tokens,

sections of the Boldt lines BOL871. We rise virtual linres be- mnakes this a difficult problenm. However, miultiple reprsentations

cause thre length of thre original lines is riot reliable, although (such as lines and regions) can be brought together to ptrovide

their orientation and lateral displacement is quite precise. This partial redundancy 1R1S87[. Thus, current work overlaps issues

"looming" method is also generalized to areas. The method is of constrained graph matching, perceptual organization, and in-

generally applicable to structures whose total extent in depth is formation fusion.

small coripared to the depth of its centroid (that is, for those 5 Image Understanding Architecture
cases iii which perspective projection can be approximated by

scaled orthographic projection JTHOM871) and which do riot ex- The Image Understanding Architecture being jointly dlesigned
hibit any indlepeniderit motion. The technique does not depend and constructed by the University of Massachusetts and Hughes

on thre complete deterniination of egomnotion parameters of tire Research Laboratories JWEE84,WEE87,WEE98a,WEE88hj is a

sensor, but it. does require the computation of the translation multi-level, heterogeneous, associative, parallel machine to sup-

component of thre sensor in the direction of motion. Air analysis port real-time knowledge-based computer vision. The machine

of thre sensitivity of the algorithin to errors in the measured vari- consists of three comrpuitatiorial levels (the CAAI'P, ICAP, arid

ales is plannued for thre near future; experimental results our real SPA, respectively), roughly corresponding to the low, interme-
irriage sequienices have shown that. the slgcoritrrr ouay be qtuite diat~e. and high-levels ouf abstraction currently believed necessary

roluuist., for image understanding IIANf,7aj. At each level of tire IUA, the
prcocessinrg elemuentsq are tuined to the computational granularity

4.2 The PerceptuA Organiizationi of liniag(o ( iirvvs of the algorithms required at that particular level of abstraction.

Most of our work in prrepitunal orcgarnization1 s The CAAI'P (Content Addressable Array Parallel P'rocessor)
isa512x512 square grid array of custom processors designed to -

HEI,6,Bl,8,lt th~t5,)0L6,lOl,8,RY84, EYt~bR E87' perforrr low-level imrage processing tasks. The CAAPP is also d*

.R1IS87,WEI8S,WEI8Ei.WIL88a,WflL88bj1 has been focussed onl specifically designed to0 interact with the ICAP (through a shared S

rectilinear structures (e~g. straight lines, corners, parallel line memory) in a tightly coupled fashion for both bottom-rip and
pairs, arid the like). Unitfort unately, iiot all of the worldl call be top-(lowrl processing. Thre ICAP (the Intermediate Cominii-
dlescribued by straight. lines. Consequently, D~olarn l)Ol.88J hiss cat ions Associative Processor) is designed to maniuihrlate tokens
been explrirg methodls for extending thre gueneral t echiqu~e de' eit her extractecd fromnt Ilie triage data at the CAAP lrrevil or curn-
vel, itei by ItolrIt I l( ) [87, WPEl 861 to the si rrrr Itaneoris ex trac tiron stric ted frorr (,ither tokens at, the IC AP level. The l(,'AlI is alsir a
of crirves. st raiglit lines, and corners (inclruding crips); these are sirr.gil(~xW rrl rrr ea ntuinsTS3(-2

Irepniiri S decni . Scelerrirt. Te bsi (riert~~ri cyle signal procr''inrg crips, eaclr with 256K bytes of local rietmory,
-onstisist o f liniking. g cotipinrg, and repl acemnrt,, which takes place airdr :18.1 K by Ir ,q rf dii al-porteti memory for ( A A P p 'A I and
atir icreasinrg percepjtu ial scales, resul Itin g ini a Iierar hrcal scale- IC A P 'SIA coin r iircat ion arni data stoirage . Th'Ie IC(AP r~car

sipace tlescitii o if thlese imiplortant, iage events. operate iii cit her syntchronous MIMI) or pre MIMI) miodre

'Ihir', fining stage' finds sirlsets withinn thre set ttf iliial lorcal TIhe SP'A (S *vrrlcrl ic P'rocessinig Array" ) is contstrurcted oif pror-

edlge t rrr'ts thfat sat isfy thre linacy constraint s rrf the pairti iilfar cessors; capabile oif running a LISP-lrased blackboard systemo at

grouiping priticiples empi~loved T'he grouintg tirehiatrisitis pier- racIr norde' Tlhe SPA processorrs operate iii NIINIDI ituirtl witll]
formr a dletailed, g ... miertiric a'naly'sis ruit se'ts orf iinkei tokenis whorse intra-level crtirt iruitritait irn thirorgl thre black boardl and inter-level

extenrt is witin tw li-irrent. wcale, iii Dl),ti's systrir, tilts also, citriirriiat irri thiririgh thre dlial-piirtetl miemoiry shrarei] with thre
irt ails classtic attort andi rankiTig of tire Iikeri sequien~es as onetif' I Al' prctessorrs. Since trnly a I/6ltlr ptrotiitypre is crrurtly be~-

fi( basic ;,nriritcive eleorertq s Replacemenrtt iter-airistirs r'tti-il ig buiilt , thre S PA level willI (-(insist, ouf a single processor itt tile
the geotretry of a srurviving griip liv sirlst it iirg a single to,,hiii Mrrtiurila 680)20 class; iii the frull mrachrine the SPA level will curt-

for t hr- grouip 'lii prcs trhen rreeat s at. ft(e rext sirili siit if 61 or morrre prricessors, each ca, abile of rnirig LISP' Thei

rli ailel arlit(- itire (if tlie SPA level of tire frill mwii~ lriirn io

4.3 Extractirng (vomiielric Strumtiiiir vet lueenr ftitll dinedirr,, but research iii progress oir'eitr' hmsails

10 todad -rvv IVi 7haeb-i arrtitry h t, ulrretia sYtvni tor a co- ertreciarl licilie iror trn

-prf il l nr, i l l t-r' or ' tl' 8 ar I t tort 4i urn, t r a tiuc- ir i r' ',or is ,'slrI'etr'rl ito prroviide insight into it t sii t, uir,'

i ,rr fr,m ..ru -ii~ -1 i'f III,,- priuliti rs, ol-tauur' risirre thi'. .%p.
%



The CAAPP and ICAP levels are controlled by a dedicated CISM-ICAP-ISSM test structure has been successfully bread-
Array Control Unit which contains two separate control proces- boarded by Hughes Research Laboratories. The prototype IUA
sors. The Macro-controller is a 68020-based system which sup- system is scheduled for completion in the Fall of 1988. 0
ports the software development environment and provides an in-
terface to the programmer. The Micro-controller is a custom 6 Integrated Vision Benchmark for Par-
processor driven by horizontal microcode and is capable of issu-
ing an instruction to the CAAPP every 100 nanoseconds. Access allel Architectures (DARPA IU Bench-
to the Micro-controller is through a library of CAAPP control mark: Round 2)
subroutines. In this way, the advantages of a high-level program
development environment are combined with the speed advan- The most recent attempt at constructing a vision benchmark
tages of the Micro-controller. The ACU is also accessible from for parallel architectures emerged from the DARPA IU commu-
the SPA level, providing knowledge-driven control of both the nity in 1986. This benchmark consists of ten prototypical vision
low-level and the intermediate-level processes. The programmer's tasks: Gaussian convolution, zero-crossing detection and output
model for this environment is described in [WEE88b]. of border lists, connected components labeling, Hough transform,

determining the convex hull, constructing a minimal spanning
5.1 The Coterie Network on the CAAPP tree, computing the visibility of vertices in a 3-D model, find-

ing a minimal cost path, and subgraph matching. Each of these 0
The requirements of high-speed, fine-grained bi-directional tasks were benchmarked individually and the results reported in

inter- and intra-level communication and control have led to the 1ROS87].
development of very general associative processing techniques to While useful information was gained from this exercise, there
support the communication requirements JWEE88a,WEE88b[. were significant shortcomings. In particular, it was recognized
Currently, there are four mechanisms for communication between that the individual benchmarks did not adequately represent the
CAAPP cells. One method used the hardware implementation performance of a machine on an integrated vision task, such as
of the associative processing capabilities to accomplish global knowledge-based image interpretation. In response a group of 0
feedback and rebroadcast. Communication car also take place researchers from the University of Maryland and the Univer-

through the 1CAP level via the backing store. fhe third mech- sity of Massachusetts accepted the responsibility of formulating

anism uses the traditional S,E,W,N neighborhood network be- an integrated benchmark representing a more realistic interpre-
tween adjacent CAAPP processors. tation scenario that transcends several different representations

The fourth mechanism involves a new and powerful variation and forms of processing that are typical of complex vision appli-
on the nearest neighbor mesh called the Coterie Network. The cations. The goal was to generate a benchmark which would lead
coterie technique allows the CAAPP mesh to be partitioned into to a better understanding of vision architecture requirements and
independent groups of processors that share a local associative the performance bottlenecks in different classes of machines. A
Some/None circuit. The independent groups of processors can secondary goal was to utilize as many of the algorithms as pos-
then respond to globally broadcast, instructions in a locally data- sible from the first benchmark in order to minimize the coding
dependent way, which permits the parallelism in the mesh to be impact on participants of the second benchmarking task. The
more flexibly exploited. For example, each coterie might corre- benchmark was developed with some input from other members
spond to a single region in a region segmentation; each region of the DARPA IU community IWEE88c].

could then be processed independently and in parallel. The integrated benchmark involves recognizing an approxi- 0
The coterie mechanism is implemented through a network of mately specified "2 1/2 D mobile" sculpture composed of rect-

software controlled switches, one switch between each adjacent angles, given images from intensity and range sensors. The test "1.
processor. Opening the switch between two processors effectively images are designed so that the data from neither sensor by itself -

isolates them from communicating with each other over lhe open is sufficient to solve the task. The sculpture can be thought of
line. Creating a closed path of open switches creates an island as a semi-rigid mobile cnnsisti, . .f suspended rectangles float-

of processors isolated from the remainder of the mesh. Leaving ing in space with spatial relationships that are fixed only up to
the switches inside the 'island boundary' closed creates an inter- some tolerance limit. Each rectangle is oriented normal to the Z 0
nal communication network for the processors participating in axis (the viewing direction) and the image is constructed tinder

the coterie. Each processor may write or read a bit from the orthographic projection. In the image, the rectangles compris-
network; when more than one processor writes to the, network, ing the mobile are interspersed with additional rectangles. The
the result is the logical OR of the output bits of tle proces- additional rectangles may occlude portions of he mobile object,

sors. The shared mesh is thus functiunally equivalent to the and some of the adjacent rectangles in the scene may have very

global Some/None network, but local to the coterie. Several im- similar brightnesses and depths.

age processing algorithms which utilize the Coterie Network are A set of svnibolic models of several mobile sculptures will be

discussed in !WEE89b. provided when tite- benchmark is distributed. These models are
only approximate in that the sizes, orientations, depths, and spa-

5.2 Status tial relationships of the rectangles are constrained within some
The RirA programming environment currently r.xis iii soft- tolerance bands. The goal is to determine which of the mod- %

ware simulation on an Explorer LISP workstation, augmented els are present in the images, the degree to which it is visible

with a Texas Instruments Odyssey parallel signal co-processor. (matchable), and to update the model with positional data that

Portions of the simulation are also available on VAX and SUN has been extracted fron the images.

systems. In order to ensure comparable benchmarking result, an

At the hardware level, final versions of the cist,on (AAPI' algorithii-level solution to the interpretation problem is pro-

chips are currently being fabricated t hroiih MOSIS At' (AI'I'- videul, as well as a sel of instrumentation guidelines It is not

(,8 A(18
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intended that this solution be optimal or even that it consti- REFERENCES
tutes a reasonable approach. The goal is to provide a measure
of consistency among the solution methods and benchmark re-
sults. The solution has been tested on sequential machines by the IADI85a] G. Adiv, "Determining 3-D Motion and Structure
University of Massachusetts and the University of Maryland in from Optical Flow Generated by Several Moving
order to remove ambiguity in its statement and to detect as many Objects," IEEE Transactions on Pattern Analysis
unexpected problems in its implementation as possible. The in- and Machine Intelligence, Volume PAMI-7, July
strumentation guidelines are currently being developed and re- 1985, pp. 384-401.
viewed, and will be distributed at a later date. The benchmark [ADI85bl G. Adiv, "Interpretina Opt:cal Flow," Ph.D. Dis-
is intended to be widely distributed, and a workshop for compar- sertation, Computer and Information Science De-
ison of results on a variety of machines will be held at a future partment, University of Massachusetts at Amherst,
date.
7te. M iSeptember 1985.

[ADI85cl G. Adiv, "Inherent Ambiguities in Recovering 3-D
The hardware platform for experimentation in mobile robotics Motion and Structure from a Noisy Flow Field, "

at UMass is a Denning Mobile Robotics vehicle with a B&W tele- Proc. of the Computer Vision and Pattern Recogni-
vision camera and UHF transmitters and receivers for uplink and tion Conference, San Francisco, CA, June 1985, pp.
downlink communication to a Gould IP8500 image processing 7077.
system connected to a Vax 11/750 computer. Plans are under- JANA84] P. Anandan, "Computing Dense Displacement
way to utilize a 12-node Sequent multiprocessor to improve the Fields P. Couing ese iSceent
computational effectiveness of our experimentation environment. Fields with Confidence Measures in Scenes Con-

Arkin [ARK87a,ARK87b,ARK87cl used this platform to de- taming Occlusion," SPIE Intelligent Robots and
velop AuRA (Autonomous Robot Architecture), which integrates Compter Vision Conference, Volume 521, 1984, pp.
planning, cartographic, perception, motor, and homeostatic sys- 1984; and COINS Technical Report 84-32, Univer-
tems into a functional robot navigation system. The system is sity of Massachusetts at Amherst, December 1984.
designed to nav'gate in the hallways and outdoor environment
surrounding our building at UMass. [ANA85a P. Anandan and R. Weiss, "Introducing a Smooth-

Aura employs a 'meadow' map as its long-term memory; the ness Constraint in a Matching Approach for the
meadow map is used for global path planning and contains em- Computation of Optical Flow Fields," Proc. of the
bedded a priori knowledge to guide sensor expectations used for Third Workshop on Computer Vision: Representa-
positional updating. A layered short-term memory based on in- tion and Control, October 1985, pp. 186-196, also
stantiated meadows represents the currently perceived world. A in DARPA IU Workshop Proceedings, 1985.
hierarchical path planner produces a global path free of collisions [ANA85bI P. Anandan, "Motion and Stereopsis," COINS Tech-
with all modeled obstacles.

Aura extends the iea of schemas, as currently employed nica! Report 85-52, University of Massachusetts at

in the VISIONS system, to include the mobile robot domain. Amherst, December 1985; also to appear (in Span-
The schema-based path execution system handles unexpected ish) in Vision por Computador, (Carme Torras, ed.),
and dynamic obstacles not present in the robot's world model, to be published by Alianza Editorial, Spain.
This motor-schema based navigation system produces reac- [ANA87a] P. Anandan, "Measuring Visual Motion From Im-
tive/reflexive behavior in direct response to sensor events In age Sequences", Ph.D. Dissertation, University of
addition, new techniques in the treatment of robot uncertainty, Massachusetts at Amherst, January 1987. %"

W which expedite sensory processing, were developed. The e in-
Sclude the use of a spatial error map with associated growth and [ANA87b] P. Anandan, "A Unified Perspective on Computa-

reduction techniques. tional Techniques for the Measurement of Visual
Several computer vision sensor strategies have been devel- Motion", Proc. of the International Conference on

oped for use within Aura. These include a fast line finding algo- Computer Vision, London, England, June 1987.
rithm that is a simplified and more efficient version of the Burns
straight line extraction algorithm (at the price of robustness) [ANA88] P. Anandan, "A Computational Framework and an
[BUR86,KA11871, a fast simplified region segmentat ion algorithm Algorithm for the Measurement of Visual Motion",
based on the VISIONS region segmentation system [BEV871 , and to appear in International Journal on Computer Vi-
a depth from motion algorithm (BHA86. Aura uses both vision sion, 1988.
and ultrasonic sensing during path traversal. [ARK87a] R. Arkin, "Motor Schema-Based Navigation for a P

We are currently rebuilding Aura to make better use of the Mobile Robot: An Approach to Programming by
information available from the visual sensors and to more corn- Behavior", Proc. of the IEEE International Confer-
pletely integrate the full spectrum of image understanding tech- ence on. Robotics and Automation, Raleigh, NC, pp.
niques developed in the VISIONS project. In particular, we 264-271, March 1987.
intend to utilize some of the depth from motion algorithms IARK87b] R. Arkin, "Towards Cosmopolitan Robots: Intel-
discussed above [BAL88,DUT88,WIL88a,WIL88bI; and some ligent Navigation in Extended Man-Made Environ-
of the simpler object recogniton strategies of the schema sys- ments", Ph.D Thesis, Computer & Information Sci-
tem [DRA87a,DRA87b,HAN87b, including strategies for multi- ence Department. University of Massachusetts at %sensor information fusion [BEL86,RIS871. Amherst, September 1987. p

69
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[ARK87c] R. Arkin, A. Hanson, and E. Riseman, "Visual IBUR87aI J.H. Burns, "Recognition in 21) lm~ges of.3)objects

Strategies for Mobile Robot Navigation", Proc. of from Large Model Bases Using prediction Hlierar-

IEEE Computer Society Workshop on Computer Vi- chies", Proc. of the International Joint Conference

sion, Miami, FL November, 1987. on Artificial Intelligence, Milan, Italy, August 1987,

BAL87aJ P. Bal asu brain any am, "Extraction of Motion In p.7376
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terpretation", presented at the American Insti- Recognition in 2D Images of 3D Objects Fromn Large

tiite of Aeronautics andl Astronautics CJomputers itt Model Bases", COINS Technical Report 87-85, tjoi-
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tion of Motion in Depth Paramet"-.s: A First Step B., Vol. 30, 1968, pp. 205-247.

in Stereoscopic Motion Interpretation", Proc. of

the DA RPA Image Understanding Workshop, Cam- [D0L881 John Dolan and Richard Weiss, "The Perceptual

bridge, MA, April 1988. Organization of Image Curves", COINS Technical
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the ability to fixate objects upon it yield several
1. Active Vision computational advantages as well as the higher-level

concept of focus of attention. In our current work,
The active vision paradigm is becoming an foveation plays a key role.

increasingly popular one in the image understanding
community. Rochester's work in this area has been Tom Olson is working on a two-stage model of -
mostly theoretical and tool-building during 1987, and motion processing inspired by theories of primate
we expect implementations to develop reasonably motion processes. A retinotopic stage that computes
rapidly. Pilot projects such as ROVER [Coombs and simple functions of contrast distribution is followed by
Marsh 1987; Coombs 1987] are being extended to a non-retinotopic stage concerned with segments and
incorporate new hardware and software tools as they their trajectories. This model is being formalized in a
are commissioned. connectionist net representation. It is meant to

complement the work of Nigel Goddard, who is
Eye movements and a foveated retina are features exploring the use of motion information in object .

of animal visual systems that are beginning to be recognition.
seriously considered in computer vision. The
computational advantages provided by eye and head One example of the benefits of tracking is
movements at well as foveation are being considered at computing relative depth from parallax change that is S
Rochester. Foveation provides mathematical uaider control of the observer. This computation of
simplifications in vision constraint equations, and is depth from head motions is currently being
clearly of use in high-resolution examination and focus implemented in our lab. In [Bandopadhay and Ballard 'M %
of attention. Foveatiun maintained over time leads to 1987; Bandopadhay 1986] the foveal constraint was
tracking, which has its own advantages in computing carried further to estimate egomotion (or rigid body
egomotion [Bandopadhay and Ballard 19871. Several motion). Knowing the depth from parallax simplifies
advantages of active (i.e., multiframe) vision and the those calculations. Further, we can select the foveal
tracking of objects in the visual field are given in frame and use the known angular tracking velocities V
[Aloimonoset al. 1987]. from the pursuit system in the solution. Finally, we can

use constraints arising from programmed eye motions
Eye movements simplify the eye's information- and physical construction of the eye (e.g., that rotation

gathering function in several ways. They provide around the optic axis is small). The resulting system is
constraints that simplify the low-level computation of much more highly constrained than when optic flow is
visual features, such as optic flow and relative depth. given to a passive observer ignorant of the conditions
Eye movements and a learning algorithm can solve the under which the flow arose, and correspondingly more
visuo-motor calibration problem that geometrically facts can be deduced about the environment.
relates the observer and its effectors to the
environment. Foveation can constrain pre-attentive The computational requirements for cooperation
perception, thus alleviating the indexing between sensing and motion are quite severe, and it
problem--which object accounts for which salient has only been recently that technology has allowed off-
features. Visual problem-solving is known to correlate the-shelf components to be assembled into a serious
with eye movements, attempt at real-time sensorimotor cooperation of the

sort that is required. Not only must the feedback and
The primate fovea is a feature not shared by most feedforward between sensors and effectors be fast, but

computer vision systems. Despite making three or four the style of control must be developed. Modes of control ..

saccades per sec,',d and the 150 millisecond saccadic must cooperate intimately and be dynamically
latency (which may have to do with the computation of configurable, as when the observer uses optic flow to
where to look next), the human system spends most of detect an object to track and then, when tracking,
its time fixating a point of visual space. The fovea and ignores optic flow from the background.
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Work on the learning of complex sensorimotor skills algorithms. This last work will be reported at a later
in connectionist networks uses the idea of teaching the date. The role of domain dependence can be modeled by
network simple skills initially, which can be combined providing precise semantics for "near match," and
to attack more complex tasks. The resulting network work is progressing on subgraph isomorphism with
has an architecture that reflects the hierarchy of tasks constrained types of graphs.
and their interconnections. Teaching the system with /7
reinforcement techniques can proceed in parallel, with Related to the object recognition work are
each learning network operating independently to find theoretical and practical results on principal views.
maximally rewarding actions [Feldman et al. 1988a; Watts [1987] developed theory and a practical
1988b; Lynne 1987b]. algorithm using plane-sweeping techniques for

enumerating explicitly the principal views of convex
2. Object Recognition planar polyhedra. Brown developed code that %

approximately enumerates principal views of biob-and- -'
There are two active projects in object recognition stick constructions. Watts is extending her work to

from a large database. Michael Swain is working on non-convex polyhedra. Principal views can be of use in
how to structure a database for fast recognition from a optimal recognition algorithms such as that of Swain,
large set of models. In particular, he is looking at how and are used in view catalogs like that of Cooper and
a decision tree can be used for such a task. The use of Hollbach.
decision trees in the object recognition domain is
heavily associated with the pattern recognition 3. Multi-Modal Segmentation with Markov Ran-
paradigm in which each feature may be represented by dom Fields
an axis in a feature space, and in which an object is a
point in that space. Swain's domain does not have the During the last year David Sher continued his work
independent features of pattern recognition; instead on probabilistic techniques and foundations in
local features are composed and represented by a computer vision. He developed the role of likelihoods
labeled graph. The aim of his work is to show that a in designing optimal low-level feature-finders. In work
decision tree is a viable approach in this richer domain, this year he combined optimal low-level operators '.

developed using theory from [Sher 1987a; 1987f] with
To demonstrate and test the decision tree approach different spatial support. The combination proceeded

he has designed a system that recognizes polyhedra in according to the thery developed in [Sher 1987b], the
crowded scenes. A decision tree with near-optimal key idea of which is to use maximum entropy to control
expected runtime is constructed, based on the the combination. The result was an operator that scales
probability distribution of the objects and their itself to an appropriate spatial support automatically.
viewpoints, and the probabilities of the errors which Further work in this area led to a probabilistic analysis
may occur in the input. A minimum information of template matching that uses the same theory
entropy approach is used as a heuristic for building a developed for edge detection. The results of this work
near-optimal tree. are that template matching can be characterized with

likelihoods that are appropriate for evidence combi-
The root of the decision tree is the information from nation using Bayesian techinques. Thresholds can then

a single vertex. The state of the recognition system, be set for the output and input of the template matcher.
represented by a location in the decision tree, moves Template weights can be derived from knowledge of the
towards the leaves as it makes tests on the image data error rates of the input detector. Last, the effects of
structure. The image structure is a graph representing context, namely occluding and neighboring objects, can 0
the line segments and vertices in the image labeled be modeled with a Markov random field. This work,
with the lengths of the line segments and the angles at applied to ideal, synthetic, and real images, is
the vertices. Which test to make is determined by the described in Sher [1987c; 1987d; 1987e].
state of the recognition system, which is in turn
determined by the results of past tests. Continuing the probabilistic approach to vision and

moving from low-level operators to the problem of
Paul Cooper pursued two lines of work in object segmentation, Paul Chou has combined information

recognition in 1987, first investigating uncertainty and from various information sources [Chou and Brown
inexactness in parallel structure recognition, and 1987a; 1987b. In this approach, observable evidence
second investigating the role of domain dependence. from disparate sources is coherently and consistently ..
The correctness of the connectionist structure combined through a hierarchically structured
recognizer described in [Cooper and Hollbach 1987] knowledge tree. Prior knowledge of spatial interactions
was proved using techniques from this research, and a is modeled with Markov random fields. A posteriori
complexity analysis provided [Cooper 1987b1. This probabilities of segmentations are maintained
work has led to colla'boration with Mike Swain on a incrementally with Bayesian probability theory. Using 4'

parallel implementation of well-known constraint a novel deterministic optimization algorithm [Chou

7A• •
-* o



and Raman 1987; Chou, Brown and Raman 19871, good Sun-3 vision computer was established, which also
results and predictable behavior were obtained at once. connects both computers to a MaxVideo® pipelined
Briefly, the Highest Confidence First (HCF) algorithm parallel image analysis device. Input is provided by our
does a gradient descent in a label space that is binocular, three degree-of-freedom "robot head," built
augmented by an extra label, the uncommitted label. as a joint project with the University's Mechanical
The idea is that in a cooperative network, a node that Engineering Department. One motor controls pitch or
knows less about what to do (due to weak evidence or altitude (a "nodding" motion of the eye platform), and
uncommitted neighbors) should delay its decision until separate motors control each camera's yaw or azimuth
those with better knowledge have committed. Further, (a "verging" action of the individual cameras). The
an early decision should be altered if strong opposition motors have a resolution of 2,500 positions per
from other nodes is later encountered, revolution and a maximum speed of 150 degrees per r

on applying the HF second. The controllers allow sophisticated velocity and
Current work is concentrating position commands and data readback. The MaxVideo %

algorithm to evidence combination with labels having real-time pipelined image processor not only digitizes 6
continuous values (say depth) as well as discrete (say but has several boards each containing a compu-
labels "edge" and "no edge"). In other extensions, we tationally intensive vision operation (such as an 8X8
are combining "sparse" data with denser data, and data convolution,, performed at full video rate, or histo-
that arrives distributed over time and space. We are gramming and feature location extraction). One board
also considering how to implement HCF-like algo- contains an entire signal-processing computer. The
Srithms in parallel (pure HCF involves sorting elements speed of the pipeline device is needed to support imple-
by their confidence) and implementing evidence mentations of active vision theories. Also needed is a
combination on the Butterfly® Parallel Processor, flexible head positioner, and we have taken delivery of

Issues in Vision a Puma 761 robot arm which we shall use initially for
controllable head positioning and movements, but

Jerry Feldman and his students are continuing which will find use later in further robotic research.
their study of higher-level processes and connectionist
models. Not only are concept learning, concept Largely under DARPA Strategic Computing (SC)
representation, and inference being investigated under Support, we have been developing software
other funding, but new results on motion vision should environments for parallel vision program development
be forthcoming soon. In the meantime, fundamental [e.g., Olson, Bukys and Brown 1987]. The computer
work that supports the work appeared in [Feldman systems aspect of this work is reported in Rochester's

1988a; 1987a; 1987b; 1987c; 1988b; 1988c; 1988d]. Butterfly Project Report series, and in other reports
Connectionist learning theory i- under investigation and papers (see references under Crowl, Dibble et al.,
by Lynne as mentioned above, and also by Ballard and Ellis and Olson, Finkel et al., Fowler et al., Friedberg,
byh Lynnenas metiond aoe , a nd7 alsobFriedberg and Peterson, LeBlanc, LeBlanc and Jain,
his students [Simard et al. 1987]. LeBlanc and Mellor-Crummey, Mellor-Crummey,

Traditional robot problem solving must be Mellor-Crummey et al., Scott, Scott and Cox, Scott and
integrated with a real-time approach if intelligent Finkel, Scott and LeBlanc, and Scott and Yap). In
automated agents are to deal with the real world, many cases, code has been distributed to BBN-ACI in
Recent work has addressed some issues of performance Cambridge, MA, for further redissemination.
as well as competence of planners [Hartman 1987;
Hartman and Tenenberg 1987a; 1987b]. The connectionist simulator, distributed now to

more than 200 sites, has an interactive graphics S
5. Hardware and Systems Support for Parallel interface that increases its usefulness considerably
Vision [Lynne 1987a].

The Computer Vision and Robotics Laboratory 6. Vision Theory
facilities have been enhanced by several significant Wnvo
hardware additions to integrate our heterogeneous Work on fundamental vision algorithms has
hardware into a configuration designed to support progressed on several fronts. The active vision
parallel, pipelined, and real-time image analysiu and paradigm inspired theoretical work on motior,
sensor control. projection, shape from patterns, tracking, eye

movements, mathematical combination of multiple
Our 16-processor Butterfly® Parallel Processor types of image information, the Hough transform, and

(BPP) was upgraded with the floating point platform texture modeling [Aloimonos et al. 1987; Aloimonos ,

kit, to provide much faster scientific computation. Our and Swain 1987a; 1987b; Bandopadhay 1986;
3-node BPP was upgraded to a Butterfly PlusO A VME Bandopadhay and Ballard 1987; Ballard et al. 1987;
b. ,onnection between the 16-node BPI and the fast Brown 1987a; 1987b; 1988b; Brown and Aloimonos

1988; Brown .t al. 1987; Brown, l1inkelman and Jain
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1987]. An efficient algorithm, realizable in hardware, Chou, P.B. and C.M. Brown, "Probabilistic information fusion for
for image smoothing, was developed [Basu and Brown multi-modal image segmentation," Proc., Int'l Joint Conf on ,

1987]. Work on stereo vision [Cooper, Friedman and ArtificialIntelligence, Milan, Italy, August 1987b.

Wood 1987; Cooper 1987a] has continued and Chou, P.B., C.M. Brown, and R. Raman, "A confidence-based

culminated in an algorithm that uses information approach to the labeling problem," Proc., IEEE Workshop on

about relative feature positions to constrain strongly Computer Vision, November 1q87
the possible matches in a dynamic programming Chou, P.B. and R. Raman, "On relaxation algorithms based on

approach. The constraints are powerful enough that Markov random fields," TR 212, Computer Science Dept., U.
the dynamic programming phase has little to do, and Rochester, July 1987.
the system's implementation gives very robust results Coombs, D.J., "Rover programmer's guide," Internal Publication,

on natural scenes with smooth surfaces, blob-and-stick Computer Science Dept., U. Rochester, May 1987
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II

Image Understanding and Robotics Research
at Columbia University 4$

John R. Kender"
Peter K. Allen

Terrance E. Boult
Hussein A. H. Ibrahim

Department of Computer Science
Columbia University, New York, NY 10027

0 Introduction 0.2 Middle-level Vision
The research investigations of the Vision/Robotics

Laboratory at Columbia University reflect the diversity of 0.2.1 Regularized Surface Reconstruction and Stereo
interests of its four faculty members, two staff programmers, 1. A critical study of regularization methodology
and 15 Ph.D. students. Several of the projects involve either a (Terry Boult [4, 101).
visiting computer science post-doc, other faculty members in
the department or the university, or researchers at AT&T Bell 2. Regularized surface reconstruction and
Laboratories or Philips Laboratories. We list below a summary segmentation based on smoothness energy
of our interest and results, together with the principal (Terry Boult, Liang-Hua Chen [11]).
researchers associated with them. Since it is difficult to
separate those aspects of robotic research that are purely 3. Integrated stereo matching, surface
visual from those that are vision-like (for example, tactile reconstruction, and surface segmentation (Terry
sensing) or vision-related (for example, integrated vision- Boult, Liang Hua Chen [12, 16, 171).
robotic systems), we have listed all robotic research that is not
purely manipulative. 0.2.2 Sensory Fusion

1. Fusion of multiple shape-from-texture methods S

0.1 Low-level Vision (Mark Moerdler, John Kender [30, 31]).
2. Fusion of texture and stereo (Mark Moerdler,

0.1.1 Theories Involving Stereo Terry Roult [5, 32, 33]).

1. A unified theory of generalized stereo vision
(Larry Wolff [45, 49, 50]). 0.2.3 Shape from Dynamic Shadowing

1. A discrete method for deriving surfaces from
2. The derivation of shape from polarizing surfaces dynamic shadows (John Kender, Earl

(Larry Wolff [46, 47, 48]). Smith [26, 29]).

3. Optimal estimators for stereo triangulation error 2. An optimal algorithm for shape from continuous "p

(Ken Roberts, Dr. S. Kicha Ganapathy of AT&T shadows (Michalis Hatzitheodorou, John
Bell Laboratories [34]). Kender [22, 23]).

0.1.2 Data Representations 0.2.4 Application to Range Data S
1. A new representation for a line in three-space 1. Recovery of superquadric parameters (Terry

(Ken Roberts [35]). Boult, Ari Gross [6, 7, 13]).

2. Smooth interpolation of rotational motions (Ken 2. Spline-based recovery of smooth oceanographic -.
Roberts, Drs. S. Kicha Ganapathy and Garry positional information (Terry Boult, Dr. Barry
Bishop of AT&T Bell Laboratories [36]). Allen of Columbia University's Lamont-Doherty

Geological Observatory [8]).
0.1.3 Applications to Graphics •

1. Realistic rendering of scenes using polarization 03paaiRato
properties (Larry Wolff. Dave Kurlander [51]). 0.3 Spatial Relations

2. A new data structure and algorithm for the 0-tos d
mapping of arbitrary shapes (George 0.3.1 Representations of Objects and Space
Wolberg [43, 44]). 1. Analysis and extension of issues in aspect

graphs (John Kendur, David Freudenstein on
leave, Prof. Jonathan Gross [27]). 0

'mis work was supported in part by the Defense Advanced Research 2. Survey of algorithms for the representation of , .'

Projects Agency under contracts N00039-84-C-0165 and DACA76-86- space (Monnett Hanvey [21]).
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3. Efficient updating of digital distance maps in 1 Low-level Vision
dynamic environments(Terry Boult [9]). We have extended our work on a generalized

framework for the perception of physical surface properties,
0.3.2 Theory and Practice of Navigation and have formalized the conditions under which image

1. Landmark definition and the representation and measurements can break certain symmetries of observation in

complexity of custom maps (John Kender, order to uniquely define depth-related object values. We have

Avraham Left [28]). applied this general theory to the specific case of the
derivation of surface orientation from differences in the

2. Systems issues in practical real-time robotic polarization of reflected light, and have shown that only two
navigation (Monnett Hanvey, Drs. Bob Lyons settings of a linear polarizer placed before the camera are
and Russ Andersson of AT&T Bell Laboratories). necessary for uniqueness. In other work, we have analyzed

the error in traditional two-camera parallax stereo using a
Bayesian statistical approach, and have computed optimal

0.4 Parallel Algorithms estimators that are extensible to multi-camera imaging .
configurations.

0.4.1 Low- and Middle-level Vision Theory Some of our work has lead to economies of data
representation; in particular, we have discovered a new way of

1. Depth interpolation using optimal numerical representing lines in three-space that requires only four
analysis techniques on a pyramid machine parameters and is totally free of annoying special cases. In
(Dong Choi, John Kender[(18, 19]). work on rotational motions, we have defined an efficient,

2. Determination of surface orientation from closed form way of interpolating their representations as
foreshortened texture autocorrelations (Lisa quaternions over the associated three-sphere; the method
Brown, Dr. Haim Shvaytser of Weizmann leads to surprisingly smooth animations.
fellowship [14, 15]). Work on low-level vision often leads to corresponding

results in graphics. We have empirically validated that our

0.4.2 Research and Applications on Tree Machines theory of polarization adds striking realism to the computer |
graphic generation of certain types of scenes involving

1. Simulators and programming environments for reflections. Lastly, in the course of investigating efficient .-
Non-Von and for the Connection Machine object tracking algorithms, we have devised and implemented
(Hussein Ibrahim, Lisa Brown [20, 24, 25]). a general but fast method for mapping arbitrary planar shapes

onto each other, based on a new skeletonization data2. Stereo, texture, and other pyramid-based
algorithms (Hussein Ibrahim, Usa Brown). structure.

0.4.3 Research and Applications on Pipellned Machines 1.1 Theories Involving Stereo
1. Implementing basic real-time image algorithms

for pipelined processors (Ajit Singh, PeterAlle P7,38, 1]).1.1.1 Generalized Stereo Vision
A [ 4Generalized stereo begins as an abstract unification of

2. Sensor fusion of correlation and of spatio- two distinct exiting stereo techniques: traditional parallax
temporal approaches to optic flow (Ajit Singh, stereo, which calculates surface depth by varying the camera
Peter Allen, Dr. Surendra Ranganath of Philips focal point, and photometric stereo, which calculates surface
Laboratories [39, 40, 42]). orientation by varying the light positions. A generalized stereo

method calculates arbitrary visual object features (world
3. Real-time object tracking and interception coordinate position, local surface orientation, Gaussian

algorithms (Peter Allen [2]). curvature, color reflectivity, etc.) by varying related physical
imaging parameters (position of focal point, orientation of
incident light source, polarization of incident light source, etc.)

0.5 Robotics and Tactile Sensing The object feature is determined by the intersection, in a
parameter feature space, of solution loci generated from a

0.5.1 System Development system of equations relating features to
1. Cartesian-based control of the newly-acquired parameters [45, 4 50].Utah hand (Ken Roberts, Peter Allen). We have shown that in its formalized axiomaticdefinition, a generalized stereo method Is characterized by

2. Interfacing proprietary skin-like tactile sensors four things: a visual object feature to be measured, a
(Peter Allen). functional way of converting image cbservables such as image

intensity into other observables such as image gradient, a set
0.5.2 Multi-fingered Object Recognition of variable imaging parameters, and the equations relating all

three. We have illustrated the theory with many examples.1. Sensor models and CAD/CAM object models Additionally, we have characterized the error intrinsic to(Peter Allen, Dino Tarabanis [1, 3]). this family of methods by noting that the dimension of

2. Haptic recognition via aftwvu exporation with a i-.-sur..ment ambiguity is readily determined by the implicit
instrumented robot hand (Ken Roberts, Peter function theorem applied to the equations at the point of
Allen) intersection. More accurately, error can be characterized in

We now detail these efforts, many of which are terms of symmetries of solution loci using the theory of groups.
documented by full papers in these proceedings. We also We have established two theorems which state the precise
include short discussions of work in progress. conditions under which the intersection of solution loci can be

further disambiguated.
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1.1.2 Polarization Stereo 1.3 Applications to Graphics
We have investigated several applications of the 1n

generalized stereo theory. We have analyzed how surface
orientation can be calculated by varying the wavelength and/or 1.3.1 Rendering Using Polarization Properties
linear polarization of a single incident light source [46]. More We have applied the more complete theory of reflection
practically, we have also proposed a new technique to developed in the work described above to ray tracing
measure local surface orientation based on a more complete algorithms in computer graphics. We report striking 'N
theory of reflection of light. This theory combines the differences in the rendering of certain scenes involving
Torrance-Sparrow theory of reflection with the Wolf reflections when the phenomenon of polarization is
polarization theory of "quasi-monochromatic" included [51]; the differences are preferred by observers. This
(monochromatically filtered) light [47, 48]. The technique lends some evidence to the belief that the reflection model is,
enables surface orientation to be uniquely measured in at least qualitatively very correct.
arbitrary lighting by placing a simple monochrome filter and a
linear polarizer in front of the sensor; two images taken at two 1.3.2 Mapping of Arbitrary Planar Shapes
orientations of the polarizer suffice. The equations that govern In attempting to analyze and track objects between
the calculations, called the polarization state matrix equations, images, we discovered that the literature was silent on the 0,
are elaborate, but they are only a special case of the larger problem of efficiently and smoothly mapping between two
family of generalized stereo imaging equations. image regions which are delimited by arbitrary closed curves;

such regions do not have the universally assumed four
1.1.3 Optimal Stereo Triangulation Techniques corners. We have specified and verified an algorithm that

We have analyzed the positional error in stereo instead treats an image region as a collection of interior layers
triangulation using a Bayesian statistical approach, and have around a skeleton (similar to that in [43]). These layers
derived optimal estimators based on several different sets of impose a type of local polar coordinate system which allows
imaging assumptions [34]. One assumption models the each shape to be "unwrapped" into a tree-like representation.
camera error function in a new and more general way. by Region-to-region warping is then defined by a natural mapping
including a depth-sensitive (1/zAn) factor. Our techniques are between the two resulting trees [44]. Although there is no a
elegantly extended to the case of more than two cameras. priori way of defining quality of mapping, the results are

Intuitively, we prove that the following methods are esthetically pleasing.
optimal. For a given stereo pair, reject any errors
perpendicular to the epipolar line. Weight each camera's
estimate of source point position by the reciprocal of the 2 Middle-level Vision
variance of its error function and the square of the depth of the We have presented a critical overview of the
source point from it. For more than two images, compute the regularization methodology, and have demonstrated new
results taking the images pairwise, then combine them by means of specifying the function class and its stabilizing
weighting each result by the square of the pair's baseline, functional that, although non-traditional, give qualitatively

better results. We have exploited one of these ways, which is
heavily dependent on the use of reproducing kernel-based

1.2 Data Representations splines, to surface segmentation; the method computes upper
and lower bounds on local surface energy prior to surface

1.2.1 Representation of Three-Space Lines labeling, and demonstrates good results on synthetic and real
We have constructed a new representation for a line in image and range data, and even on some transparent

Euclidean three-space which uses only four parameters, the surfaces. Further, we have incorporated this energy-based
minimanu allowpale, andch ussil vois gularimtiers, ad approach into a system that integrates the formerly separateminimal number allowable, and still avoids singularities and middle-level vision stages of stereo matching, surfacespecial cases [35]. Therefore, without sacrificing convenience reconstruction, and segmentation into a more traightforward
of computation, it is no longer necessary to represent lines in one-step surface labeling based on a single measure of
the more traditional six-parameter forms (such as Plucker ambiguity; quantitatively, it results in a significantly highercoordinates, or point-and-orientation form), although the new p retg fcretm th scoordiatespercentage of correct matches.
representation has the added advantage that it is easy to We have designed, built, and verified on synthetic and
convert to those forms. The representation, involving two real imagery, a blackboard-based system that fuses the 171
parameters for position and two for orientation, readily independent and occasionally conflicting information from
generalizes to Euclidean n-space, where it uses 2n-2 multiple (four or more) texture cues into a integrated method
parameters. for surface segmentation and orientation determination; it is

organized around a new image data structure, the augmented1.2.2 Interpolation of Rotational Motion texel, and achieves sensor fusion via a Hough-like method on
Smooth interpolation of rotational motion (as in a a trixelated Gaussian sphere. We have extended the method

"perfect spiral" football pass) is important in computer to a design and preliminary system (tested on a real image)
anmition, robot control, and hypothesis-guided computer that fuses the resulting surface orientation with the results of
vision. We have implemented a new, closed form algorithm the one-step stereo method described above; this design thus
for doing so, based on representing mcticrs as quatemions on cocrdinates the two Intra nodality integrations ',ith an inter
the unit three-sphore [36]. Resulting displays of interpolated modality relaxation-based fusion of information through a
values, and the computer animation sequences based on weighted averaging, according to a non-traditional
them, are smoother and more perceptually realistic than two "smoothness norm", of zero-crossing and texel-centroid data.
existing methods.
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Our work on the derivation of surface information from criteria is exploited in the form of a measure oi match
self-shadowing has resulted in a patent application for the ambiguity, which is used to rank order all potential matches.
discrete case. Additionally, we have analyzed the continuous The method result,- in fewer unmatchable features than the
case according to methods of functional analysis and have Marr-Poggio-Grimson method.
devised a provably optimal algorithm for surface recovery that
is grounded in an unusual family of basis-like splines and an
unusual iterative procedure for handling the non-linearity of the 2.2 Sensory Fusion
mutual illumination constraints; we have demonstrated a high
degree of surface reconstructive accuracy on one-dimensional 2.2.1 FusNn. Shape-from-Texture Methods

data. We continue to augment and refine our system for
Using a nonlinear least square minimization technique integrating various modalities for determining surface

on the so-called inside-out function, we have designed and orientation from multiple, independent, conceptually parallel,
demonstrated a system for the robust recovery of and possibly conflicting textural cues. The system uses a new
superquadric parameters from both noisy synthetic and actual data structure, the augmented texel, which combines multiple
range data imagery, including even the case of a constraints on orientation, each with its own assurity
superellipsoid with negative volume (a construct used in solid weighting, in a compact notation for a single surface
modeling). Transferring our middle-level vision technology to patch [30, 31].
a real world problem, we have begun to analyze various We have demonstrated the system using four texture
methods for inferring the geological structures below the modules (shape from spacing, eccentricity, orientation, and
surface of the ocean by first fusing several noisy sources of size), on both synthetic and real imagery of surfaces, some of
ship-board sensory data, such as satellite, dead reckoning, them curved or transparent, with robust results: slant and tilt
and gravitational information; this system for position tracking are usually recovered within a few degrees. We have shown
is now in regular field use. examples of real surfaces for which individual texture methods

fail to determine surface orientation accurately because of
noise, but for which their fusion succeeds. Part of the noise

2.1 Regularized Surface Reconstruction and Stereo tolerance of the system is derived from the relaxation
refinement of initial hypotheses about surface orientation and

2.1.1 Critical Analysis of Regularizatlon extent, which themselves are derived from a (noise tolerant)
We have presented a survey of some of the benefits Hough accumulation array on the surface of the trixelated

promised by the regularization framework, and also of some of Gaussian sphere.
its difficulties, particularly the problems of determining
appropriate functional classes, norms, and regularization 2.2.2 Fusing Stereo with Texture
stabilizing functionals [4]. When we subjectively tested (via Having found ways of integrating into two separate
established procedures of psychology) the results of the processes the three steps of stereo perception and at least
methodology applied to the surface reconstruction problem, four methods of texture perception, we have combined our .$,
we found that non-traditional formulations provided better results in a single system that fuses stereo and texture . *
results. It is not surprising that we were then able to document together [5, 32, 33]. Although it is still under development (it
the lack of development of most of the promises of has processed only a single real image), it is uniquely
regularization theory, finding on!y three actual examples of its structured to provide two qualitatively different means of
fruitful realization [10]. information fusion, namely, intra-process and inter-process

integration. The latter incorporates a priori assumptions about

2.1.2 Energy-based Surface Segmentation surfaces, such as degrees and measures of smoothness, and
Although current surface reconstruction algorithms have communicates such data via a blackboard organization. Such

strong foundations in mathematics, the segmentation aspects a two-stage organization does not appear inconsistent with %P,
of the work are purely heuristic. We have developed and what is known about human visual modularization.
tested a non-heuristic algorithm which simultaneously In particular, the stereo process uses the relative
reconstructs surfaces and segments the underlying data accuracy and sparseness of the centroid of texels to begin
according to the same energy-based smoothness feature localization, later switching to traditional zero-
measure [11]. It is founded on the use of reproducing kernel- crossings. The work is further characterized by the choice of
based splines, which allow efficient calculation of upper and smoothness measure; roughly it minimizes variation in the 1.5
lower bounds on the energy. The system naturally deals with derivative, not the second. Final integration is done by
occluded objects, and also with sharply slanted surfaces, such weighting the significance of a surface constraint produced by
as roads as seen from a vehicle. We have verified the system either process inversely proportionally to the total number of
on a gamut of artificial and natural data, including transparent constraints the process outputs (otherwise stereo would
surfaces. always outweigh texture processing).

2.1.3 One-step Stereo Matching, Reconstruction, and 2.3 Shape from Dynamic Shadowing
Segmentation
Traditional stereopsis is done in three phases: 1)

suitable features are detected in each image, 2) corresponding 2.3.1 The Discrete Case: Shape from Darkness
feitures are matched and disparity is determined, and 3) a We have analyzed and validated on synthetic data a
complete depth map is approximated and segmented. We new method, called shape from darkness, for extracting
have extended our work on non-heuristic segmentation by surface shape information based on object self-shadowing
developing a new, one-step approach to stereopsis that unifies under moving light sources [26]. Unlike most shape-from
the stereo matching criteria with our already combined
reconstruction and segmentation criteria [12, 16, 17]. The
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methods, it does not require a reflectance map, and it works intervention, has been put into regular use by the researchers
on non-smooth surfaces. Shadow information is stored in a at Columbia's Lamont-Doherty Geological Observatory.
novel data structure called the suntrace, which records the S
quantized angle of illumination at which a given image point
was first illuminated. Given n points, the surface 3 Spatial Relations
reconstruction problem becomes the satisfaction of 8n We have extended the semantics of an object
constraint equations in 2n unknowns, one unknown each for representation, called the aspect graph, to the more realistic
the upper and lower surface bound for each image point. An imaging environments having finite camera precision; we fixed %I
unusual form of ,laxa;Lr., in which pixels can affect other several definitional problems in the process. Having surveyed
pixels at a great distance, quickly converges to the solution. 60 papers on reprosentations of navigational space, we have
Columbia University has applied for a patent on the taxonomized the main approaches to the problem: they use
method [29]. dehydrated free space, simple mosaics, or reconstituted free

space representations. We extended the path-planning
2.3.2 The Continuous Case: Optimal Shape from Shadows representation, called the digital distance map, to dynamic

We have analyzed the same problem in the continuous environments, and presented an efficient algorithm for its ,.
setting, decomposing the two-dimensional problem into a maintenance under object movement. dpai-n
series of one-dimensional slices in the plane of the moving We defined a model of landmarks and map-making, and ,
light source. Casting the problem in a Hilbert space, we showed that the problem of providing a navigator with a list of
derived a provably optimal algorithm which involves directions is, even in the simplest case, an NP-complete
interpolating splines of an unusual piecewise linear problem; nonetheless, heuristics exist to help cut down search
form [22, 23]. A side system of inequalities is optionally in creating "good" maps (defined as being either "short" or
invoked in order to preserve the implicit information that points "easy"). We have been programming a mobile robot platform,
interior to a shadowed region must lie below that shadow line. attempting to have it navigate topologically via landmarks such
The problem has a natural parallelization, not only into slices, as corridor intersections.
but also into hill-and-valley segments. Our implementation
has demonstrated high accuracy using few light sources on
even badly nondifferentiable test functions. We are now 3.1 Representations of Objects and Space
attempting to analytically determine optimal light source "V
placement. 3.1.1 Aspect Graphs and Degenerate Views

An aspect graph is a representation of the effect that
viewing angle has on an object's observable features. While

2.4 Application to Range Data attempting to extend this concept to formations of objects, we
discovered several inadequacies and errors in its current

2.4.1 Recovery of Superquadrlcs definition and use [27]. We demonstrated that the key concept
Many have noted the simultaneous descriptiveness and of "characteristic view" is not well defined; in fact, it rarely is

compactness that superquadrics offer as a volumetric model; defined at all. The problem becomes more acute under finite
noted, too, is their well-defined inside-out functions needed in camera resolution, where idealized aspect graphs become
parameter recovery. However, we have determined that the more like spatial maps: both nodes and arcs now have width.
primary concern in superquadric parameter estimation is the Given camera resolution and object size, we were able
proper choice of the error-of-fit measures that control the associate probabilities of observation to certain "degenerate
nonlinear least square minimization techniques. We have views" of some simple objects.
explored the effectiveness of several such measures on many Our most recent work has noticed a close connection
examples using noisy synthetic data and actual range images, between the aspect graph and the so-called first barycentric
including multiple views of the same object and a subdivision of standard graphs in graph theory; we are <N"
superellipsoid with negativa volume, the latter being an attempting to exploit this and other formal similarities. -
important primitive for constructive solid geometry-based
modeling. We have concluded that existing measures of fit 3.1.2 Representation of (Un)Occupled Space
are inadequate, and have proposed ones that perform We have completed a survey of some 60 papers dealing S
better (6, 7. 13]. with environmental representations of mobile robots. Most of

them assume a static two-dimensional world, and a complete
2.4.2 Recovery of Oceanographic Positional Information bird's-eye knowledge of free space and obstacles. We have

We have investigated the problem of integrating given a taxonomy of map primitives, such as frames of - a

different types of positional information, such as various reference and map symbols, and a taxonomy of N'

satellite and inertial data, in order to reconstruct the path taken representations, such dehydrated tree space (mixed
by an exploratory geological ocean vessel. Typical paths are polyhedra, and vertex graphs), simple mosaics (tessellations, ""

piecewise very smooth except at turns; the problem is distance maps, and quadtrees), and reconstituted free space 0
therefore a one-dimensional analogue of the middle-level (convex cells, and freeways). We have also noted the relative
vision problem of smooth surface recovery from sparse depth paucity of results on qualitative, topological navigation via
data [8]. We further investigated the related two-dimensional landmarks.
analogue problem: the inference of the geological structures
below the surface of the ocean floor from gravitational 3.1.3 Dynamic Digital Distance Maps ,"
information. The problem was solved by again using A digital distance map contains in each of its cells
smoothing splines, backed by a clever heuristic to ignore faulty information about the distance and/or direction to some pre-
outliers in the data. The system, with some amount of human specified goal set; if the environment is static, it makes path

planning trivial. We have developed an algorithm that extends
the utility of these maps to dynamic environments, such as
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robotic assembly domains [9]. The algorithm is efficient, in In our Strategic Computing work, we have designed and
that it only updates those cells of free space that are in the implemented three related programming environments for
moving object's "shadow", where a shadow is defined validating parallel pyramid-based SIMD algorithms; the third
according to a precise but tricky grammar. The algorithm is one elegantly exploits the Connection Machine's hypercube
two-phase: shadow calculation followed by map update; if the network to efficiently emulate a library of image functions for a
robot can avoid shadows, this allows some parallelization of virtual pyramid machine, at a fixed low overhead. We have ,Irobot movement with map updating. We have observed also implemented, on simulators or the emulator, parallel
speedups of 25 times over brute force update. We are now pyramid-based stereo, segmentation, and Hough algorithms,
extending the method to higher dimensions, such as as well as our new autocorrelation texture algorithm.
configuration spaces, and investigating the use of multi- On our PIPE, we have built up a basic library ofresolution techniques. pipelined low-level image processing functions. We are

implementing a system for optic flow determination that fuses
the results of intensity correlation methods and spatiotemporal

3.2 Theory and Practice of Navigation energy methods; the latter is based on a novel image structure
called the pyramid of oriented edges. The PIPE is fast enough

3.2.1 The Computational Complexity of Map-Making to provide real-time robot arm control information, which we
We have formalized a model of topological navigation in are preparing to demonstrate by the dynamic grasping of

one-dimensional spaces, such as along single roads, moving objects.
corridors, or transportation routes, and have shown that the
problem is surprisingly difficult computationally [28. In our 4.1 Low- and Middle-level Vision Theory
model, we carefully discriminated between the concepts and
representations of the world itself (a version of "Lineland"), the
world as abstracted into symbols and landmarks by an 4.1.1 Optimal Depth Interpolation
omniscient map-maker, and the world as experienced by a Many constraint propagation problems in early vision,limited navigator who follows the map-makers directions, including depth interpolation, can be cast as solving a largeHaving also modeled the navigator's sensors in a primitive system of linear equations where the resulting matrix is
way (a sensor here being more like a feature detector), we symmetric, positive definite, and sparse. We have analyzed
proved that the problem of choosing an effective and efficient and simulated several numerical analytic solutions to these
subset of sensors for navigation via landmarks is NP- equations for a fine grained SIMD machine with local andcomplete. global communication networks (e.g., the Connection

However, the A* search procedure does apply; we also Machine); the methods are provably optimal in terms of
gave a simplifying heuristic evaluation function ("most new computational complexity. We have established that for a
eliminated objects") for use with it. Having selected the proper variety of synthetic and real range data, the adaptive
sensor subsets, Dijkstra's shortest path algorithm gives the Chebyshev acceleration method executes faster than the
optimal set of directions for the navigator, where we defined an conjugate gradient method, if near-optimal values for the
optimal map to be one that minimizes length of directions, cost minimum and maximum eigenvalues of the iteration matrix are
of sensing, or some combination, available [18].

We then extended these iterative methods by
3.2.2 Driving the AT&T Mobile Robot implementing them in a pyrmidal multigrid (coarse-medium-

In work jointly supported by AT&T Bell Laboratories, we fine) fashion. Again we showed that, when used with a fixed
are investigating several systems issues in navigation by using multilevel coordination strategy, the multigrid adaptive tath
their mobile robot platform. As an early experiment in Chebyshev acceleration method executed faster than thelandmark recognition, we have programmed it to track walls multigrid conjugate gradient method [19]. Further, we
with its sonar; the robot notices intersections and dead ends, demonstrated that because an optimal Chebyshev
which are potentially significant external environmental cues acceleration method requires local computations only, it in turn
for self-positioning. In related work, we have tackled the executes faster than either adaptive Chebyshev acceleration
problem of calculating ranges to visually perceived vertical or conjugate gradient methods, both of which require globalcomputations. We continue to validate these algorithms on 1P .edges by using a simplified Kalman filter. Since the error Utatins. e ctit
introduced by quantization and other factors is not gaussian, Utah laser range data.
this filter produces accurate estimates only at selected points;however, these estimates can be strategically combined using 4.1.2 Shape from Texture Autocorrelation
triangulation to increase accuracy. We are testing this We have developed a new method for determining local A
filtering/triangulation system on the robot, aiming for 60 Hz surface orientation from rotationally invariant textures based
cycle time. on the two-dimensional two-point autocorrelation of an

image [14, 15]. This method is computationally simple and
easily parallelizable, uses information from all parts of the4 Parallel Algorithms image, assumes only texture isotropy, and requires neither

We have analyzed the performance of the parallelization texels nor edges in the texture; it is thus more widelyof several computationally optimal algorithms for depth applicable than the method of Witkin. We have demonstrated °,interpolation, and have found that on a wide variety of that when applied to locally plar'ar patches of real textures .-

synthetic and real range data the adaptive Chebyshev is the such as roads, dirt, and grass, the results are highly accurate, 
most efficient, even when implemented in a multigrid fashion, even in cases where human perception is so difficult that
We have invented a particularly simple, accurate, and robust people must be assisted by the presence of an artificially
shape-from-texture algorithm based on image autocorrelation embedded circular object.
that outperforms human observation on real scenes of roads, Along the way, we have proven that the algorithm has
dirt, and grass. several exploitable mathematical elegancies. For example,
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the autocorrelation of an isotropic texture will always be based, and ip more successful. It constructs up-down links in
entirely composed of concentric scaled elliptic iso-contours; the multi-resolution pyramid between nodes on adjacent
this makes the extraction of slant and tilt values from ellipse levels, according to similarities of spatial grey level
parameters nearly trivial. Secondly, because the dependence statistics. By top-down iterative refinement of
autocorrelation has such robust structure, it is easy to filter out these links, the pyramid and hence the image is segmented;
from it spurious noise such as that commonly generated by the basically this is a parallel form of region-splitting. Lastly, we
horizontal smearing of pixeis in typical CCD cameras. have implemented the generalized Hough transform, including

the parallel creation of the reference tables.

4.2 Research and Applications on Tree Machines 4.3 Research and Applications on Pipelined

4.2.1 Simulators and Programming Environments Machines
As part of our efforts under Strategic Computing, we

have developed three programming environments that support 4.3.1 Real-time Algorithm Library 5'

our research on stereo and texture algorithms, in parallel We are developing real-time "pixel-parallel" versions of
image pyramid style [20]. Our first environment assisted work a variety of image processing algorithms for our PIPE
on the fine-grained tree-structured SIMD Non-Von architecture. Based on our past experience with pipelined
supercomputer (now discontinued) [24], and it consisted of processors [41], we have already installed algorithms for
simulators of various grain sizes. As Non-Von began winding spatial filtering, spatiotemporal filtering, and pyramid-based
down, we constructed a second, more abstract environment of spatial processing [37]. Representative examples include
image function primitives for general pyramid machine vision edge preserving smoothing, generalized n-by-n convolution,
work; this environment was necessarily a transitional one for normal optic-flow, thinning and morpological operators, and
the preservation of the prior work. For our third and current the pyramid representations of Burt, Mallat, and Singh and
programming environment, we have designed, installed, and Ranganath [38].
documented a highly efficient pyramid machine emulator that
executes those image function prim.'ives on the University of 4.3.2 Motion Perception Sensor Fusion
Syracuse Connection Machine [25]. In work that is jointly supported by Philips

This third environment cleverly reduces communication Laboratories [39], we are implementing a multi-sensor fusion
contention by an elegant embedding of the pyramid within the approach to the robust measurement of optic flow. Via
hypercube network. Mesh operations take only a small fixed confidence measures, we are integrating intensity correlation
amount of overhead proportional to the size of the hypercube; methods, which work best in structured scenes, and
parent/child operations run in a smaller fixed time independent spatiotemporal energy methods, which are more suited for
of hypercube size. The image functions allow the user to textured scenes /40, 42.
create pyramid data structures, to load/unload various pyramid The spatio-temporal frequency approach is implemented
levels, to move data up/down, and to perform several on the PIPE using a pyramid image structure, called Pyramid
operations such as convolution and hierarchical operators on of Oriented Edges; the POE is a logical extension of Burt's and
the created data structures. Both our texture and stereo work of Mallat's pyramids, both of which we have also implemented.
will benefit from the multiresolution capabilities: texture Using the POE, we have extracted coarse optic flow fields for
algorithms will adjust to texel size, and stereo will use feature- a number of real images. We plan to extend the method by
matching based on hierarchical correlation. Most recently, we developing a hierarchical set of spatio-temporal frequency-
are upgrading our environment to run on the CM2. tuned filters which will extract true optic flow from the POE

data, and then integrate the results with our implementation of
4.2.2 Pyramid-based Stereo and Texture an intensity correlation-based model similar to that of

Our main objective under Strategic Computing is to Anandan.
develop, implement, and integrate parallel multi-resolution
stereo and texture algorithms for determining local surface 4.3.3 Real-time Motion Tracking
orientation and depth, to be used by autonomous land vehicle The 60 Hz frame-rate image processing abilities of our
navigation systems. PIPE enable it to generate visual tracking information fast

We have implemented on the Non-Von simulator a enough to be coordinated with the motion control of a robotic
straightforward parallelization of a multi-resolution version of arm. We have implemented pipelined algorithms to perform
the Marr-Poggio stereo algorithm, which achieves some motion detection, thinning, and region-of-interest segmentation "V
economies on the SIMD architecture by exploiting the eight- in order to track objects with a wrist-mounted camera in
fold symmetries of digitized Laplacian of Gaussian masks. We real-time [2]. Most of the processing is pyramid-based, andare parallelizing our new autocorrelation-based shape-from- uses spatio-temporal filters. We have also implemented a
texture technique for the Connection Machine, where it motion-control process that concurrently calculates on the
becomes technically even more elegant. Using image shifts to Masscomp host the predicted trajectory for the moving part, in
cirmpute a finite window of the autocorrelation, we can order for the arm to intercept it for grasping.
compute surface orientation for surface patches in constant
time.

In service to both of the above algorithms, we have 5 Robotics and Tactile Sensing A,,

implemented two parallel texture-based image segmentation We have recently acquired a Utah/MIT dextrous hand,
algorithms and tested them on ERIM ALV road data. The first for which we are developing tactile control algorithms. Having
algorithm uses micro-edge density counts in dynamically also recently acquired proprietary sensing "skin", we are also
varying windows that attempt to track the road edge from building its interface electronics and software. Through low-
image to image; success has been limited by the low texture level sensor models and CAD/CAM object models, we
resolution. A second algorithm is both parallel and pyramid continue to pursue the automatic generation of sensing
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KNOWLEDGE-BASED VISION TECHNOLOGY , -

PROGRESS AT HUGHES AI CENTER

K.E. Olin, M.J. Daily, J.G. Harris, K. Relser 1

Hughes Research Laboratories, At Center
23901 Calabasas Road, Calabasas, CA 91302

Introduction. The research progress at Hughes Al Center reported in 1.0 Autonomous Land Navigation

these proceedings is primarily concerned with two topic areas: first, vision
and systems for navigation, and second, object recognition. 1.1 Problem

The first cross-country map and sensor-based autonomous operation Compared to structured environments, navigation in
of a robotic vehicle in natural terrain was achieved in August 1987 and an unstructured environment such as cross-country terrain
repeated with extended capabilities in December 1987.A The vehicle presents a significantly different set of problems for a
avoided difficult obstacles such as bushes, gullies, rock outcrops, and steep perceptual system. While recognition of man-made objects k- -
slopes as seen in Figure 1. This success was attained by Hughes through a performs adequately by utilizing rectilinear surface features, ,
series of experiments performed on the Autonomous Land Vehicle (ALV) color characteristics, or other well constrained surface
at the Martin Marietta Aerospace Corporation (MMAC), Denver test site. p
In preparation for experiments on-board the ALV an extensive simulation available in natural terrain. It is reasonable for indoor
capability was developed. In Section 1, we present an overview of our
apa tand the planning system, mobile robots to project a route using a mobility map that ',approach, the perception system development, adtepann ytm

Details of the percepti 1 and planning techniques are presented in includes obstacles identified as occupying vertical space

accompanying papers [1,21. and assumes that the floor is flat. However, meaningful

A mutiresolution image interpretation system was developed for objects in natural terrain are more diverse and difficult to
object detection. The objective of this system was to detect objects by characterize. Specific features such as local slope, three
reasoning with multiple feature sets represented in object models. A dimensional edges, or color of specific regions may or
feature set is comprised of a rich variety of image primitives together with may not represent obstacles. In general, the features are

spatial relationships. The multiresolution interpretation used lower difficult to extract and difficult to combine to form reliable
resolutions to focus attention and higher resolutions for object details. An descriptions of the terrain. For example, trees can have J,.

overview of this system is presented in Section 2; a more thorough widely varying shapes, colors, and sizes making tree
discussion is found in an accompanying paper by T. M. Silberberg [31. recognition in itself a formidable problem The

recognition problem is compounded by seasonal and ., ,-

weathering effects, and the need to interpret the ",-.',
environment in a timely manner.

1.2 System Architecture
The goal of the Knowledge Based Vision Techniques

(KBVT) research at the Hughes Al Center is to provide the

necessary perceptual descriptions of the environment 5
44% "which allow an autonomous vehicle to successfully

navigate amongst obstacles. It is also our goal to transfer

- -- technology and perform experiments on-board a vehicle.
The latter goal has constrained our research in the past

-year to approaches and algorithms which could "perceive"
obstacles in a timely manner; that is, the perception
processing has to allow ample time for the vehicle to
safely respond to obstacles. An important feature of the %. ,
perception system is its evolution in conjunction with the
planning system also developed by Hughes Al Center. "' a"

4.*'

t Development of this system hjLs been supported . P

by Defense Advanced Research Projects Agency
Figure 1. (DARPA) contract #DACA76-85-0007. Progress on a

Typical cross-country terrain for the ALV coordinated DARPA contract #DACA76-95-0017 is also
repored.
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Our approach defines a system architecture which virtual sensor is "contracted" by a behavior to provide
supports a decomposition of the problem directed by information at a required processing rate and accuracy. The
immediacy and assimilation considerations [4,5]. A brief reflexive behaviors are highly procedural units that operate
overview of the architecture is included as an introduction on virtual sensor data to provide real-time control. Virtual
to the technology development and experimentation sensors and reflexive behaviors are grouped into activities
results. so that multiple behaviors can operate concurrently to

produce control decisions. These activities are scheduled

Low Bandwidt by the local planner to achieve current goals.
Communication No single reflexive behavior and virtual sensor

combination is ever expected to be able to handle vehicle
navigation problems in general: but rather, several are used
in conjunction, each designed to handle a specific sub-

System Monitor problem within the overall range of navigation tasks. It %
is the responsibility of the local perception and planning
modules to guarantee that the selected activities are
appropriate for the current environment. Our recent

Miso M o experimeratkion on-board the ALV has shown the concept
Miso Mof virtual sensors and reflexive behaviors provide a viable

P approach to local vehicle control.

E p 1.3 Obstacle Detection
R L In the context of cross-country navigation, we have
C World Route A defined an obstacle as any region a particular vehicle
p N cannot traverse. This definition allows obstacle detection

to depend upon the mobility characteristics of the vehicle.
T N Therefore, a natural approach to perception for cross-
1 ," country navigation models the vehicle's interaction with a
O Local N three dimensional representation of the sensed terrain to
N G determine traversability. The ALV is equipped with a laser

range scanner which measures the distance along the line
of sight to the nearest object. This sensor inherently

Virtual Sensor Refiexive 4-fo supplies inormation of surface geometries, however, the
Sensors Acto interpretation of this information is difficult. SeveralSusys Ateon methods to interpret surface geometry in terms of an ALV

mobility model were developed that employ a down-
looking Cartesian Elevation Map (CEM). In addition,

Figure 2. System Architecture methods were developed to weight obstacles such that
potential paths are penalized in areas "rich" with
obstacles. These methods are briefly described in the

In this hierarchical control structure as shown in following discussion. We also mention briefly parallel
Figure 2, the vertical structure generally reflects the level considerations and implementations. A separate paper is
of information fusion. Higher levels function on the basis recommended for a more complete description of these
of highly assimilated data that are generally symbolic and techniques [1). %
require longer interpretation time and larger spatial area;
the lower levels exploit more immediate data. A failure at Cartesian Elevation Map ,
one of the lower levels is signalled to the next higher The Cartesian Elevation Map (CEM) is a

level, which then re-assesses the situation and adjusts representation for range information in which data from
accordingly. the viewer centered coordinate system of the sensor is O

For the ALV experiments a subset of the transformed into a Cartesian z(x,y) coordinate system. .4
hierarchical control system was used. A simple mission This results in a down-looking map view representaion of
was defined by start and goal locations with the path terrain which is useful for autonomous navigation. This '
constrained to maintain a direct line-of-sight with the same representation may be obtained from other depth 'I

communications tower. At the route level of the hierarchy sensors, such as stereo or sonar. K.

a map-based planner was used to generate all experimental The development of the CEM required us to deal
routes. A route consisted of a set of subgoal points. Our with a variety of range processing issues. As one would
major emphasis in the past year was to develop and expect, the elevation data represented in the CEM are
experiment with the lowest level of the hierarchy. At this highly oversampled in the immediate foreground and
level, virtual sensors and reflexive behaviors (or undersampled at greater distance from the sensor. In
behaviors) are used as the real-time operating primitives addition, there are some regions in the CEM that fall %
for the rest of the system. Knowledge assimilation is outside the field of view of the scanner and other regions Nwk
minimized in order to provide the fastest possible vehicle that fall behind (in the shadows of) tall features in the
response. Virtual sensors are sensing and processing units terrain. In the CEM, areas with sufficiently dense
thi.t detect specific environmental features and relay sampling of points are fitted with a continuous surface and
information about features to the reflexive behaviors. A undersampled areas are explicitly labeled "unknown".
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Due to the limited vertical field of the laser range In the recent ALV experiments, the VMT virtual
scanner (30 degrees), terrain immediately in front of the sensor was used along seven linear trajectories. The total
sensor is not visible. The closest scanned ground in our processing time from image acquisition to trajectory output
experiments is approximated 13 feet in front of the was approximately six seconds on a Sun 3 with a floating
vehicle. We have investigated the fusion of data from point coprocessor.
previous CEM's to fill in this unknown area. One method C.l
uses the orientation sensors on board the ALV (heading,
pitch, roll, x, and y) together with an estimate of change
in the z-position to determine vehicle motion in all six
degrees of freedom. We are currently investigating another
method that recovers the motion directly from sequences of
range images.

Vehicle Model Traiectory Method
We have developed a relatively sophisticated three

dimensional model of the ALV. This model together with
the CEM yields a formal definition of obstacles, thus S
avoiding ad hoc and incomplete definitions. The model is
currently represented by minimizing the energy of the
suspensions springs associated with each w-.eel as the
vehicle is applied at a position and orientation in the Figure 4.

CEM. Three types of obstacles are detected with the Cartesian Elevation Map and

vehicle model: suspension, slope, and clearance as shown Vehicle Model Trajectories

in Figure 3. This definition of obstacles has performed
fairly reliably in our experiments on the ALV. The model
will be extended to include constraints such as vehicle The current implementation of the VMTs uses only

weight distribution, weather conditions, risk factors, and linear trajectories although the Hughes planner controls

vehicle speed and dynamics. the vehicle through speed and turn rate commands which
result in curved trajectories. We plan to generalize the
VMT virtual sensor for any given trajectory; Figure 4
shows curved trajectories. Other enhancements are
discussed in [1].

Cartesian Weight Mat
The current VMT strategy simply tells the planner

OK Bad Bhow far the vehicle may go along a given trajectory. The

Suspension Slope Bad Clearance planner has no idea how close the trajectory passes by an
obstacle. In simulation and in real life, the vehicle tends
to pass too close to obstacles since no part of the current

Figure 3. system deals with side clearance.
Obstacle Derinitions Using the Vehicle Model Like the CEM, the Cartesian Weight Map (CWM) is %

a down-looking map in the local coordinate system of the
vehicle. A pixel value in the CWM represents the weight

The vehicle model allows us to produce a three identified with the cost of traversing the corresponding
dimensional traversability map by applying the model at pixel in the CEM. Nontraversable obstacles found using a
each possible position and heading. In most cases, a Gradient of Gaussian (GoG) technique and verified by the
complete traversability map of the entire sensed area is not vehicle model are given an infinite weight in the CWM so
needed. Because of constraints on perception processing that no path will ever travel through an obstacle. To
time, we have developed techniques for applying the model solve the problem of the vehicle passing too close to
only at those points necessary to fulfill requests issued obstacles, all other CWM pixels are given weights which %
from the planner. This method, called the Vehicle Model exponentially decay with distance from the nearest .:.

Trajectory (VMT) virtual sensor, simply calculates the obstacle.
projected heading of the vehicle at each point along a The CWM could be extended to penalize areas which
linear trajectory and applied the model at that heading and are "bumpy" and reward regions that are smooth. This -
location until it either reaches the end of the trajectory or concept of multiple virtual sensors concurrently updating
assumes an unstable configuration. The virtual sensor is the CWM is consistent with our hierarchical system %
contracted with the behaviors to return the distance design. We have tested the CWM in simulation and found
travelled (or "safe distance") and the reason for that the technique safely guides the vehicle equidistant
termination. The VMT virtual sensor can provide different between obstacles and avoids small cul-de-sacs.
levels of accuracy and processing speed by varying three
parameters independently: CEM size and resolution, Parallelism
vehicle model accuracy, and sampling frequency of the A great advantage of the CEM and CWM methods is
range image. that they are extremely parallel. In cooperation with MIT

in March, 1987, we implemented (during a two week .
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programming spree) the CEM construction algorithms and vehicle reaches the end of a VMT it must slow down and N"
the GoG detection technique on the Connection Machine. stop if necessary to wait for new VMT data.
Creating a 128x128 CEM from a range image took less For the first set of experiments, the behaviors were
than 0.5 seconds with unoptimized Lisp code and intensive grouped into two activities: the first activity was designed
floating point calculations; the GoG required an additional to travel toward a goal when the vehicle was in a clear
8 milliseconds of compute time. We expect these times area, and the second activity was designed to control the
will be significantly reduced with the CM-2. vehicle when obstacles were present. For the recent

In addition, we have explored implementing the experiments, the behaviors were incorporated into a single
CEM on a WARP. Since the pixel in the range image that activity that used a technique which weighted the
contributes to a given location in the CEM is data- importance of the goal according to the difficulty of the
dependent, the entire range image is distributed to each of terrain. This is desirable because as the vehicle's
the 10 cells in the WARP array. The CEM is then divided movement becomes more restricted it becomes more
into 10 column swaths with several columns overlap important to get clear of the rough area than to make
between each swath. Each WARP cell processes every progress directly toward the goal. In the case when the
pixel in the scan, but saves only those points that fall vehicle is ip an area free of obstacles, the goal weight
within its assigned column swath. Progress on the WARP becomes predominate and the vehicle tends to head straight
implementation has been delayed while we await the new toward the goal.
release of WPE 2.6.

An implementation design similar to the WARP 1.5 Simulation Environment
implementation has been designed for the Hughes Simulation plays a critical role in the development
Hierarchical Bus Architecture (HBA) [6]. The HBA is and analysis of our perception and planning systems by
available for use in the lab simulation environment to allowing us to discover and resolve many discrepancies
improve simulation throughput. before attempting experiments with the ALV in the field.

In addition, it provides the essential link between vehicle

1.4 Obstacle Avoidance control commands and new perceptual inputs. The ultimate
The planning system for obstacle avoidance is objective of these simulations is to close the loop between

designed to provide real-time vehicle control while sensing and acting; that is, between the perception,
maintaining the flexibility needed for operation in realistic planning, and vehicle navigation systems. By simulating

* environments. Because the primary objective of the cross- the terrain, the sensor, and the vehicle, we are able to test
. country navigation experiments was to test critical real- the efficiency, correctness, and usefulness of the virtual

time perception and planning interfaces, the map-based and sensors and behaviors as they are developed.
reflexive behavior modules were the primary focus for To provide an accurate model of the ALV terrain, we
development. More detail of the planning system are extract a portion of the five meter resolution map
included in these proceedings [2]. elevation data from ETL and interpolate a smooth surface.

Also we allow specific objects such as contours, ramps,
* Map-based Plannine plateaus, walls, cliffs, and ravines to be inserted in terms

At the route level of the hierarchy resides the map- of elevations. The resulting surface defines the basic
based planner providing route information obtained from structure of the underlying ground. We place cultural
digital terrain maps. The route planning data includes features such as bushes, ditches, rocks, and grass over the
maps of landcover, elevation, hydrology, roads, and ground surface data. Finally, additive noise is applied to
landforms, and also data, such as visibility from the "randomize" the terrain. Interpolation schemes are used to
vehicle to the communications shell, that was derived from smooth areas or produce gently sloping terrain. The

* these maps. The map-based planner generates all resulting terrain provides both a source of data for the
experimental routes; a route consists of a set of subgoal synthetic scanner and the surface on which the simulated
point locations, vehicle moves.

To simulate the laser range scan, we apply a ray-

Reflexive Plannine tracing algorithm in the synthetic terrain to produce a
The reflexive planning module is tasked with synthetic range scan from any vehicle position and

achieving the subgoals received from the map-based orientation. The synthetic scanner reproduces many of the .,

planner. The execution of the path requires the planner to image artifacts observed in actual scans, including those
react to perceived information, but do so in a consistently due to vehicle motion during image acquisition. Using the
reasonable manner (i.e., intelligently). Reflexive simulation, we are able to analyze the effect of the sensor
planning controls the vehicle within its immediate depression angle upon obstacle detection.
environment with minimal data assimilation. The vehicle simulation includes parameters for

The behaviors used in the ALV experiments respond vehicle dimension,the vehicle sensors for location and
to VMT virtual sensor. The interface between the orientation, and vehicle dynamics such as acceleration and
perception, planning, and vehicle control is critical. For braking. We can simulate collision by applying the
instance, planning to avoid an "unknown" area changes vehicle model. In addition, we have simulated the actual .
dynamically as more information is perceived or as known MMAC/ALV control algorithm. This was necessary to test

obstacles are detected. In addition, as obstacles pass the conversion of the control algorithms based on speed
below the range scanner field of view a method is and turn-rate control used by Hughes into the vector
necessary to determine when the vehicle has traveled control algorithms used at MMAC. With this simulation, -
completely beyond the obstacle bounds. Other timing we can evaluate the effects of time delays between ,
related issues must also be addressed; such as, when the command and vehicle action.
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The interface simulation also includes the ability to Perception Summary for Cross-country Navigation
mimic the software and hardware configuration at MMAC. Fxpiieats
The full simulation requires the use of several Symbolics For the cross-country experiments, we chose a site
Lisp machines and Sun workstations joined via pronet rich with obstacles and potential paths for obstacle
interfaces. This environment identifies and resolves many avoidance. The area is a hillside consisting of steep
inconsistencies and shortcomings in the system interfaces slopes (some over 15 degrees), rock outcrops, large scrub
and load distribution without consuming valuable time at oaks, very small junipers (15 inches high), as well as a
the test site. Most importantly, such preparation allows narrow sign post (post approximately 2 inches wide and
us to perform meaningful and successful cross-country sign approximately 4 inches by 6 inches). In addition,
experiments within a relatively short experimentation the area includes a complex set of gullies and ravines
period at MMAC. caused by rain and snow runoff. These gullies span a range

of widths from 6 to 25 inches and depths from 4 to 30
1.6 Experimentation Results inches. A narrow area with a very constrained approach

The experiments run on the ALV were designed to angle is available to cross the area of gullies. The soil is
determine the feasibility of cross-country terrain loose and sandy in the vicinity of the gullies resulting in
navigation and to demonstrate the Hughes perception and mud and vehicle slippage during the December
planning software. The experiments accomplished both experiments. We also set up an obstacle course on a flat
objectives (7]. field at the far end of our experimentation area. The

difficulties associated with this test area are sufficient to
Vehicle Configuration require caution by a human driver.

The cross-country experiments required the In general, the perception system adequately
integration of multiple computers distributed on-board the perceived the environment in that the obstacles were
vehicle and in the ALV lab as shown in Figure 5. The detected. The VMT virtual sensor was used with seven
perception system resided on two Sun workstations on- trajectories applied on every other pixel in a CEM with 1
board the vehicle; one Sun was used for the virtual sensors, foot per pixel resolution. We experienced the greatest
the other was used to archive data and experiment records. difficulty with gullies and rocks "hidden" in the grass. The
The planning system resided on two Lisp machines in the planning system utilized the VMT information to
ALV lab: one Symbolics ran the reflexive behaviors, the successfully navigate around obstacles; the average speed
other was employed for map-based planning. In addition, for the recent experiments was 3 km/hour. Specific
vehicle control was interfaced (by MMAC) through an Intel experiments and paths are described in greater detail in
computer. another paper in these proceedings (2].

Cross-country Navigation Conclusions
Reflexive Map-based Autonomous cross-country navigation with obstacle
Behaviors Planning avoidance was successfully demonstrated. It is the first ,-* i

such demonstration which integrated map-based and sensor-
Symbolics Symbolics based vehicle control. It also demonstrated the feasibility
Machine Machine of an experimental system operating with conventional

computing hardware located both on-board the ALV and
remotely in the ALV laboratory. The concepts of

Pronet ronet behaviors and virtual sensors have been shown to provide
a viable approach to local vehicle control, responding
reliably to the dynamic conditions of the real world.

SLinkLastly, it is significant that Hughes was able to
accomplish so much with relatively little vehicle time
(with only 2 weeks for the first experiment and 1 week for

- rnetthe second). Much of this success must be attributed to the %
ronet Pronet preparation at Hughes through extensive simulation. ,

" 0,These experiments represent significant technological
progress for autonomous vehicles.

2.0 Multiresolution Object Detection

Perception 2.1 Problem
G-analyst Experiment LNS Laser Range The interpretation of large high resolution images

Records with highly variable backgrounds can be facilitated by
Perception examining features extracted from multiple resolutions of-.,

Virtual Sensors the image. The objects of interest are modeled at each
resolution in terms of features that can be used to provide
evidence for the objects. By examining lower resolutions S

Figure 5. during the initial stages of image interpretation, object
Experimentation System Configuration hypotheses can be made based on large, prominent

features. Given these initial hypotheses, higher
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resolutions are examined only in those areas in which References
objects of interest are expected. [1] M.J. Daily, J.G. Harris, K. Reiser. "An Operational Perception

System for Cross Country Navigation", Proceedings Image Understanding2.2 Approach Workshop, Boston, MA, April, 1988.

An object is modeled according to its expected
characteristics in the image using two kinds of features: [21 D.M. Keirsey, D.W. Payton, J.K. Rosenblatt, "Autonomous
salient features that create initial object hypotheses, and Navigation in Cross Country Terrain", Proceedings Image Understanding
supporting features that provide evidence for the Workshop. Boston, MA, April, 1988.
hypothesized object. At each resolution, hypotheses are [3] T.M. Silberberg, "Multiresolution Aerial Image Interpretation",
generated in two ways: first, a hypothesis may result from Proceedings Image Understanding Workshop, Boston, MA, April , 1988.
a feature that is due to an instance of the object, and
second, a hypothesis may result from objects that already [4] K.E. Olin, F.M. Vilnrotter, M.J. Daily, K. Reiser. "Developments
exists at either the same or a lower resolution. In either in Knowledge-Based Vision for Obstacle Detection and Avoidance",
case, the object creates hypotheses in accordance with the Proceedings Image Understanding Workshop, Los Angeles, CA, February,
model that specifies the confirming evidence. 1987.

[5] D.W. Payton. "An Architecture for Reflexive Control", Proceedings
The image interpretation system does not follow an of the IEEE International Conference on Robotics and Automation, San

algorithmic approach, but instead chooses procedures based Francisco, CA., 1986.
on the current state. The approach is both data-driven and
model-driven, utilizes hypothesis generation and [6] R.S. Wallace, M.D. Howard, "HBA Vision Architecture: Built and
verification, and employs evidential reasoning to evaluate Benchmarked", Proceedings Workshop on Computer Architecture for
the hypotheses. The system adheres to the principle of Patem Analysis and Machine Intelligence, Seattle, WA, October, 1987.

least commitment in two ways: 1) object hypotheses [7] M. Daily, J. Harris, D. Keirsey, K. Olin, D. Payton, K. Reiser, J.
occur only if there exists supporting intrinsic feature Rosenblatt, D. Tseng, and V. Wong, "Autonomous Cross-Country
properties, and 2) final interpretations are not determined Navigation with the ALV", DARPA Planning Workshop, Texas,
until all hypotheses have been made. December, 1987.

2.3 Preliminary results
The system has been exercised on two aerial Object Level Feature Hypothesis

images: one consisting of a single submarine and the
other consisting of three airplanes. The submarine ParalelLine
scenario had sufficient resolution to analyze using three Submarine 0,1,2 Pair Line

resolutions. Features at each resolution that were used as
evidence for a submarine are shown in Figure 6. The Submarine 0,1,2 Region Confirm
airplane image was analyzed using only two resolutions. Area 0,1,2
Features for detection of an airplane are shown in Figure 7. Shadow/

In both of these examples, the original object Sail 0,1,2 Region Confirm

hypotheses are made at the higher levels. These
* hypotheses are then projected to the lower levels. In the Glint 1,2 Line Confirm

submarine example, the lowest level model contains
additional detail, namely, the tail. In the airplane image, Tail 0 Region Confirm
only those areas near the original hypotheses are
considered at the lower level, thereby making the
interpretation process more efficient. The features used to Figure 6. Submarine Model
extract the airplanes are independent of the features used
for the submarines. By appropriately choosing features
the interpretation of a poor quality image was possible. A
more complete system description and discussion of results
is found elsewhere in these proceedings [3]. Object Level Feature Hypothesis
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Image Understanding Research at GE l V.

J.L. Mundy
General Electric Corporate Research and Development Center

Schenectady, NY 12301

Abstract

The major goals and research results for the Image Understand- 2 Geometric Model Construction
ing Project at the GE Corporate Research and Development A second major goal of the project is to develop methods for
Center are reviewed. The primary reasearch emphasis is on Automal grat od The primy dvepmhos fon
model based object recognition and geometric reasoning. automatically generating models. The primary emphasis is on

models for object matching. However, the rapidly expanding

applications of image simulation are also creating a demand for
1 Model-Based Object Recognition extensive libraries of three-dimensional solid models. In fact,

the two applications are likely to become closely integrated,
The use of explicit geometric models has proved to be an ef- where simulated displays are generated of tactical and strategic
fective approach to recognize and locate objects in cluttered sites, based on automatic recognition of objects from aerial
natural scenes. The geometric constraints imposed by a three- views of the sites.
dimensional model are able to eliminate false matches to back-
ground and clutter features. In addition, the process of match- 2.1 View Intersection
ing the model to image data produces the coordinate transfor-
mation between the model and the image reference frame. Two methods for the generation of models are under investi-

One major goal of the project is to demonstrate the effec- gation. The first method involves the use of a range sensor
tiveness of model-based image understanding in the context which uses triangulation (or time of flight) to determine a set ; .-
of military reconnaissance and target recognition applications. of three-dimensional coordinates on the surface of an object. .,
The first year of effort has resulted in a successful set of experi- These point samples are grouped into a partial, polyhedral sur-
ments which apply a three-dimensional matching system to the face description of the visible object surface. This partial set
recognition of aircraft and vehicles in aerial views, of object faces is projected along the view projection axes to

These experiments have shown that the constraints pro- form a closed, view solid.
vided by pairs of A number of such polyhedra, taken from a number of view-

vertices and associated edges are sufficient to determine the points are intersected to obtain an estimate of the total object
correct match between an object model and an unsupervised boundary[Connolly and Stenstrom]. The general approach has
segmentation of the image data into two-dimensional edges and also been used to extract an object model from a set of intensity
vertices [Thompson and Mundy 87a]. These concepts can also views. In this case, the view solids are generated by extracting
be extended to tracking moving objects in three-dimensional occlusion boundaries from the intensity image data. In this
space, over time.[Thompson and Mundy 87b]. case, only convex objects can be completely reconstructed. 4

We also have demonstrated that the matching algorithm This method has already been successful in generating a
can be implemented model for a polyhedral object which is suitable for recogni'ing
effectively on a fine-grained SIMD architecture, the Connection the object from any viewpoint[Connolly et al].
MachineTM[Thompson and Mundy 87c]. Some preliminary re-
sults indicate that a Connection Machine(CMl) with 16K pro- 2.2 Symbolic Models 'C
cessors is able to execute the algorithm around 10OX faster
than the Symbolics Lisp Machine. We are now reimplement- A second method involves the use of geometric reasoning tech-
ing the -Jgorithm on a more recent version of the Connection niques to establish a set of constraints for an object as seen in a %
Machine(CM2) to make more extensive timing comparisons, single two-dimensional projection. In this approach the object

A recent theme in our matching research is the analysis of is represented as a set of algebraic constraints. The effort so far :..
error in the determination of the transformation between the has been to develop techniques for efficiently reasoning about
model and the image coordinate frames. We have developed geometric relationships and to demonstrate these techniques in
the concept of effective viewing that provides a measure of the solving realistic geometry problems.
transformation accuracy of a given vertex-pair feature, as a Two major accomplishments have been achieved during the $4
function of viewpoint [Mundy et all. This error measure will first year in this line of development. A geometric reasoning %
permit the automation of model feature selection and provide system, which uses algebraic deduction to prove geometry the-
a weighting function for features in clustering. orems has been developed. The system, called GEometer, has

been able to prove hundreds of geometry theorems. GEome-

'This work was supported in part by the DARPA Strategic Comput- ter is implemented on the Symbolics Lisp Machine and uses a
ing Vision Program in conjunction with the Army Engineer Topographic deduction system called the Groehner basis to prove theorems.
Laboratories under Contract No. DACA76-86-C-0007. ,40.
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GEometer also has a powerful graphical user interface to enter References
geometric axioms and constraints [Cyrluk et al 87].

In the second geometric reasoning development, the Groeb- [Thompson and Mundy 87a] Thompson, D., Mundy, J.L.,
ner basis method was extended to prove the consistency be- "Three-Dimensional Model Matching From an Uncon-
tween two views of a three-dimensional object. In these experi- strained Viewpoint", Proc. IEEE Robotics and Automation,
ments, an ideal two-dimensional view of a polyhedra is used to 1987, pp. 280.
generate a system of algebraic constraints. These constraints
are specified in terms of unknown depths of the object ver- [Thompson and Mundy 87c]
tices. These depths cannot be determined from a single two- Thompson,D., Mundy, J.L.,"Model-Directed Object Recog-
dimensional view. Instead, the two-dimensional projection is nition on the Connection Machine,"Proc. DARPA Image Un-
used to generate a system of equations with the unknown vertex derstanding Workshop, 1987.
depth coordinates taken as variables. This system of equations
can then be used as a model to determine whether or not a sec- [Thompson and Mundy 87b] Thompson,D.,
ond two-dimensional view is consistent with some projection of Mundy, J.L.,"Model-Based Motion Analysis,"Proc. 4th In-

the object in the first view [Cyrluk et al 87]. ternational Symposium on Robotics Research, MIT Press,

The consistency of the two views can be established with 1988.
the same proof methods used in GEometer. In this approach, [Mundy et all "The Concept of an Effective Viewpoint,"
the first two-dimensional image is being used as a partially de- Mundy, J.L.,Heller, A.J., and Thompson, D.W., Proc.
termined three-dimensional model. The experiments were able DARPA Image Understanding Workshop, Morgan Kauf-
to demonstrate the validity of this approach for ideal projec- mann, Los Altos,Ca., 1988.
tions, i.e. projections in which the vertex coordinates are given
exactly. The major demonstration is that relatively few con- [Connolly and Stenstrom] Connolly,C.I.
straints are sufficient to prove the inconsistency between two and Stenstrom, J.R.,"Generation of Face-Edge-Vertex Mod-
views. In the case that the views are consistent, it is then possi- els Directly From Images,"Proc. DARPA Image Understand-
ble to determine the transformation between views and extend ing Workshop, 1988.
the model to include explicit three-dimensional constraints.

This technique has been extended to include the ability to [Connolly et all ConnolyC.I.,MundyJ.L.,StenstromJ.R.,

reason about inequalities. These inequalities arise due to un- TompsonD.W.,"Matcing From Three Dimensional Range
certainty in the projection coordinates and in the object model Models Into 2-D Intensity Scenes,"First International Con-

constraints. We have integrated the Groebner basis technique ference on Computer Vision, June 1987,p.73.
with the SUP-INF method to provide a unified approach to [Cyrluk et al 87] Cyrluk,D., Kapur,D.,Mundy,J.L., Nguyen,

reasoning about empirical geometric relations[Cyrluk et al 88]. V.,"The Formation of Partial 3D Models From 2D Pro-
jections - An Application of Algebraic Reasoning,"Proc.

3 PACE DARPA Image Understanding Workshop,1987.

[Cyrluk et al 88] Cyrluk,D., Kapur,D.,Mundy,J.L.,"Algebraic
We have initiated a new project this year to piovide a practical Reasoning in View Consistency and Parameterized Model
application focus for the research activities just described. The Matching Problems,"Proc. DARPA Image Understanding
project is to develop an integrated environment for intelligence Workshop,1988
analysis, called the Perceptual Analysis and Control Environ- %

ment, or PACE. [Corby et all Corby, N.,Mundy,J.L. and VrobelP., "PACE-An

The goal of PACE is to use detailed object models and a Environment For Intellgence Analysis," Proc. DARPA Image

terrain description to determine the status of a military site, Understanding Workshop, 1988.

such as an airbase. We will also incorporate constraints on
object location and orientation that are derived from natural
language reports about the site. These constraints are used to
focus the search during object recognition. The resulting world
description is displayed in synthetic form using reflectance im-
age mapping. This user interface allows the intelligence analyst
to interact with the object recognition and object modelling
tools.

We are developing PACE in cooperation with SRI. In par-
ticular, we will make use of The Cartographic Workstation
for object modeling and display as well as CKS for com-
municating between different conceptual representations. Ve
have selected the Schenectady 109th Tactical Airlift Group to
provide experimental image data and actual mission message
traffic[Corby et all.
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Qualitative Reasoning and Modeling for Robust Target Tracking

and Recognition from a Mobile Platform

Bir Bhanu and Durga Panda

Honeywell Systems & Research Center
3660 Technology Drive, Minneapolis, MN 55418 ,

ABSTRACT ground scenario when the robotic combat vehicle is in motion
and multiple targets may appear at varying ranges. S

In the DARPA Strategic Computing Computer Vision .s
Program, we focus on demonstrating robust techniques for 1.1 Qualitative Reasoning and Modeling
target tracking and recognition from a moving robotic combat The choice of a suitable scheme for representing the
vehicle. Our work is specifically directed towards significant perceived state of the scene, observed by a moving robotic
enhancements in the performance of existing target tracking ccmbat vehicle, is a crucial question. It has an immediate
techniques under high clutter and low contrast situations in a impact upon the efficiency, vcrsatility, and robustness of the
ground-to-ground scenario when the robotic combat vehicle is reasoning processes that are attached to this representation.
in motion and multiple targets may appear at varying ranges. It is questionable whether an accurate numerical description
The topics currently under investigation are: decomposition of the 3-D environment is really necessary to facilitate
of complex vehicle motion into its constituent parts; qualita- efficient reasoning of spatio-temporal processes. The use of
tive 3-D scene modeling; target motion detection and track- qualitative descriptions of physical properties has raised con-
ing; landmark recognition; 3-D target model acquisition and siderable interest in the area of Artificial Intelligence. 16 ,2 1 Its
refinement; and use of recognition and map information in an potential significance to the field of computer vision has been S
integrated motion detection and tracking system. The results addressed only recently.4 , 38, 4 1 The main argument is that
from our research are useful in vision controlled many of the error-prone, computationally expensive tech-
navigation/guidance of a robotic combat vehicle for practical niques which are commonly used can be replaced by
military missions such as targeting, reconnaissance and sur- emphasizing the qualitative effects and utilizing less precise %
veillance. This report summarizes the progress made during representations without sacrificing the usefulness of the
the period from March 1987 to January 1988. We also dis- results.

cuss the technology transfer aspects of our work. Most previous work in motion understanding attempted

I. INTRODUCTION to obtain the 3-D scene structure from motion in the form of
a quantitative, numerical description of the spatial layout of

The goal of our research in the Strategic Computing the environment relative to the camera. The problems related

Computer Vision Program is to demonstrate robust tech- to this approach are well-known and applications using real

niques for target tracking and recognition from an imagery have been rare. The systems of nonlinear equations ,
autonomously-moving robotic combat vehicle. In our experi- that must be solved for this purpose are numerically unstable; S
ence in implementing vision controlled navigation/guidance small errors in the estimate of image displacement lead to
for reconnaissance, surveillance, search and rescue, and tar- unproportionally large errors in the estimated 3-D geometry.

geting missions, we find that for spatio-temporal vision prob- Since numerical schemes are designed to converge
lems, purely quantitative approaches are unsuitable and towards a single solution which is optimal in some sense, A,-,
insufficient because of the inexact nature of vision. As such, there seems to be no practical mechanism that would reflect
the technical basis of our work is qualitative reasoning and the uncertainty of the input data on the final result. Further-
modeling for dynamic scene understanding. more, the necessary assumption of rigidness cannot be

To achieve our goal, we are engaged in developing guaranteed. When features are assumed to form a rigid

efficient and reliable techniques for qualitative motion under- configuration in space but are actually moving relative to

standing, dynamic model matching, automatic 3-D model each other, this may still result in a rigid interpretation. The

acquisition, spatial reasoning, geographic knowledge problem with this approach is how the numerical model

representation and its use in recognition and tracking. This responds when moving features and stationary features are

work is specifically directed towards significant enhancements inadvertently grouped. In the best case, the deviation from a

in the performance of existing target tracking techniques rigid configuration would be indicated by a high error value ,

under high clutter and low contrast situations in a ground-to- for the feature which is actually in motion. If this is not the
case, the model may converge towards a completely different
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solution. While the vehicle is moving itself, the entire camera
Following the qualitative reasoning and modeling image is changing continuously, even if the observed part of

approach, the central building block of our DRIVE system 4  the environment is completely stationary. The interpretation

for target motion detection and tracking is a Qualitative of complex dynamic scenes is therefore the continuous task

Scene Model (QSM), which can be considered as the "mind" for the vision system of an autonomous robotic combat vehi- ,

of the motion understanding system. This model is a 3-D, cle. Previous work in motion analysis has mainly concen-

camera-centered representation of the scene which describes trated on numerical approaches for the reconstruction of

the observed environment by using a set of simple qualitative motion and scene structure from image sequences. Recently
relationships. The set of entities in the QSM is conceptually Nage 28 has given a comprehensive review. While a com-

split into two parts, the stationary world and a set of pletely stationary environment has been assumed in most pre-
independently moving objects. Construction of the QSM vious work on the reconstruction of camera motion, the pos-
over time is accomplished by a reasoning process which sible presence of moving objects must be accounted for in
draws conclusions from significant configurations and this scenario. Similarly, one cannot rely on a fixed camera
changes in the image. As the vehicle travels through the setup to detect those moving objects. Clearly, some kind of
environment, the model is continuously updated and revised common reference is required against which the movement of
by adding or deleting hypotheses. the vehicle as well as the movement of objects in the scene

Additionally, the state of the QSM is a not a single can be related.

iaerpretation but a set of interpretations which are all pur- Extensive work has been done in determining the rela-
sued simultaneously. This provides a very flexible mechan- tive motion and rigid 3-D structure from a set of image
ism for handling the inherent ambiguities encountered in points and their displacements, basically following two
image understanding. Each interpretation is a collection of approaches.
hypotheses, called partial interpretations, which cover over- In the first approach, 3-D structure and motion are
lapping subsets of the entities in the model. The structure computed in one integral step by solving a system of linear
and dynamic behavior of the Qualitative Scene Model are or nonlinear equations27, 39 from a minimum number of
described in more detail in the paper by Bhanu and Burger.6  points on a rigid object. The method is reportedly sensitive

Qualitative reasoning and modeling is also emphasized to noise.15, 42 Recent work 10 11, 17,37,40 has addressed the ON

in our work on landmark and target recognition from a problem of recovering and refining 3-D structure from motion
mobile platform. 7' 29 Using qualitative information, we do not over extended periods of time, demonstrating that fairly
have to rely on obtaining precise geometric representations of robust results can be obtained. However, these approaches S
a target. To handle continuous changes in the target's require large amounts of computation, convergence is slow
appearance caused by range and perspective, we use a and require many distinct views of the object (the environ-
dynamic model matching technique,29 which combines a ment), which are generally not available to a moving vehicle.
camera model, 3-D target models, and predicted range and In addition, it seems that the noise problem cannot be over-
perspective to generate multiple 2-D image models for come by simply increasing the time of observation.
matching. TRIPLE's 7 machine learning approach allows for The second approach 10, 18,24 , 25,33,35 makes use of the
automated 3-D model acquisition and refinement. It uses unique expansion pattern which is experienced by a moving
qualitative and quantitative shape descriptions, observer. Arbitrary observer motion can be decomposed into

The research results described in this report are parti- translational and rotational components from the 2-D image
tioned into the following topic areas: (a) target motion detec- without computing the structure of the scene. In the case of
don and tracking and (b) landmark and target recognition. pure camera translation in a stationary environment, every
We also discuss the technology transfer aspects of our appli- point in the image seems to expand from one particular
cation in the discussion. image location termed the Focus of Expansion (FOE). The

closer a point is in 3-D, the more rapidly its image expands
2. TARGET MOTION DETECTION AND away from the FOE. Thus, for a stationary scene, the 3-D

TRACKING structure can be obtained directly from the expansion pattern.
Certain forms of 3-D motion become apparent by local devia-

Motion becomes a natural component of visual infor- tions from the expanding displacement field and therefore can
mation processing as soon as moving objects are encountered be detected immediately. The views of the scene need not be
in some form; while following a convoy, approaching other very distinct in this approach and there seems to be evidence
vehicles, or detecting threats. The presence of moving from psychophysics that the human visual system employs
objects and their behavior must be known to provide similar techniques.32, ' 3
ppropriate counteraction. In addition, image motion provides The primary goal for Dynamic Scene Understanding in

important clues about the spatial layout of the environment this particular context is to construct and maintain consistent
and about the actual movements of the vehicle. As part of the and paule intertationstofcthentimaraig iaes

vehicle control loop, visual motion feedback is essential for and plausible interpretations of the time-varying images

path stabilization, steering, and braking. Results from oing:
psychophysics 24, 34 show that humans rely heavily on visual
motion for motor control.
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* How is the vehicle itself moving ? Two basic approaches for computing camera motion are
evaluated. In the FOE-from-Rotation approach, the directionWhat is the approximate 3-D structure of the scene ? of camera translation (marked by the Focus of Expansion -

* What is moving in the scene and how does it move ? FOE) is derived for a given estimate of the camera's rotation.

Obviously, these three goals are in very close interac- Alternatively, in the Rotation-from-FOE approach, the rota-
tion: any form of motion, whether vehicle motion or actual tional components are determined from a given estimate of

the location of the FOE. It is shown that the latter approachtarget motion, must be measured against some stationary is highly robust against disturbances of the displacementreference in the environment, field, since it works without extending the displacement vec-

We have developed a new DRIVE (Dynamic Reason- tors. Instead of searching for one particular FOE, the final
ing from Integrated Visual Evidence) approach based on a algorithm computes a connected region of possible FOE loca- .
Qualitative Scene Model to solve the motion understanding tions, which accounts for noise and distortions in the image.
problem. The approach addresses the key problems of the Finally, the absolute velocity of the vehicle towards the FOE
estimation of vehicle motion from visual cues, the detection is estimated from the expansion pattern by knowing the UIZ
and tracking of moving objects, and the construction and height of the camera above the (approximately flat) ground.
maintenance of a global dynamic reference model. Object We show the results on real image sequences in the paper by
recognition, world knowledge, and accumulation of evidence Bhanu and Burger.6

over time are used to disambiguate the situation and continu-
ously refine the global reference model. The approach 2.2 Estimation of Stationary 3-D Structure
departs from previous work by emphasizing a qualitative line The environment is modeled as a 3-D, time-varying
of reasoning 16,21 and modeling, where multiple interpreta- configuration of rigid objects whose structures, relative posi-
tions of the scene are pursued simultaneously in a hypothesis tions, and motions are estimated from visual information.
and test paradigm. Different sources of visual information The stationary part of the world is represented by a subset of
such as two-dimensional displacement field, spatial reasoning, the rigid objects, which form a rigid configuration in 3-D

and semantics arc integrated in a rule-based framework to space. This definition, hoeer is not sufficient to identify

construct and maintain a vehicle centered three-dimensional the stationary world a priori, because more than one rigid

model of the scene. This approach offers significant advan- subset of world objects may be observed. To operate in a real

tages over "hard" numerical techniques which have been pro- environment, some description about the 3-D layout of the

posed in the motion understanding literature.26' 36 These eniomtsedscpinabu e3-lyutfthpose inthe otin udersandng ltertur. 26 , 6 Tese scene must be available. In the DRIVE approach, a vehicle-
advantages include the tracking of objects in the presence of centered model of the scene is constructed and maintained

partial or total occlusion and use of this information for route c d-eo t aa
planning and threat handling, over time, representing the current set of feasible interpreta-Dannils ofd thet qadlit e rtions of the scene. In contrast to most previous approaches, 0

Details of the qualitative reasoning concept emphasiz- no atten'pt is made to obtain an accurate geometric descrip-
ing the motion aspects of the DRIVE system are presented in tion of the scene. Instead, a Qualitative Scene Model is pro-
papers by Bhanu and Burger.4 '5' 6'12,13,14 posed which holds only a coarse qualitative representation of

the three-dimensional environment. As part of this model,
2.1 Estimation of Vehicle Motion the "stationary world" is represented by a set of image loca-

The problem of determining the motion parameters of a tions, forming a rigid 3-D configuration which is believed to
moving camera relative to its environment from a sequence be stationary. All the motion-related processes at the inter-
of images is crucial for the application of computer vision to mediate level of vision use this model as a central reference.
practical military missions. In addition to translating in an The motion of the vehicle, for instance, is related to the sta-
unknown direction, the vehicle also rotates about an arbitrary tionary parts of the environment, even if large parts of the
axis (roll, pitch, and yaw), though not drastically. However, image are in motion. This kind of reasoning and modeling
due to the design of the vehicle, the direction of travel is appears to be sufficient and effective for this problem.
quite restricted, e.g., vehicle orientation does not change 'p
rapidly and target stays within the field of view. The 2.3 Detection of Moving Targets _.
observed displacement field is the addition of the vector For intelligent action in the presence of potential
fields caused by vehicle translation and rotation, such that the threats and targets, navigation in a traffic environment, etc.,
vehicle motion cannot be obtained from the displacement information on actual motion in the scene is indispensable.
field directly. However, the displacement field caused by the Moving objects must be detected and isolated from the sta-
vehicle's motion can be decomposed into its rotational and tionary environment, their current motions must be estimated
translational components exclusively in the 2-D image, to track them, and expectations about their future behavior
without any 3-D information, must be created. Since the camera itself is moving, the sta-

In our work the computation of camera motion is per- tionary part of the scene cannot be assumed to be registered
formed from sets of displacement vectors obtained from con- in subsequent images, as in the case of a stationary sensor.
secutive pairs of images. 19 First, the decomposition of 3-D Simple frame-differencing techniques to detect and isolate
camera motion into rotation and translation components and moving objects do not work in this case because image
their individual effects upon the image are analyzed in detail, changes, due to sensor motion, would generate too many
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false alarms. More sophisticated image-based techniques, of vehicle orientation.
which apply 2-D transformations (warping) to the image to Using techniques developed at Honeywell, digital map
compensate for background motion, work well only when databases can be transformed into digital visibility maps,
objects are moving in front of a relatively flat background, from which intervisibility predictions can be computed.20 We
such as in some air-to-ground applications. To detect actual a the process of implementing a map reasoning syste
object motion in the complex scenario of a robotic combat a t i the wold psitiono ing am

vehilethe3-Dstrutur oftheobsevedenvronent that will be able to identify the world position of moving and

vehicle, th the srce oothe observed environment tracked targets. The system will incorporate map/terrain and
together, with the vehicle's motion, must be taken into cartographic data bases and will be integrated with the
account. DRIVE system. DRIVE will select moving targets in the

In our DRIVE approach, 3-D motion is detected in two image, give their 2-D image location, velocity vector, and

ways: approximate range. Given this information from DRIVE, the F,

* First, some forms of motion are concluded directly from vehicle geodetic location, and a camera model, the system

the 2-D displacement vectors without any knowledge will establish an image-to-map registration and search in the

about the underlying 3-D structure, map data base for possible roads/terrain on which the targets
may be moving. The system will also provide information

* Second, motion is detected by discovering inconsisten- about neighboring landmarks to the target and possible occlu-
cies between the current state of the internal 3-D scene sion information.
model and the changes actually observed in the image.

3. Landmark and Target Recognition

2.4 Interpretation of Terrain A few of the desirable features to be incorporated in an

An autonomous robotic combat vehicle must be able to advanced target recognition system3 are: (a) The models used

navigate not only on the roads, but also through terrain in by the system to represent targets, contexts, and other system

order to execute its missions of surveillance, search and knowledge should be dynamic data structures; (b) Most data

rescue, and munitions deployment. To do this the vehicle should be of a symbolic, qualitative nature, thus avoiding the

must categorize the terrain regions it encounters as to the problems encountered in dealing with quantitative informa-

trafficability of the regions, the land cover of the regions, and tion. Using qualitative information, we do not have to rely

region-to-map correspondence. Our approach for terrain on obtaining precise geometric representations of target; (c)

interpretation employs a robust texture-based algorithm and a The system has to be able to handle problems such as impre-

hierarchical region labeling scheme for ERIM 12 channel cise segmentation, occlusion, noise, etc. and ; (d) The system

Multi-Spectral Scanner data. The technique, called HSGM should exhibit improved performance over time. This

(Hierarchical Symbolic Grouping for Multi-spectral data), is improvement may come in the form of faster recognition

specifically designed for multi-spectral imagery, but is times, improved recognition accuracy, and higher confidence

appropriate for other categories of imagery as well. For this in system results.

approach, features used for segmentation vary from macro- Our work on landmark and target recognition is
scale features at the first level of the hierarchy to micro-scale directed towards emphasizing the above features in a

features at the lowest level. Examples of labels at the dynamic scenario. Target recognition from a mobile platform
macro-level are sky, forest, field, mountain, road, etc. For requires the ability to recognize targets from varying range
each succeeding level of the hierarchy, the identified regions and perspectives under changing environmental conditions.
from the previous stage are further subdivided, if appropriate,
and each region's labeling is made more precise. The pro- 3.1 Landmark Recognition
cess continues until the last stage is reached and no further
subdivision of regions from the preceding stage appears to be Landmark recognition is used to update the land navi- L
necessary. Examples of region labels for this level of the gation system which accumulates a significant amount ofhierarchy are gravel road, snowberry shrub, gambel oak tree, error after the vehicle traverses long distances, which is typi-

hrcy eg e l rd scally the case in surveillance and targeting missions. The

vision system of the autonomous vehicle is required to recog-
Details of the HSGM technique with results and exam- nize the landmarks as the vehicle approaches from the road

pies from real imagery are given in papers by Bhanu and or terrain.
Symosek. 8' 9  We have developed an expectation-driven, knowledge-

2.5 Map Integrated Motion Detection and Tracking based landmark recognition system, called PREACTE 31 that
uses map, and landmark knowledge, spatial reasoning and a

A priori information for scene content, in the form of novel dynamic model matching technique. 29 PREACTE's
digital map data, is an invaluable resource for tracking algo- mission is to predict and recognize landmarks as the vehicle
rithms. Contextual information, derivable from digital maps, approaches them from different perspective angles and at
is especially critical to high-level reasoning paradigms which varying ranges. Once the landmarks have been recognized.
carry out the mission tasks such as estimation of vehicle they are associated with specific map coordinates, which are
location, condition monitoring, target acquisition, target then compared to the land navigation system's readings, and
classification, target tracking, target engagement, and sensing corrections are made. Landmarks of interest include build-
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ings, gates, poles, and other man made objects. To validate the concept of a target recognition system Nj

Dynamic model matching generates and matches target with integrated machine learning capabilities, the paper by

landmark and map site descriptions dynamically. These Bhanu and Ming7 presents an overview of a new approach to %.
descriptions are a collection of spatial, feature, geometric and target recognition. The system currently under implementa- -%P,
semantic models. From an approximate range and view tion is called TRIPLE: Target Recognition Incorporating P

angle, and using a priori map information, 3-D landmark Positive Learning Expertise. The system uses a multi- -'S

models, and the camera model, PREACTE generates predic- strategy technique; two powerful learning methodologies are

tions about individual landmark locations in the 2-D image. combined with a knowledge-based matching technique to

The parameters of all models are a function of range and provide robust target recognition. Using dynamic models,

view angle. As the vehicle approaches the expected land- TRIPLE can recognize targets present in the database. If

mark, the image content changes, which in turn requires necessary, the models can be refined if errors are found in

updating the search and match strategies. Landmark recogni- the representation. Additionally, TRIPLE can automatically

tion, in this framework, has been divided into three stages: store a new target model and recall it when that target is

detection, recognition, and verification. At far ranges, only encountered again. Finally, since TRIPLE uses qualitative

"detection" of distinguishing landmark features is possible, data structures to represent targets, it can overcome problems

whereas at close ranges, recognition and verification are more such as image noise and occlusion. •

feasible, since more details of the object are seen. The The two main learning components of the TRIPLE sys-
salient features of the technique are: (a) landmark models are tem are Explanation-Based Learning (EBL) and Structured
dynamic; (b) different landmarks require different representa- Conceptual Clustering (SCC). Explanation-based learning
tions and modeling techniques; (c) a single landmark requires provides the ability to build a generalized description of a
hybrid models; and (d) at different ranges, different matching target class using only one example of that class. Structured
and recognition plans are performed. conceptual clustering allows the recognition system to clas-

Details of the landmark recognition system, PREACTE, sify a target based on simple, conceptual descriptions rather
together with results on Autonomous Land Vehicle imagery, than using a predetermined, numerical measure of similarity. 5%'a"

are given in the papers by Nasr and Bhanu.29' 30' 3 1 While neither method, used separately, would provide sub- '...'

stantial benefits to a target recognition system, they can be %
3.2 Target Model Acquisition and Refinement combined to offer a consolidated technique which employs e

the best features of each method and is very robust.
Taretreogitonsysem crrnty ackth ailtyto4. TECHNOLOGY TRANSFER0

adapt to changing environmental conditions and to modify
their behavior based )n the context of the situation in which
they are operating. In order to be effective in dynamic out- In this report, we have presented a summary of ourthey~ ~ ~ ~ ~ ~ ~ ~ ~~~~~wr arcpraigonmrepoleefetv n yai ot n ts rinte ast twelenths. O umry wfor is

door scenarios, a robust recognition system should be able to work completed during the last twelve months. Our work isdirected towards providing key functionalities of target, .
automatically acquire necessary contextual information from di ete toad priing key f nie of art
the environment. Most target recognition systems lack this motion detection and tracking, which are needed in auto-
capability. Their performance begins to quickly degrade nomous robotic combat vehicle missions of targeting, recon-
when subjected to the problems of variable lighting condi- naissance. and surveillance. In our experience with accom-
dons, image noise and object occlusion. plishing these practical military missions, we find that forspatio-temporal vision problems, purely quantitative

Due to recent advances in machine learning technol- approaches are unsuitable and insufficient because of the
ogy, some of the problems encountered in the target recogni- inexact nature of vision. As such, the technical basis of our
ton domain seem to be resolvable. Learning allows an work is qualitative reasoning and modeling for dynamic .

intelligent recognition system to use situation context in order scene understanding. Our PREACTE module for man made
to understand images. This context, as defined in a machine landmark recognition and DRIVE module for motion detec-
learning scenario, consists of a collected body of background tion and tracking are ready to be transferred and integrated e %
knowledge as well as environmental observations which may with Carnegie Mellon University's software. We are also "*%
impact the processing of the scene. working on integrating the PREACTE and DRIVE modules - %

Machine learning will facilitate two main break- for an end-to-end simulation demonstrating Honeywell's .. %
throughs in the target recognition domain: automatic knowledge-based scene dynamics approach for technology

knowledge base acquisition and continuous knowledge base transfer to a robotic combat vehicle.

refinement. The use of learning in the knowledge base con- In addition to the robotic combat vehicle applications
struction will save the user from spending the enormous as discussed above, our interest is also to transfer this tech-
amount of time necessary to derive target models and data- nology to other practical military applications. Precision
bases. Knowledge base refinement can then be incorporated Guided Weapons (PGWs), such as Honeywell's next genera-
to make any necessary changes to improve the performance tion SADARM, are one such application. Conventional tech-
of the recognition system. These two modifications alone nology, such as Automatic Target Recognition (ATR), has
will serve to significantly advance the present abilities of come a long way but it needs help. 3 It is clear that for vision.
most ta-get recognition applications technology to succeed in practical smart weapons applica- .'"

tions, it must be optimally suited for such multisensor combi- e%
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KNOWLEDGE BASED VISION
FOR TERRESTRIAL ROBOTS

Daryl T. Lawton, Tod S, Levitt, and Patrice Gelband

Advanced Decision Systems
201 San Antonio Circle, Suite 286
Mountain View, CA 94040-1289

1. INTRODUCTION model as a viewframe in accordance with the types of spa-

The Knowledge Based Vision Project [LLG*86, tial representations used in [LLCN87a, LLC*87, LLCN87b]. 5
LLM*87al is concerned with developing terrain recognition This describes the direction of hypothesized object in-
and modeling capabilities for an autonomous land vehicle stances and perceptual groups relative to an observer. It is
For functioning in realistic outdoor environments, we a e important to note that the viewframe can consist of either
assuming a vehicle with a laser range finder, controllable object instance or perceptual group as a basis for using
cameras, and limited inertial sensing. The range finder is stable, significant visual patterns as landmarks, indepen-

used for mapping and navigating through the immediate dent of recognition of them. The large scale space data
environment. The cameras are used for object recognition base stores viewframes developed from different locations.
and recognizing distant landmarks beyond the access of the Several types of relations between viewframes are stored in
rande reognzingr dsant anma the achicl es ofisthely the long term data base such as direction of travel between ,

range sensor. We are assuming the vehicle has realistically successively extracted viewframes, the relative locations of 0.

limited perceptual and object recognition capabilities. In viewframes, the rlativeklocat are
particular, it will see things that it won't be familiar with viewframes, twand them.bjects, such as landmarks, that are
and can't recognize, but which can be described as stable Two different types of processing ow in this achi-

visual perceptions. The vehicle will not always be able to twoireeent typ e frsin ls aing ah-
recognize the same object as being identical from very dif- tecture ae being studied. The first involves accessing anfeen pins f iw.Itwil av lmte, neac, nd~existing viewframe and using it to recognize predicted oh- -
ferent points of view. It will have limited, inexact, and un- jecs. In earlier work [LLM*87b] we showed how to de-

detailed a prior terrain information generally in the form of j
labeled grid data. One of the basic functions of the vehicle velop predicted scene models from a prior terrain infor-
isatobelabrdata. thisnerrn aof the environment. An- mation by creating a viewframe from grid data and using
is to elaborate this terrain map theenvironent.An-t it to direct grouping processes to find structures such as
otheuisi to sfy npredicted road regions, horizon lines, a terrain patch dis-

using iandmarks. continuities. The second involves developing a viewframe

The underlying functional architecture is similar to without any aprior information. Our current work is based
other model based vision systems [HR78, Bro84l with at- udtachments for representing large scale space (figure 1). It upon a generic terrestrial viewframe model which includes

tachent fo repesetin lage salespae (fgur 1) It several constraints on the formation of perceptual groups
consists of three different type of knowledge organized into se c aon the frmtion of rceptua gro
data bases and related inference processes. The model based upon the relative direction of gravity, the horizon
data base contains models for perceptual structures and line determined by the orientation to the inmediate ground

world objects. Primitive perceptual structures correspond plane and the projected egocentric directions from the ob-

to the types of objects produced by image processing rou- server on this plane. The critical, and s yet unreliable,

tines and include such things as edges, regions, junctions, assumption is that the grouping processes can deternine

matches, and difference images. More complete, stable, and occlusion/disocclusion contours and track groups over time

environmentally meaningful perceptual structures are pro- to deternine their stability as potential landmarks.
duced by grouping processes. These structures correspond 2MP

to connected contours. occlusion/disocclusion boundaries, 2. LONG TERM SPATIAL REPRESENTATION

repeating patterns, and surfaces. The object models corre- We have developed a multi-level theory of represen-

spond to terrestrial objects such as trees, ridges, bodies of tation of large-scale space based upon the observation of

water and relations among them such as attachment and distinctive visual events, i.e. landmarks (see "Qualitative

relative position. The scene data base is where the in- Navigation II" in this proceedings). This forms the basis of

terpretation of images from a single location is developed, the the representations used in the Large scale space data

This can include using multiple cameras or a panoramic base and the required attributes of scene models.

view from a single camera. We refer to the developed scene The representation consists of three different levels (fig-
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Figure 1: Functional Architecture

divisions of space using pairs of landmarks. "'.

A glh 1,dly consistent metric level in which object and The representation provides the theoretical founda-
view, positions are defined with respect to a single tionu for visual memory databases and path planning and

coordinate system. This is similar to what is available execution algorithms that include coordinate free, topolog-
from DMA/CATTS terrain grids. We have modified ical representation of relative spatial location, yet smoothly
our representation of them to support object-level at- integrate available metric knowledge of relative or absolute
tachments in addition to number-values angles and distances. In order to demonstrate our claims,

we have built a qualitative navigation simulator, called the pr

A local metric level consisting of locally attached co- QUALNAV model, that provides a software laboratory for
ordinate systems called viewframes which describe experimenting with spatial relationships in visual memory
a set of visible landmarks and associated range es- and their relationship to vision-based path planning and
timates from a single point of view. Viewframes execution.
have a localization area with respect to their land-
marks which can be attached to the global terrain 3. PERCEPTUAL GROUPING
grid, other viewframes, and landmarks. In particu- Perceptual grouping involves structuring images into
lar, viewframes with overlapping landmark sets can coherent, stable parts. This is the basis for model match- .

be localized with respect to each other to provide the ing and extracting environmentally stable information for
basis for planning routes between places defined in incorporation into long term memory. Perceptual group-
terms of observable landmarks. ing is necessary for the extraction of significant percep-

* A topological level consisting of viewframes with no tual events which can correspond to landmarks and for

range information. Localization is provided by orien- tracking them over time to determine their stability and

tation regions, which are based upon the topological value as landmarks. It also involves the classification of
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3.1. ENERGY MINIMIZING NETWORK GROUPER

In this grouper, the consistencies and constraints which
Mountain define perceptual grouping criteria are encoded in the roef-

ficients of an energy functional whose state variables are the
Suig/ perceptual links between image tokens. These links may be

either on or off, that is, existent or nonexistent. Minimiza-

I /tion of the energy functional results in the formation of
Tr. perceptual groups of image tokens which are optimal with

I respect to the grouping constraints.

I IThis work is modeled after Hopfield's neural network
I approach [Hop84, HT8.5 to solving non-polynomial op-

ou Iont. timization problems. The Hopfield approach has been

applied with success to problems in early vision [Kea86,

,~IKMY86). Our work represents an extension of parallel net-
m I work technology beyond the pixel level of vision to inter-

Vtfm mediate levels which involve symbolic and relational levels
of processing.

T.9 ITo accomplish our goal of treating an intermediate level
vision problem in a network approach we make use of two
key innovations. First, we introduce the concept of 'prim-
itive' symbolic tokens, which is used to manipulate high-
level symbolic tokens in a well-defined manner and which
play an essential role in the mapping of image data onto the

M"l network. By a primitive token we mean one which has only

a single reactive site with which it may be linked. For ex-
ample, if the grouper is performing edge linking, then each
half of a given line segment is considered to be a primitive
token. The second innovation is the introduction of hierar-
chical control of the network. This regulates the recursive
combination of perceptual groups into large stable groups.

Figure 2: Multi-level Terrain Representation A summary of the manner in which the network
grouper operates is the following. A preprocessing stage

image structures into a limited number of qualitative types is used to first extract symbolic tokens from an image or
such as occlusion boundaries or surface texture. In previ- time-sequence of images, and then to reduce these tokens
ous work ILLM*87b], we developed a grouper based upon to primitive tokens. A local or global energy minimization
parameterized descriptions of contours in terms of image procedure is then used to form stable perceptual groups,
position, color contrast, curvature changes, and other local i.e., linked clusters of tokens. A control process freezes sta-
and global characteristics of a contour. The grouper would ble groups by forming permanent links from the variable
then produce an optimization measuie from these charac- links; it then allows the minimization grouping process to
teristics that was used in a search process to generate and continue at a higher level to produce larger coherent struc-
order consistmut contours with these characteristics. This tures. This recursive combination of perceptual groups cor-
was useful for matching predictions from a prior grid ter- responds to a hierarchy of processing performed by the net-
rain information and for producing larger groups from seed work. The approach is summarized in Figure 3.
structures which could determine the parameters to ini-
tialize the grouper. We are now developing two groupers 3.1.1. ENERGY FUNCTIONAL
for determining structural relationships. Both employ the
same underlying representation of perceptual objects, but We use a Hopfield energy functional of the form
have different control structures. One of them uses an en-
ergy minimization formulation. The other has an explicit E = - Zl, - Z T,j.Ijjb + C i I, (4, - 1). (1)
set of two dimensional patterns used to direct the formation 2 2
of groups. We are incorporating motion information into
the grouping process. There is a natural synergy between where I, is a boolean variable which is equal to 1 if primi-
these. Grouping processes produce larger image structures tive tokens labeled by i and j are conceptually linked, and
which can match more reliably. Motion information can is 0 otherwise. The T's can be thought of as lookup tables
validate potential groups by the common motion of their of real v'tdues specifying the compatibility of feature types
components. in a given application. T, > 0 corresponds to the compati-
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Figure 3: Schematic of our approach (see text). The labels able.) The last term in Eq. (1), with C a constant chosen

i,j,... refer to 'primitive' tokens, which occupy nodes of sufficiently large, ensures that the li will in fact tend to-

the network. The 4, are variable links between primitive ward the values 0 and 1.

tokens; the P are permanent links used to bind stable We minimize this energy functional using the approach
perceptual groups. The recursive (hierarchical) aspects of due to Hopfield. First, for each pair i, j we define an inter-
processing are not shown in this figureo nal state variable uij which is related to , through a gain

function g, which we take to be:

bility of two features i and j. If T, > 0 then minimization l, = g(u)= 1 (2)
of the first term in Eq. (1) yields 1j, = 1, that is, a link is 1 + exp(-Aui)'

formed between the tokens. However, if Tj3 < 0, signifying where A is a large positive constant. The purpose of this
incompatibility, then 4, = 0. The comparison of pairs of gain function is to restrict lis to the interval [0, 1]. Then,
tokens bv this term can be used in such applications as edge t mth ei
linking, region linking, shape matching, and many others. terate gadient equntion

The second term in Eq. (1) considers the compatibil- iterate the differential equation
ity of pairs of conceptual links. Note that if T,,;kl > 0, du., u
then both 1, and ld will tend to be equal to 1. However, - = u, + 1 Tj d _ T.,;kl,, -C (2ij - 1), (3)

if T,3 ;k1 < 0 so that linking i and j is incompatible with " A

linking k and 1, then at least one of lj or Ik must be equal for each u,, Since the connections T U:jk in Eq. (1) are
to 0 to minimize this term. Figure 4 illustrates possible ap- symmetric, E is a Lyapunov function and the convergence
plications of this term. (We note that since our knowledge of this procedure is guaranteed [Hop84].
of how visual systems form perceptual groups is imprecise,
arbitrariness in the choice of these coefficients is unavoid-
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3.1.2. PRIMITIVE TOKENS: MOTIVATION * A classification network for determining the type of
AND DEFINITION group-relationship which exists between objects

If i and j in Eq. (1) refer to tokens of arbitrary type,
then there is no way to refer to specific internal degrees of * An agenda-based mechanism for determining which
freedom of these tokens. For example, in an edge-linking groups to apply grouping rides to
application, if i and j refer to line segments, we have no . A hierarchical communication scheme for forming
way to specify which ends of t&c segients -ve were linking, groups among potentially spatially separated obiects
Because of this ambiguity, it would not be possible, for ex-
ample, to restrict the formation of unbranched lines, since
it would not be possible to differentiate two segments link-
ing to the same end of a third segment from two segments Groups consist of the following attributes:
linking to opposite ends.

Our solution to this problem is to define the concept
of 'primitive' tokens. By a primitive token we mean one Bookkeeping Attributes include the list of inher-
which has only a single reactive site with which it may ited group types applicable to a group, the component
be linked. Links 14j may not be formed to multiple sites groups, the groups a group is contained in, and the
within a primitive token. Scalar tokens, that is, tokens feature images the group is in register with.
which are described by a single value, are by definition * Group Specific Attributes are the properties spe-
primitive. Pixels are examples of scalar tokens, since they cific to a given type of group. For a Linear Group this
are described solely by their grey-scale values, includes attributes such as length and orientation; for
3.1.3. APPROACH TO HIERARCHICAL CONTROL a similarity group this includes the average and vari-

ance of intensity and contrast.

Much of the formal structure of our approach has been

created out of consideration for the intrinsically recursive * Shape Description specifies the structural charac-
or hierarchical nature of perceptual grouping. One of the teristics of a group. Shape descriptions are treated
major research issues which remains is the determination differently than other group specific attributes be-
of the properties of the controls which are used to go from cause they are themselves groups which can be in-
one level of the hierarchy to another. (We note that we do volved in grouping operations. This allows for uni-
not intend to imply that these 'levels' are well-defined - form grouping operations to be applied to groups con-
they are not.) A hierarchical control scheme must be able sisting of disconnected elements. .
to pull out stable perceptual groups as well as to generate
new links and tokens so that these stable groups become * Assimilation Measures are for evaluating how well
available for higher-level grouping. all the components of a group fit to the defining char-

A perceptual gruup is defined to be any cluster of con- acteristics of the group. If the assimilation measures
nected tokens. Specifically, two tokens i and j are in the are combined they are constrained to evaluate to be-
same cluster if they are either directly connected (I = 1 tween 0 to 1. Note that multiple assimilation mea-
or Pi, = 1) or indirectly connected through other links. sures are associated with a group corresponding to
When such a cluster is deemed to be stable in terms of how it was formed with respect to the classification
the energy minimization process, then we would like to network.

be able to freeze this cluster by exchanging the variable Classification Rules are the conditions used to de-
links 4, for permanent ones P, and then continue with termine if a group of the specified type should be
higher level perceptual organization. Pulling out percep- formed between a pair of groups. Tis is associated
tual groups thus entails defining what we mean by 'stable'. with a node in the classification network correspond-
Both local and global definitions of stability are being con- ing to the group.

sidered. th

Once stable perceptual groups are isolated, they should e Extension Rules specify the conditions under which Nt

be available for higher level grouping, fwo example, to dis- a group can enlarge itself by adding surrounding
cover symmetries or shape similarities on a more global groups to it. This includes Neighborhood Deter-
scale. Consistent with the recursive nature of our approach, mination Constraints which determine the areas
these stable groups are redefined as primitive tokens, and over which groups can form potential relations with P
variable links are generated between them so that they may other groups. Those fall into a small number of gen-
be further grouped. oral classes, such as a uniform expanding neighbor-

hood or a directed, cone shape neighborhood.
3.2. RULE BASED GROUPER

The key" components of the rule based grouper are: F
Figure 5: Group) Attrnilutes

* A common general format for describing groups
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The general attributes of perceptual groups are shown attributes and relations to form a particular type of group.
in Figure 5. The different types of groups are organized If so, an instance of that type of group is created which
into the attribute inheritance network shown in Figure 6. inherits the attributes of the parent type of groups. Dif-
There is conditional inheritance along the paths in the clas- ferent types of groups can be created for the same set of
sification network, so an Interrupted Linear Group inherits component objects.
the attributes of a linear group, a sequential group, and a All the assimilation measures associated with each
similarity group and can selectively inherit the attributes group instance are then sorted into different lists corre-
of each of these. sponding to each type of group. There are other also lists

The grouping architecture consists of virtual proces- for the size of objects and for the number of time steps
sors called grouping nodes which are organized hierar- until a group either indirectly or directly was involved in
chically (Figure 7) with respect to the underlying spatially the application grouping rule. In each of this lists, the
organized data base for extracted perceptual objects. The best assimilating groups are selected with a bias towards
arrangement of grouping nc des is a basis of communica- groups that are more specific with respect to the classifi-
tion and applying grouping rules to non-adjacent percep- cation network. Three different actions are applied to the
tual structures which are potentially separated by a large selected groups. First, an extension rule which is specific to •
distances. Groups at one level can be made available to the type of group is applied which will extend the group.
higher level grouping nodes for the application of rules in Second, the group forms relations with groups in a uni-
a more general context with other groups extracted over a form neighborhood which are then refined with respect to
larger area. the classification network. Third, the group forms relations

The processing flow at each grouping node is organized with groups in the entire area of the label plane covered by
in a simple loop. Groups are initially obtained by the ap- it's immediate grouping node and is also passed onto a list
plication of established routines for extracting junctions, combining the groups from adjacent grouping nodes. 0
contours, and regions. This is followed by a thinning pro- The newly formed groups are then sorted back into the
cess, the extraction of adjacencies between contours, and agendas and processing continues. Processing can continue
fitting linear segments to the resulting contours. This re- indefinitely as less and less interesting objects become can-
suits in similarity, curvature junction, topological junction, didates for the application of grouping rules. Processing
linear, and sequential groups. About each group instance can be stopped using criteria such as when there is a suffi-
a uniform neighborhood is formed to determine pairs of ciently uniform covering of an image with extracted groups
groups. The relationship between each pair of groups is or when all structures belong to unique groups.
then specialized based upon the classification network in
figure 6. Associated with each node in this network is a
classification test to see if the groups have the necessary

-S

LINEOFIIENTEBL BIAEA RAIA OREN4

- 5.. '4

C MPOSITE r PARALLELPTE

IN OUT
Figure 6: Classification Network

"0'
10' ' !



REFERENCES

GROUPING REEENE

ASSIMILATION [Bro841 R. A. Brooks. Model-based computer vision.
Computer Science: Artificial Intelligence, (14),
1984.

[Hop84l J. J. Hopfield. Neurons with graded response
have collective computational properties like
those of two-state neurons, In Proc. Nati. Acad.

Sci. USA 81, 1984.

[HR781 A. R. Hanson and E. M. Riseman. Visions: a
computer system for interpreting scenes. Corn-

Figure 7: Grouping Node Hierarchy puter Vision Systems, 1978.
FHT851 J. J. Hopfield and D. W. Tank. 'neural' compu- p

tations of decisions in optimization problems.
4. IMAGE UNDERSTANDING SOFTWARE Biol. Cybern. 52, (141), 1985.
ENVIRONMENTS

The software infrastructure we have developed on [Kea86] P. K. Kienker and et. al. Separating figure from

the knowledge based vision project has been integrated ground with a parallel network. Perception 15,

into a uniform and transportable software environment (197), 1986.

for image understanding, simulation, and terrain model- [KMY861 C. Koch, J. Marroquin, and A. Yuille. Analog

ing [MRL88, MNL871 (see "IU Software Environments" 'neuronal' networks in early vision. In Proc.

in these proceedings). The environment is organized in Natl. Acad. Sci. USA 83, 1986.
terms of four major components: 1) an object-oriented
programming mechanism for defining, creating, modify- [LLC*87] T. Levitt, D. Lawton, D. Chelberg, P. Nelson, %

ing, and combining objects. This includes common im- and J. Dye. Visual memory structure for a mo-

age understanding objects such as curves, images, and his- bile robot. In Proceedings of the AAAI Work-

tograms. There are mechanisms for defining new objects shop on Spatial Reasoning and Multisensor Fu-
with automatic inheritance of programming constructs for sion, Morgan Kaufmann Publishers, Los Altos,

access, modification, and display. 2) An underlying func- California, 1987.
tional form built from an extendable set of macros that
is used for expressing common processing operations for [LLCN87a] T. Levitt, D. Lawton, D. Chelberg, and P. Nel-

several different types of objects. This functional form cor- son. Qualitative landmark-based path plan-

responds to specifying an abstract parallel architecture in ning and following. In AAAI-87 National

which there is a virtual processor associated with each ob- Conference on Artificial Intelligence, Seattle,

ject. Thus, one can program as though there is a pro- Washington, 1987.

cessor at each point in an image. 3) A set of databases r

which are accessed through a uniform interface for auto- [LLCN87b] T. Levitt, D. Lawton, D. Chelberg, and P. Nel-

matically maintaining resources and results during inter- son. Qualitative navigation. In Proceedings of
active or autonomous pro'-essing. There are databases the DARPA Image Understanding Workshop,
for the storage and access of long term information such Los Angeles, California, 1987.

as procedures, object definitions, and instances of pro- [LLG*86 D. Lawton, T. Levitt, J. Glicksman, C. Mc-
cessing environments. 4) An interactive display facility.

We hve xtededthisenvronentintoComon ispConnell, T. Miltonberger, H. Muller, P. Nelson,
We have extended this environment into Common Lisp and C. Neveu. Knowledge-Based Vision Tech-
with a more generic window based interface for portability. niques Task B: Terrain and Object Modeling

ACKNOWLEDGMENTS Recognition - Final Annual Technical Report.
Technical Report, Mountain View, California,

This document was prepared by Advanced Decision Sys- 1986.

tems (ADS) of Mounatin View, California, under U.S. [LLM*87a1 D. Lawton, T. Levitt, C. McConnel, P. Nel-

Government contract number DACA76-85-C-0005 for the son, M. Black, D. Edelson, K. Koitzsch, J.
U.S. Army Engineer Topographic Laboratories (ETL), Fort Dye, T. Binford, D. Chellerg, D. Kriegman,
Belvior, Virginia, and the Defense Advanced Research and J. Ponce. Knowledge-Based Visior Tech-
Projects Agency (DARPA), Arlington, Virginia. The au- niques Task B: Terrain and Object Modeling
thors wish to thank Sachi Toyofuku for providing admiis-~Recognition - Final Annual Technical Report.

tration, coordination, and document preparation support. Technical Report. Mountain View, California.

109 "

I.I



)

'F -

1987.

ILLM*87b] D. Lawton, T. Levitt, C. McConnell, P. Nel-

son, and J. Glicksman. Environmental mod-
eling and recognition for an autonomous land

vehicle. In Proceedings of the DARPA Image

Understanding Workshop, 1987.

[MNL871 C. McConnell, P. Nelson, and D. Lawton. Con- 
0

structs for cooperative image understanding

environments. In Proceedings of the DARPA

Image Understanding Workshop, Los Angeles,

California, 1987.

[MRL88) C. McConnell, K. Reilly, and D. Lawton. Pow-

ervision ManuaL Advanced Decision Systems,

Mountain View, California, 1988.

1101
J,

II0 *S

.i,.,.',j~-,. :.. ,..,-._.-..".,_,-:'_ _.r..,' .' .'.-... ,. . ,_.',.".-'_'.r



'

tI

-

4

_eI



0

An Integrated Image Understanding Benchmark:
Recognition of a 2 1/2 D "Mobile"'

Charles Weems, Edward Riseman, Allen Hanson Azriel Rosenfeld

Computer and Information Science Center for Automation Research

University of Massachusetts, Amherst, MA University of Maryland, College Park, MD

Abstract
research community on a unified approach to vision. There

This benchmark is the second in a series of DARPA- are many competing approaches and a great deal of debate •

sponsored efforts to evaluate the merits of various parallel has persisted. Nonetheless, it is clear that there is a need

architectures as applied to Image Understanding. The first to address some of the vision/architecture issues in a form

benchmark exercise considered only execution times for a that will allow scientific insight and progress in hardware

set of isolated vision-related tasks. This second benchmark development.

exercise addresses the issue of system performance on an

integrated set of tasks where the task interactions that are Recent attempts at defining a vision benchmark include

typical of complex vision applications are present. The goal the Abingdon Cross problem JPreston, 1986), defined at

of this exercise is to gain a better understanding of vision the 1982 Multicomputer Workshop in Abingdon England,

architecture requirements, that can be used to guide the and the Tanque Verde benchmark suite [Uhr. 19861, de-

development of the next generation of vision architectures. fined at the 1984 Multicomputer Workshop in Tucson Ari-

zona. The most recent attempt at constructing a bench-
mark for vision emerged from the DARPA Image Under-

standing community, where a set of ten vision tasks were

1. Introduction defined. These were: Gaussian convolution, zero crossing
detection and output of border lists, connected components

The need for a computer vision benchmark for parallel ar- labelling, Hough transform, convex hull, Voronoi diagram,

chitectures has become apparent as researchers from the minimal spanning tree, visibility of vertices in a 3-D model, %

fields of computer vision and computer architecture have minimum cost path, and subgraph isomorphism. A meet-

had increasing contact over the last several years. Motion ing was held in November, 1986, in Washington to compare

sequences at moderate resolution (512 x 512 pixels) and the results of programming, simulating, or estimating the

typical frame rate (30 frames/sec) in color (3 bytes) involves performance of a number of machines on the the individ-

about 23.5 Mbytes of data per second. The amount of com- nal benchmark tasks. The results were both interesting

putation required for dynamic scene interpretation includ- and thoroughly confusing. The data sets were only loosely

ing the labeling of objects, surface/volume reconstruction specified, leading some to groups report average perfor-

and motion analysis is difficult to estimate; however, for rnance while others reported worst, case performance; dif-

many applications computational power in the range of 100 ferent groups used different algorithms; some used 32-bit c

billion instructions per second, plus or minus two orders of floating point arithmetic while others used 16-bit integer

magnitude, is probably required. Thus, vision has become arithmetic, etc. These results must be interpreted with ex-

a subject of major interest to computer architects. treme care.

Unfortunately. the evaluation of progress in vision ar- The benchmark defined in this paper is an outgrowth

chitectures has been difficult I)uff, 19861. There are now of the first )ARPA benchmark, and is again sponsored by

quite a few interesting machines, both existing and pro- DIARPA. We have chosen here to address the need for an

posed, that may be effective for at leastr part of the vi- integrated vision benchmark that transcends several differ-

sion problem, However. coniputer vision transcends a wide cnt representations and forms of processing that are tvpi-

range of representations and forms of processing. In ad- cal of complex vision applications. The scientific gain that J .,

dition. despite exciting advances in many of the subtopics should result from this exercise is a better iinderstanding of d.,'

of computer vision, there is currently no consensus in tih vision architecture requirements, and the performance bot-

lenecks in different classes of machines, so that t lie needs
thi w.,r k wns -ipp,,i,- i in 1" i-" th, A~lv;tt,,,I |t.,lh [r)- ¢: l

A 'Tiy w, t h r ll I ' f , fhsw ,,anur . 16 P1 . v .,, of vision processing c anl be better addressed in Ilhe next

11 ti' ,Vd by thl Fnginr l', ,p, .onhi, tnI.,ri ,rv generation of architectures.
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2. Benchmark Philosophy that the results will be consistent and easier to compare.
Benchmarkers are welcome to submit timings for more op-

In writing an integrated image understanding benchmark, timal methods in addition to those for the recommended
the goal is to create an interpretation scenario that is an method. However, every attempt should be made to use

approximation of an actual image interpretation task. One the recommended method, or as similar a method as pos-
must remember, however, the benchmark scenario is not sible.

an end in itself, but rather it is a framework for testing We will be more fully instrumenting each task in the
machine performance on a variety of common vision op- benchmark. In addition to simply measuring raw speed,
erations and algorithms, both individually and in an inte- we will develop a set of quantitative and qualitative mea-
grated form that requires communication and control across sures to be reported for each task, as well as for the entire
algorithms and representations. This benchmark is not in- scenario. Thus, it may be necessary to run the benchmark
tended to be a challenging vision research exercise, and in more than once in order to gather the required results. For
fact we believe that it should not be. Instead, we would example, if it proves difficult for a system to separate the
like to exercise parallel architectures with a diverse range processing time from the time required to output the in-
of operations that are commonly used and in a sequence strumentation data for an intermediate result, then it may

that requires the sorts of transformations of data and con- be simpler to rerun the benchmark with the instrumenta-
trol of processes that occur in a typical interpretation task. tion output disabled in order to determine processing times.

In other words, the benchmark must be interesting and Note that this instrumentation will be specified in a later

broad, but simple and generic. The problem is to bal- communication.

ance these conflicting requirements and yet define a set In order to make the resulting data more meaningful,
of tasks that effectively tests the capabilities of different we are attempting to constrain the variability in the exper-
architectures. A second constraint on the development of iments as much as possible. The benchmark designers (the
this benchmark suite is that it must use as many of the University of Massachusetts and the University of Mary-
algorithms developed for the previous DARPA benchmark land) have assumed the responsibility of testing this bench- V
of non-integrated vision tasks as possible, in order to take mark using traditional (sequential) methods before parallel

advantage of the programming effort that has already been programming and analysis begins. This has removed am-

expended. biguity and led to more precise statements of the problem,
detailed specifications of the benchmark tasks, and codeWe have also attempted to minimize redundant oper- for the sequential benchmark and the generation of image

ations with respect to the architectural features that are
exercised. The result is that, from an image understand- data. The input data sets will be provided to those partic-exrcsd.Te esl i ha, rm nimgeudesan- ipating in the study so that all machines will be evaluated .%
ing perspective, the benchmark scenario may be viewed to
be somewhat unrealistic and contrived as an interpretation on the same test data, and code for generating additional
task. However, as a benchmark, it is a valid means of test- test data will also be distributed. The benchmark design-
ing performance, ers have the responsibility to produce data sets that test-S

the problem domain fairly, avoiding situations that are un-
The great variety of architectures that should be tested realistically complex and beyond the reasonable capability

is itself a complicating factor in designing a benchmark. of any machine, while testing many interesting empirical ,_
We recognize that each architecture may have Its own most situations.
efficient algorithm for computing a given function. Hlow-
ever, the tasks must be as well-defined as possible so that In response to the results of the first DARPA bench-

the results from different machines will be comparable. We mark exercise, we are attempting to develop guidelines for
should be testing the performance of the machines rather factoring in differences in hardware technology and the scal-
than the cleverness of their programmers. Consequently, ability of architectures. This will of course, require the
there should be no short-circuiting of the benchmark tasks specification of technology assumptions by each participat-

even if the same solution can be achieved by other, possibly ing benchmark group. -

simpler, means. As a final note, we realize that every benchmark exercise -"
has a tendency to turn into a horse race. Hlowever, we•

To this end, we are specifying a recommended method ho
for solving each of the tasks. Whenever possible, this is the hope that the result of this exercise will be the creation
method that should be used. If the nethod is inappropriate of a much more useful set of data and lessons than simply
for a particular architecture, then another nimet hod nay In' some lap times that are only partially interpretable. The
used. In such a case, the written summary of results should additional constraints and required instrumentation are our %, .U-,

include a justification for the choice, and a explanation of attempt to ensure the usefulness of the benchmark results, ',U,.

includewahy ustficationfo the ecomthoc wa t aplat, f and provide scientific insight and progress in an exciting as S
why the recommendcd method was not applicahle t,, the well as confusing research area. .'

architecture. Note that the recommended met hod may not

be optimal. The objective is to use a simple technique so
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3. Features of the Benchmark gles may occlude portions of the mobile object, and some of

the adjacent rectangles in the scene may have very similar

* It involves a simple image domain with well-defined, brightnesses.

well-behaved objects. One of the images is from a depth sensor, and the ot her

is from a visible light sensor (B&W). The depth image is %
" It requires both bottom-up (data-directed) and top- a 512 x 512 array of 32-bit floating-point values. The in-

down (knowledge or model-directed) processing. The tensity image is a 512 x 512 array of 8-bit integer values.
top down processing can involve processing of low- Figure I shows an intensity image of a sample object. Vig-
and intermediate-level data to extract additional fea- ure 2 shows a depth image of the same object. Figure 3
tures from the data, or can involve control of low- shows the same object as in Figure 1, with extraneous rect-
and intermediate-level processes to reduce the total angles added. Figure 4 shows a depth image of the same

amount of computation required. object with extraneous rectangles added. In the dlepth im-

* It tests low-level operations such as convolution, ages (Figures 2 and 4), darker rectangles are closer. (Note

thresholding, connected components labeling, edge that some of the rectangles in the depth images have been -,

tracking, median filter, Hough transform, convex hull, lost in the printing process.)

and corner detection. A set of mobile models is provided, any one of which

* It requires utilization of information from two sensors may be present in the images. The goal is to determine
in order to complete the interpretation process. which of the models is actually present, the degree to which .

it is visible (matchable), and to update the model with ".",
* It tests grouping operations and graph matching. positional data that has been extracted from the Images.

as representative examples of intermediate-level and

high-level processing, respectively. 0
5. Description of a Mobile Model

sIt requires the use of both integer and floating point

representations. A mobile is a collection of rectangular surfaces that are ori-

ented parallel to the image plane. This results in a constant
It involves the presence of occlusion ie. absence of depth for each rectangle. A mobile can be thought of as a
data) so that issues of partial matching must be con- hanging mobile looked at from directly above. The rectan-

sidered. gles are suspended perpendicular to the force of gravity by

* It tests the communication channels between the sym- invisible links. The rectangles can have any one of several

bolic and numeric levels of processing. different intensities.

A mobile model is described by a tree structure that
represents the invisible links, increasing in depth, between

4. Overview of the Integrated Benchmark the rectangles of the mobile. Each node of the tree contains

depth, size (lengths of the major and minor axes), orienta-
This benchmark task suite involves recognizing an approx- tion, and intensity information for a single rectangle. The

imately specified 2 1/2 D "mobile" sculpture composed of links of the tree describe spatial relationships between cer-

rectangles, given images from intensity and range sensors. tain pairs of rectangles. Each model link represents the

It is our intention that the test images be designed so that two-dimensional projection of a three-dimensional mobile ,i
neither, by itself, is sufficient to form a complete match. link into the plane of the parent rectangle and is described

The object to be recognized is a collection of rectangles by a bearing and a distance from one rectangle's center
of various sizes, brightnesses, two-dimensional orientations point to another rectangle's center point. Thus the spatial

and depths. It can be thought of as a semi-rigid mobile con- rel2tionships between rectangles are specified in the X and %

sisting of suspended rectangles floating in space with fixed dimensions by the links, and in the Z dimuension b.\ the "9

spatial relationships. To simplify the task, each rectangle ,epths of the nodes.

is oriented normal to the Z axis (the viewing axis) and the Each rectangle defines a new coordinate sVstem for it,

image is constructed under orthographic projection. The child links that is relative to its own position. The (enter of

model of the object that is provided is approximate in the the parent rectangle becomes the origin of tho coordinate
sense that the sizes, orientations, and depths of the rectan- system for links emanating front it. The nmodel's coordinate %.S
gles as well as their spatial relationships are constrained to system is rotated and shifted with respect to the image

within some tolerances. coordinate system.

The rectangles that make up the object are interspersed The model given does not exactly represent the mobile

with additional extraneous rectangles in the scene from pictured. The links in the mobile can stretch and sway. '-A

which the two images are taken. These additional rectan- This means that the length and bearing of a imobile link
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Figure 1. Intensity Image of Example Model
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Figure 2. Depth Image of Example Model
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may be slightly different from the nominal values given in perpendicular to the image plane and through the center
the model. Further, the sizes and depths of the recentangles of that pixel. Therefore, there is no aliasing and all rectan-
are given with an associated imprecision. Intensity is not gles form sharp boundaries with any occluding or occluded U

subject to any variation from the model-specified nominal rectangles of different intensity, and with the background.
values. In addition to the rectangles that are present in the 4

An instantiation of the model is created by randomly model, the scene contains spurious rectangles that occlude,

perturbing some of the parameters of the model: a) the or are partially occluded by, portions of the model. All
nominal depth, size, and orientation of each rectangle, and sorts of coincidental alignments uf rectangles may occur.

b) the nominal angle and distance of each link given in the In general, it will be impossible to completely extract, via

model. The perturbations are obtained by sampling a ran- data-directed processing, all of the object model rectangles
dom Gaussian distribution (truncated at a = 3). The scene from the intensity image alone since some rectangles may
is then created by orthographically projecting an instanti- be occluded (partially or completely) by others. It may
ation of the model onto the image plane. also be the case that two rectangles of the same gray level

Note that since each link is perturbed individually, the are adjacent or overlap. Thus, it is possible that from 1

positioin of a rectangle connected by a single link to a known to 4 of the corners of any given rectangle may not be visi- S

rectangle is constrained to a small area. However, rectan- ble, thereby producing ambiguity in the matching process.

gles that are two or more links from a known rectangle have Note that it will be possible to extract some of these rect-

significantly greater uncertainty in their relative position, angles from the depth data even though they are hidden in

and thus are constrained only to a much larger area. the intensity data. For example, a large spurious rectan-
gle might be located behind a smaller model rectangle with

A set of error factors (tolerances) that define the maxi- the same gray level, so that they are distinguishable in the
mum perturbation of each model element's parameters will depth image, though not in the intensity image.

be provided with each data set. The different error factors

are: 7. Description of Depth Image

E, = Error in X and Y position
(link angle and distance) The depth image is a 512 x 512 array of 32-bit floating

EL = Error in rectangle size (axis lengths) point values (IEEE standard representation). A larger pixel

ED = Error in depth value indicates greater depth. The coordinate system is the
same as that of the intensity image, and the depth image

Note that E., specifies the error factor for both a link's an- is registered with the intensity image. The background is

gle and its distance. This is because Ey is actually tie dis- at a constant depth which is greater than the depth of any

tance that the child rectangle can shift in the X -- V plane, rectangle in the image. At first, a noiseless image is created

relative to the nominal position specified by the link. E,, by drawing the spurious and model rectangles in greatest

may thus be thought of as the radius of an error circle. cen- to least depth order. Because the invisible links of a mo-

tered at the nominal position of the child rectangle. which bile model are similar in length, the result is a clustered
defines the maximum X - Y displacement of the center of distribution at several principal depths. Within each depth ,.4%

cluster, the depths of the individual rectangles differ by
the instantiated child rectangle. just a small amount relative to the differences in depth be-

Roughly ten mobile models will be providedlwith the tween clusters. The spurious rectangles are also present in

test images and it is the goal of the benchmark processing the depth image and have roughly the same distribution as

to determine which model best matches the image data, the model rectangles. Simulated Gaussian sensor noise is

and to update the positional data in that model, added to the noiseless depth image to produce the actual
test data. The distribution of the noise is scaled and trun-
cated so that individual pixels will have a depth error that

6. Description of Intensity Image at most causes them to appear at different depths within
a cluster but is not so great that they will appear to be-

The intensity image consists of an array of 512 x 512 8-bit long to rectangles of a different depth cluster. Thus, it is

pixels. The upper left pixel in the image is assumed to have possible a pixel one rectangle to a depth vau

the coordinates (0,0) in the discussion that follows, with the that appears to make it a member of an adjacent rectangle

X coordinate increasing to the right and the Y coordinate in the same depth cluster, and therefore depth boundaries

increasing downward. The rectangles in the image appear will be unreliably extracted.

against a black (level 0) background. Each rectangle will The placements and depths of the spurious rectangles
have a constant gray level, selected from a small number of will be such that some of the model rectangles may be ina-
levels (say 8). The intensity image is noiseless and created possible te extract from the depth image. In the intensity

as if only one ray from the scene reaches every pixel: the ray image, however, these rectangles may be easier to extract.
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For example, a large spurious rectangle may be placed only 8.3 Intermediate-Level, High-Level, and
slightly behind a smaller model rectangle, so that the dif- Top-Down Processing
ference in their depths is lost in the noise, hut the two,

rectangles might differ significantly in gray level. Intermediate level processing starts with bottom-up group-

ing of right-angle corners, in component tokens, in order
to generate rectangle hypotheses. The resulting candidate
rectangles form the basis of the initial model graph match-

8. General Overview of the Processing ing operation. The intermediate level operation on the
depth image is a top-down directed search for expected

Scenariorectangles, incorporating a spatially local Hough transform
with model-constrained ranges on the parameters for each

All of the processing steps given must be included in the rectangle. The high level operations are first, constrained

parallel versions of the benchmark. Furthermore, the gen- subgraph-to-subgraph matching to choose and orient the

eral scheme of the processing described at each step should models to be matched; and second, top-down control of

be followed. Included in the description of the steps are probes into the depth and intensity images to find and fix

thresholds and other parameters, which should be used as the parameters of the rectangles that are required to fill 0

given. out the chosen models. As a concluding step, an image is

Processing begins with some low-level operations on the produced that represents the single best model match as an

intensity and depth images, followed by intermediate-level overlay with the original intensity image.

grouping. Given these initial results, the remainder of the The goal of the first graph match step is to attempt

benchmark task involves the following steps: Initial rect- to establish the most likely positions and orientations of

angle hypothesis generation, initial model matching, top- the modeled objects in the image and possibly to eliminate .
down depth verification for the initial match and extension some of the models from further consideration for match-
of the model match for disambiguation and model update, ing. Since only some of the model rectangles will have been

and result presentation. extracted from the intensity image, portions of each model

will have no match. The unmatched portions of a graph

8.1 Initial Processing of the Intensity Im- model are used to focus attention in the depth image so
that add.itional localized features can be extracted and the

age model can be extended through the use of context. This

The low-level operations on the intensity image consist of match extension step is further divided into t hree parts that
are repeated for each model rectangle: model directed ret-

identifying connected components and finding the corners angle detection, rectangle depth and intensity veriication.

of each connected component based on a K-curvature op- at
eration. The initial processing of the intensity image also a m ep .

includes an intermediate level grouping operation that con-

sists of creating good hypotheses for rectangles from the

lists of corners around connected components in the image. 9. Low-Level, Bottom-Up Processing
The result of the initial intensity image processing is thus a
set of connected component tokens. The only feature that %

is extracted from each connected component as a whole is 9.1 Intensity Image
its intensity, However, each component region has associ-

ated with it a list of the corners that were extracted From 9.1.1 Label Connected Components
its boundary. Task: Each connected component in the image is given a

unique integer label. A connected component is any .\

8.2 Initial Processing of the Depth Image contiguous collection of pixels that have the same in-
tensity level value. Contiguous is defined as adjacency

The low-level operations on the depth image consist of in any of four directions (N,S,E,W). The result is an
smoothing via median filtering, computing the magnitude image-size array where each pixel in a component has

of the gradient, and thresholding the gradient magnitude. the value of the component label.

The result of the initial depth image processing is an image 
'r,

array that represents points in the depth data that have Recommended Method: Each pixel has an address as-
large gradient magnitudes. The smoothed depth image s sociated with it that is the concatenation of its binary

also used in later stages of processing. row and column number (in a 512 512 image, the
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resulting address is an integer with 18 significant bi- smoothing function is computed by forming the sum of the

nary digits, the column number being the low order 9 products of the angle values of the edge pixels within each

bits of the address). Each connected compo,,.ii takes 7-wide window (3 pixelb in each direction from the center

as its label the lowest pixel address value from among of the window) along the border. The window coefficients

the members of the component. This may be done are:

by propagating the lowest address from the pixel at

that location throughout the component. The order 3, 27, 90, 136. 90, 27. 3

in which the propagation proceeds (ie. radially, by

rows or columns, through distance doubling, etc.) is The first derivative of curvature is computed by convolv-

left to the choice of the benchmark programmer. ing the border with a mask of -1, 1 (i.e. computing the

difference between each pixel on the border and one of its
neighbors). Zero crossing points are computed by com-

9.1.2 Compute K-curvature and Extract Coe'n-rs paring the signs of neighboring border pixels. Corners are

located by thresholding the smoothed curvature values and

Task: For each connected component, compute the forming the logical AND of the resulting binary image with

K-curvature of the boundary of the component. (The the binary image that results from the zero-crossing detec-

boundary is the set of pixels that are tembers of tlhe tion. (A curvature threshold of 1000 was used with the

component and are adjacent (N,S,E,W) to at least supplied test data.)

one pixel that is a member of another component).

The K-distance is a parameter supplied with the (lata

set (in the test set, a distance of 4 is used). The 9.2 Depth Image
K-curvature values are then smoothed using a one-

dimensional Gaussian mask that is 7 elements wide 9.2.1 Smoothing

in order to eliminate multiple local peaks near a cor-

ner. The first derivative of the snoothed curvature Task: Smooth the depth image while preserving edges by

values is computed and zero-crossing points long the applying a median filter with a 3 x 3 mask to the

derivative of the boundary are determined. Corners original depth data.

are defined to be those points in the smoothed cur- Recommended method: A new image is created where

vature values that exceed a specified threshold (:e, each pixel is the median value of the pixels in a 3 x 3

have high curvature) and that correspond to a zero- window centered on the same location in the original * ,,

crossing (in order to select the point with maximum image. Pixels that are adjacent to the image bound- . _

local curvature). ary should simply retain the same values as in the

Recommended method: K curvature is computed for original image.

each border pixel by tracking along the border pix-

els of each region for a distance of K (equal to 4 in 9.2.2 Gradient Magnitude Computation

this case) in each direction. A scaled value is com-

puted that is proportional to the angle formed by the Task: Compute a standard 3 x 3 6obel operation on the

straight lines linking the center pixel with its neigh- smoothed depth image. Pixels beyond the edge of the
bors that are K edge points away in each direction. image should be treated as having values of zero. The %e

Relative angles between these lines are computed with gradient magnitude is the square root of the sum of

a table lookup operation, using the differences of the the squares of the X and Y magnitudes that result S

X-Y pixel coordinates of their end points to index into from the Sobel. -

a two-dimensional array of scaled angles. The angles

for the two lines are then combined to determine the Recommended Method: Any standard method is ac-

inside anglc between them. For K=4, the scaled angle ceptable.

array used in the sequential implementation is (the

scaling factor is Degrees/9, with angles oriented to 9.2.3 Threshold
correspond to the image coordinate system):

Task: Select strong edge pixels by thresholding t he output
T o i fu2of the Sobel operation at a specified level. The result

If = > 20 is a binary image where a 1 represents an edge pixel.,0e.0'#

Then 0 = 40- 9

Any point with 8 - 10 _ 2 is flagged as a right angle Recommended Method: Any standard method is ac-

(this flag will be used in the rectangle hypothesis gener- ceptable. A threshold of 500 was used for the test

ation step). An unnormalized one-dimensional Gaussian data.
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10. Intermediate-Level, High-Level, and hull that were flagged as right angles have their hull J.

Top-Down Processing angles checked - i.e., angles formed between neigh-
boring vertices of the hull are checked to determine
whether or not they are approximately right angles.

10.1 Rectangle Hypothesis Generation This is easily accomplished by exploiting the relation-
ship between the vector dot product and the cosine

Introduction: The goal of the initial rectangle hypothe- of the angle as follows:

sis generation step is to find good candidate rectan-

gles among the components of the intensity image so Given a triangle of points a,b,c with 0, the angle in

that model matching can begin. Note that the goal question at b, then each point defines a corresponding

does not require every possible candidate rectangle vector A,B,C, from the origin to that point. Then we

to be found. Only some rectangles that can be reli- have
ably used in the matching process are of interest, be- cos 0= _B!C-hJ

cause once an initial match is formed the remainder squaring, we get
will be extracted by top-down processing of the depth cos 2 0 =- ((A-B) (C-B))

2

data. This can be viewed as using strong cues to fo- ((A-B)(A-B))((C-B)C-B))

cus attention in the subsequent extraction of weaker Because there is an angular tolerance (Ea) the final
or more ambiguous image events, predicate becomes

The result of rectangle hypothesis generation is a set
of candidate rectangles. Each rectangle is described if cos2 0 <= cos2 (90 + E,)
by six parameters: the coordinates of its center pixel, AND cos 2 

9 >= cos2 (90 - E,)
the lengths of its major and minor axes, the orienta- then rightangle
tion of its major axis, and its intensity. else not right angle

Task: Extract good quality rectangles with three or four This method avoids the use of inverse trigonometric
corners visible in the intensity image. The input (for and square-root operations. Note that the squares
eccornevibethe iontensty iag listfhe input (fof the cosines for the range test can be assigned
each connected component) is a list of the row and to global constants, since they are not affected by
column coordinates of center points for corners that the particular set of points. If there are three
were detected on a component's boundary. Addition- successive right angles then the component is Ia-
ally, corners whose K-curvature was calculated to be beled a rectangle, otherwise it is rejected. Fi-

close to 90 degrees are flagged. Corner points that nally, if the component is a rectangle, its param-

are not on the convex hull of this point set are dis- eters are determined from the triangle defined by

carded. For each corner point on the hull, the angle the three successive right angle corners as follows:

formed by the computed lines that connect it to its major-axis = length of the longer side

neighboring corner points is computed. A component minor-axis = length of the shorter side

is declared to be a rectangle candidate if there are orientation = angle of the major axis with

at least three contiguous right angle (± two degrees) respe o the X-axis

corners on the convex hull. which were also measured center = pixel coordinates nearest the

as right angles in terms of K-curvature. Two of the

opposing corners are used to compute the center of midpoint of the hypotenuse

the rectangle (which is taken to be the pixel nearest

the midpoint of the diagonal line segment defined by 10.2 Graph Matching
the two corner points). The length of the major axis
is the greatest distance between adjacent pairs of the Introduction: The candidate rectangles can be thought of

rectangle's right angle corners. The orientation of the as forming a complete graph, where the links of the

rectangle's major axis, relative to the origin, is also graph represent hypothetical mobile links between ev-

computed. The length of the minor axis is the mini- ery pair of rectangles. Because the model is described ]

mum distance between adjacent right-angle corners, by a graph structure, the matching process takes the
form of finding the maximal set of constrained sub-

Recommended Method: If the K-curvature has not graph to subgraph isomorphisms between the com-
flagged at least 3 corners as right angles for a compo- plete graph formed by the candidates and the model
nent, then reject the component as a rectangle. Oth- graph. The matching process thus tries to match can-
erwise the convex hull should be computed with a didate rectangles to model rectangles by their size,
parailel Graham Scan type of algorithm. If there are intensity, and depth; and to match hypothetical links
less than 3 flagged corners on the hull, then the com- to model links by comparing the spatial relationships
ponent is rejected as a rectangle. Next, corners of the between rectangles that the links represent. Thus, to
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establish a subgraph isomorphism requires that a con- ing the same technique as for confirming the depths
nected set of candidate rectangles and links be found of the initial rectangles (see sections 10.3 and 10.4.3).
that has the same properties and spatial relationships The top-down probing of the depth data results in
as some connected set of model rectangles and links, confirmation or rejection (veto) of the presence of 16.

Basically, the strategy that is followed is to find all of each model rectangle in the depth data. Each con-

the single node isomorphisms (ie. matches between firmed rectangle is used to extend the model match,

rectangles alone) and join them in pairs to form iso- and update the positional information in the model.

morphisms with a radius of one link. and then to A rejected rectangle results in the rejection of what-

merge those isomorphisms into larger subgraph iso- ever portion of a match depends on it. It is possi-

morphisms. Note that initially there may be multiple ble for an entire model to be rejected because one

matches to each node; however, as spatial relation- of its rectangles is rejected. For example, if previous ,

ships are used to further constrain the matches, these processing has fixed the position of the model in the

will be quickly reduced to the point that only a small image so that there is only one possible pose for the

number of possible matches remain. The test data rectangle, and it is rejected by the depth probe, then

set has been purposely designed so that the remain- there is no alternative but to reject the model. (Note 0
ing ambiguous matches can only be fully resolved by that a rectangle is only rejected if there is strong evi-

analysis of the depth image. Once an initial set of dence that it is not in the image. Occlusion does not

matches has been found, the depth data is probed cause a rejection).

top-down to verify that the matched rectangles are Thus, in the process of extending a subgraph match,
at the proper depth as specified by the model. This if it is necessary to link to a rectangle that is rejected,
step may eliminate some of the ambiguous matches, the entire subgraph will be labeled as rejected. Once S
but not all. a subgraph is rejected, no further attempt is made

After the graph-matcher confirms the depths of the to extend it. However, it is possible that an attempt

rectangles that were found in the intensity data, it will be made to extend another subgraph to link with

continues trying to merge matched fragments to form the rejected subgraph. If the other subgraph requires

larger subgraph isomorphisms. Whenever it is neces- that link in order to be extended, then it too must

sary to extract a rectangle from the data in order to be labeled as rejected. In this way, the rejection of a

extend a match, the graph-matcher probes the depth single rectangle can spread to whatever portion of a N.-
data in a top-down manner in order to locate a model proposed match depends upon that rectangle.
rectangle that has not been found in the intensity im- Once verification has been completed for each model
age. The graph matcher also confirms the rectangle's rectangle, and a global match has been computed
depth and match strength using the routine described for each model that is not rejected, an overall model
in section 10.3. Each rectangle that is established to match strength (the average of the node match
exist in the depth data results in an update to the strengths) is computed for each model. The niodel
rectangle's position parameters in the model. with the highest match strength is declared (he best

match and is used to produce the final output image.
Task: Given the set of mobile models and the initial rect-

angle hypotheses from the intensity processing, form
an initial subgraph to subgraph match of the rect- Recommended Method: We begin with sonke defini-

angles and models. The initial match process starts tions. In addition to the model graphs there are two

by matching candidate and model rectangles (by size globally maintained lists, called the probe list and

and intensity) and then tries to extend each match the active root list. There are also two lists associ-

to a radius of one link (by comparing the spatial re- ated with each model rectangle, called the pose list

lationships of pairs of matched candidate rectangles and the compatible rectangle list.

to those of the corresponding pairs of adjacent model Probe list: Contains a list of all model rectangle poses

rectangles). Then confirm the model-specified deptlhs which may have empty link fields that await match-
of and intensities the matched rectangles b. (lirected ing. The list is created as a result of the initial match- ,_,.

probing of the intensity and smoothed depth data (see ing process and is used to guide the match extension

section 10.3). Extend the matches for each model by process. The list is maintained in order according % As

model-directed, local probing of the thresholded gra- to the match strength of each rectangle pose. Thus,

dient magnitude image for the presence of edges that strong cues are given priority in the matching process.

correspond to each model rectangle (see section 10.4). When a rectangle at the front of the probe list has all

The model-specified depth and intensity of each rect- of its links filled in, it is removed from the probe list.

angle that is found by the probe is then verified by Active root list: Contains a list of all model rectangle
probing the intensity and smoothed depth images us- poses that correspond to roots of models and that
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have not been eliminated through a veto. In other subgraph isomorphisms are created during the initial
words, this is a list of all rectangles that are potential matching process, thus saving time in later stages.

roots. (Note that, initially, any symmetric pair of rectan-

Compatible rectangle list: Each model rectangle has gles will be linked as two possible poses by virtue of

a list of the initially extracted rectangles that match the fact that the two rectangles are in the compatible

its size and intensity. These lists are created from the rectangle lists of both model rectangles. A sy mmetric

set of initial candidate rectangles at the start of the pair of rectangles would be two rectangles that have

initial graph-match process. Roughly square rectan- the same size and intensity and are oriented so that

gles (those that still match the model rectangle after a 180 degree rotation of the pair is indistinguishable

being rotated 90 degrees) are added to the list twice from the non-rotated pair.) The result of this step

(once with the 90 degree rotation). Each rectangle is the creation of pose lists, where each pose is an

that is added to the list is also duplicated with a 180 isomorphic subgraph that is created from the com-

degree rotation to cover the symmetric orientation patible rectangle lists. Many compatible rectangles

case. will fail to link to any neighboring rectangles, and

Pose list: For each model rectangle a list of its possi- will be omitted from the pose lists. For this reason,

ble poses in the scene is formed from the compatible the compatible rectangle lists will again be checked

rectangle list. The initial pose lists are created during as part of the match extension process.

the initial match phase and contain those compati- 3. Form the initial, unordered probe list and active root
ble restagles with at least one link to a compatible list all of the rectangles in the pose lists.
rectangle in a neighboring model rectangle's list of
compatible rectangles. Thus, if two neighboring rect- 4. For each rectangle on the probe list, probe the depth

angles are linked, they will each appear in the pose and intensity data for veto or match strength. If

list for their corresponding model rectangle. the rectangle is rejected its entire linked subgraph
The poses are the elements that will be lhnked to- is removed from the probe and active root lists, and

gether by the graph matcher as it tries to build iso- marked as rejected in the pose list and compatible
morphic subgraphs. Poses either join an isomorphism rectangle list of the appropriate model rectangle. If

to extend it, or are vetoed as a result of top-down the rectangle is not vetoed, a match strength is as-

probing of the depth and intensity data. sociated with it and it remains on the lists. When a
rectangle has been probed, the corresponding rectan-
gle in the compatible rectangle list is flagged as hav-

Given these definitions, the following five steps describe ing been probed and is assigned the associated match
the initial matching process: strength.

1. Build the compatible rectangle list for every model 5. The probe list is sorted by match strength so that the

rectangle: Add to the compatible rectangle list of first element of the list has the greatest strength.
each model rectangle a copy of the parameters for
each candidate rectangle whose size (within EL) and This concludes the initial match phase. Models that have %
intensity match the model rectangle. If a rectangle completely empty pose lists will be rejected at this point.
also matches the model after being rotated 90 de- Note that the probe list may contain rectangles with very
grees, then add a second copy to the list with that low match strength, because such rectangles are not nec-
rotation. Lastly, add a second copy of each rectangle essarily vetoed. For example, a rectangle may be mostly
with a 180 degree rotation. occluded, in which case it will have a low match strength

but there is insufficient evidence to conclude that it is not

of each model rectangle, attempt to establish a link present. Such a rectangle may be thought of as being hallu-

to every compatible rectangle associated with each cinated by the system. Because hallucinated rectangles are W

neigboeerig odle rectangle alikisso med bheh last on the probe list, they are only used to fill in missingneighboring model rectangle. A link is formed be- lnsna h n ftemthetninpoe.'

tween two compatible rectangles if their spatial rela- links near the end of the match extension proce-.

tionships (relative orientation, direction and distance) The match extension process consists of the following four
match the spatial relationshipspecified by the link be- steps that are repeated until the probe list is empty.
tween the corresponding model rectangles. Each suc-
cessful linkage is added to the pose lists of the model 6. The probe list is searched for the first empty link in
rectangles. If one compatible rectangle is linked to an- a rectangle. Any rectangles at the front of the list
other that is already on a pose list, then the new link that have all of their links filled are removed from

should be merged into the existing pose rather than the probe list. An empty link corresponds to a link
becoming a new pose. By merging these poses, larger in the model, and thus to a neighboring rectangle in
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the model. Note that all possible links between the metch is vetoed. If the match is not vetoed, then an

initial set of rectangles have been found at this point, area of the intensity image is also probed that corre-

Thus, an empty link indicates a rectangle that must sponds to the rectangle in its hypothesized pose. The -

be added via the match extension process. result of the depth and intensity probes is a match
strength indicated by the percentage of pixels in the

7. The object of this step is to make sure that there area that are within the acceptable depth range and

is a probed data rectangle corresponding to the se- that have the correct intensity, minus the percentage
lected neighboring rectangle. First, the neighbor's of the depth pixels that are too deep.

compatible rectangle list is searched. If a compatible opo

rectangle is found that has been previously probed, Task: Given the parameters for a rectangle, probe the

then it should be used. If a compatible rectangle is smoothed depth data and the intensity image to con-

found that hasn't been probed yet, then it must be firm that a region of roughly the correct depth and

probed. If no compatible rectangle is found, use the intensity is present. There are two parts to this task:
model parameters for the neighbor to direct a top-

mode paameersfor he eigborto drec a oP-a check for a strong indication that the rectangle is
down search (local Hough transform) and then probe not present in the depth data, and the cormptaetion -

the area indicated by the search. Add the rectangle of a match strength.

to the compatible rectangle list for the neighboring

model rectangle, even if the search and/or the probe For the first part of this task, a window of the

fails. smoothed depth image is selected that correspond(ls

to the hypothesized pose of the rectangle. \\ithin

8. Once a probed data rectangle has been found for the this area, the pixels are divided into three categories:

neighbor, check the neighbor's pose list, for any links those pixels that are deeper than the allowable range

to it. If a link is found, then the rectangle is part of depths for the rectangle, those that are within the

of a larger subgraph isomorphisn, which should be allowable range, and those that are too close. The

linked to the isomorphism that contains the pose at number of too-deep pixels is determined, and if it ex-

the top of the probe list. Otherwise, create a new pose ceeds a threshold, the rectangle is vetoed because it

consisting of just the newly probed rectangle and link is either missing or not in the correct position.

the pose at the top of the probe list to it. The threshold is equal to

9. If the neighbor rectangle, or its instance on tire pose

list is flagged as vetoed, delete the entire linked sub- (E * E, + EL,) * (L + 1).

graph from the probe list (and the active toot list.

if necessary). Also, label as vetoed the entirc strutc- where

ture associated with the model pose, corrvspotlding IN

to the probe rectangle. If it was not vetoed. atl it L Length of major axis

was created and/or probed in step 7, then insert the I = Length of minor axis

new rectangle in the probe list according to its match Ev = Error in X and Y position ,, Q

strength and also add it to the active root if it corre- El Error in axis lengths

sponds to a model root. E Error multiplier for this match

Once the probe list is empty, the match extension pro- (The value of E reflects the effects of previous pro-

cess is complete. The result is a set of one or more model cessing on the potential error expressed by o. InI

matches that are pointed to by the active root list. this case, because the position was actually coiputed

from the intensity data, the positional accuracy is

10.3 Top-Down Probe for Confirmation quite good and E. can be reduced. Thus E is equal

or Veto of Initial Match to 0.25 for this match.) In other words, the thresh-

old is the maximum portion of the probe window in

Introduction: For each rectangle that is found in the in- which too-deep pixels could appear because of the po-

tensity data and matched in a model, the smoothed sition and size errors that are created when tie model

depth image and the original intensity image are is instantiated. Note that tire above formntia actually

probed to determine a match st rength. The probe in|- computes a slightly higher threshold than necessary

tially examines the area of the smoothed depth image in order to account for orientation error without per-

that corresponds to the rectangle in its hypothesized forming additional computations involving angles. •S

pose. Pixels are counted that are found to be too dis- If the rectangle is not vetoed, then a second step corn-

tant with respect to the model-specified acceptable putes a match strength for the entire hlothesized

depth range. If the count exceeds a threshold then the rectangle pose area in the srmoothed dept Ih imia v and "
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the intensity image. The match strength is reported the edges are detected, the fourth is inferred from the

as the percent of pixels that are both in the correct model data.
depth range and have the correct intensity minus the

percentage of pixels that are too deep. 10.4.1 Depth Window Size and Position 7.

Recommended Method: In the smoothed depth image.
within a window that corresponds to the hypothesized The rectangle search is given the position and size of an X-

pose of the rectangle, the pixels are thresholded at Y oriented search window and the expected orientation for

D + ED * D. Pixels that exceed the threshold are the rectangle's major axis. The window's bounding edges

too deep, and are counted. If their number exceeds are computed from the following formulas:

(E * E, + EL) * (L + 1), then the rectangle is vetoed. 10

If the rectangle is not vetoed, then a range test is X = X position of rectangle's center IO

performed on the smoothed depth image within the Y = Y position of rectangle's center

same window. The acceptable range is D ± ED * D, L = Length of major axis

and pixels that pass the test form a binary image. I = Length of minor axis

Within a registered window of the intensity image, 9 = Orientation of major axis

pixels are tested for intensity equal to I (the model Ev = Error in X and Y position

rectangle's intensity). Another binary image results, EL = Error in axis lengths

which can then be combined via a logical AND with E6 = Error in orientation

the other binary image to produce a third image rep- E = Error multiplier for this match

resenting those pixels that have the correct intensity S = sin(O)/2

and depth. The match strength for the rectangle is C = Icos(G)/21

then computed by dividing the number of these cor-

rect pixels minus the number of too-deep pixels by When the Hough transform is being used to locate a

the total number of pixels in the window area. rectangle, the positional information that is used to place

Note that if a rectangle is fully occluded, it will not the window is based on the corresponding model rectangle.

be vetoed but it will have a match strength of zero or However, the estimated position of the model rectangle is

less. relative to another rectangle (the rectangle at the top of the

probe list) whose position has already been fixed in the im-
age. Thus, the positional accuracy for the search depends

10.4 Top-Down Examination of Depth on the accuracy of the position of the rectangle at the top

Data of the probe list. If the match strength of that rectangle is
high (> 0.5) then the positional accuracy is probably good

Introduction When it is necessary to search for a model and E is equal to one. If its match strength is low, then its

rectangle in the depth data, a Hough transform is positional accuracy is probably poor and so E is increased v
applied top-down within a spatially local wirdow of to two.

the thresholded gradient magnitude image, followed

by a search of the Hough array to locate evidence for Window starting row=

parallel and perpendicular lines that form a rectangle
with the appropriate size and orientation. Y - E*Ey - S*(L + EL) - C*(l + EL)

The rectangle location strategy is as follows: an X-Y(or 0 if result is < 0)

oriented window that is large enough to contain the Window ending row=

rectangle, given its possible position and size errors. is Y + E*.E. + S*(L + EL) + Cs(I + EL)

computed and used to mask the thresholded gradient Y + if + s + EL) "+E

magnitude image that resulted from the initial depth (or 511 if result is > 511)

processing. Within that window, a Hough transform
Window starting column=

is computed in order to detect lines. The Hough ar-

ray is then searched for the maximum bucket with X - E*E, - C*(L + EL) - S*(I + El)

approximately the same orientation as the major axis (or 0 if result is < 0)
of the model rectangle. If a sufficiently strong bucket .

is found, the corresponding line is used to anchor the W e,
search for the other three edges of the rectangle. At Window ending column=

least two of the remaining three edges must be de- X 4 E*E,/ -C*(L + EL) + S*(I 4 EL)
tected as lines in the Hough array in order for a pos- (or 511 if result is > 511)

itive search result to be returned. If only three of
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The rectangle locating routine searches within this win- used to further constrain the range of rho. and the
dow for a rectangle with its major axis oriented in the di- specified orientation range can be used to (onstrain
rection specified (0 ± Ea) The search consists of the steps the ranges of 0. Thus, it is possible for the size of the .3
in the following section. Hough array to be greatly reduced if that is desirable.

10.4.2 Hough Transform and Rectangle Search 2. Search the Hough array to determine the maximum
accumulator with 0 in the allowable ranges for the

The Hough transform was chosen for this step for several rectangle's major axis orientation (0 ± Eo/2) and

reasons. The Hough transform tests some very interesting (0 + 180 ± E o )MOD360). The minimum allowable

aspects of parallel architectures and is thus useful from a count in the selected accumulator is Her If there is

benchmarking point of view. Because it was previously ira- no accumulator with a count of at least H, then the

plemented for the original benchmark, it should take less rectangle routine will report that no rectangle could

time to adapt it than would be required for implementing be found. (The values of Ht and He, are supplied as

an entirely new operation, Also, several of the reiewers parameters with the test data.)

of the draft benchmark specifically requested that it be in- 3. If a major-axis line is found, the search proceeds by S
cluded. The constrained, verification mode of application looking for a parallel line. Such a line must be at
of the Hough transform was arrived at after considerable least I - EL distant from the first line, have a count
experimentation. For example, initial attempts to apply of at least Ht 2, and 0 equal to that of the first edge.
the Hough transform to the entire image met with little (Ht 2 is another parameter that is supplied with the
success because the numerous strong straight edges com- test data.)
bined to produce many false peaks and masked most of the
true edges. Constraining the transform to a small window 4. The next step is to look for the strongest perpendicu- -,

significantly improved the results, and further emphasized lar line in the Hough array. The selected accumulator
the top-down control aspect of this step. Also, the use of must have a count of at least He, and be %'thin Ee/2
gradient orientation information from the Sobel was tried, of perpendicular to the expected major axis orienta-
but it was found that the results were not sufficiently im- tion of the rectangle. %,,.
proved to warrant the additional complexity. 5. The last line must be found at least L - EL distant

from the third line, have a count strength of at least
Task: Perform a model-directed search of the thresholded H12 , and have the same 0 as the third line. % .p,

gradient magnitude image, in order to locate edges .
that correspond to a hypothesized pose of a model 6. If, for either axis, no corresponding line is found, the V
rectangle. The search begins with a Hough transform rectangle routine reports that no rectangle is present N
that is applied to the image within an X-Y oriented in the window.
window that is sized and positioned so that it will 7
contain the entire rectangle, even if it is subject to 7. If 4 lines were found, the routine computes the new X
maximum errors in pooition, orientation and size. and Y position of the center, the lengths of the ma-

jor and minor axes, and returns these values together
The Hough array is then searched for strong lines that with the orientation of the major axis.
form a rectangle in the appropriate size and orienta-
tion ranges. If only one line along an axis is found, the 8. If only one line is found parallel to an axis. the lengt h,
missing parallel line is inferred from the model data. of the perpendicular axis is not updated. •
New position, size, and orientation values for the rect-
angle are computed from the extracted lines. If both 10.4.3 Top-Down Probe for Confirmation or Veto
lines parallel to a given rectangle axis are missing, the
original model data is returned unchanged. This is the same process that is used in section 10.3.1 for the

Recommended Method: initial depth confirmation. However, the rectangles that are
being confirmed are those that were detected in the depth

1. Compute the Hough transform of the binary im- data, rather than the intensity data. Because the rectangle
age (from step 9.2.3) within the specified window, parameters are identical in form, regardless of the source of
The range of the Hough space is 0 < 0 1 360. or the rectangle, the sante task description and method as in
--V2 * 256 _: rho < * 256, however the accumitda- section 10.3.1 apply here.

tor array has a resolution of Ho per bucket in 0. and,
H. pixel widths per bucket in rbo (\\her,, I1h ;iin
H, are parameters supplied with the test data. .\lso .
note that, if desired, the window dimensions may h,
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10.5 Result Presentation The purpose of this benchmark is to address the need
for an integrated vision benchmark that transcends sev-

Task: Create a display that indicates those model rectan- eral different representations and forms of processing that
gles that were strongly matched and those that were are typical of complex vision applications. The scientific
not. The display will consist of the original intensity gain that should result from this exercise is a better un-
image with model rectangles brightly outlined. Rect- derstanding of vision architecture requirements, and the

angles whose match strength is equal to or exceeds performance bottlenecks in different classes of machinies, so
the average match strength of tile model will be out- that the needs of vision processing can be better addressed
lined at intensity level 255. Rectangles with lower in the next generation of architectures.

match strengths will be outlined at some arbitrary This benchnmark is not intended to be a challenging vi-
lower value that will be visually distinguished. sion research exercise, and in fact it should not h0 . Instead.

the intent is to exercise parallel architectures with a diverse

Recommended Method: The selected graph is tra- range of operations that are commonly used and in a se-
versed, and the updated positional information for quence that requires the sorts of transformations of data 1%
each rectangle is used to draw its edges in the inten- and control of processes that occur in a typical interpreta-
sity image. Any order of traversal is acceptable, as tion task. An attempt has also been made to incorporate
is any standard method of drawing the lines in the many of the tasks from the first I)ARPA benchmark, in or-

image. der to take advantage of the programming effort that has
already been expended. The result is that, from an imn-
age understanding perspective, some aspects of the bench-

11. Required Timings and Instrumenta- mark scenario may be viewed to be somewhat unrealistic
tion and contrived as an interpretation task. Nevertheless as a

benchmark, it is a valid means of testing performance.
Each participant in the benchmark exercise will be pro-
vided with a detailed set of reporting requirements for the A primary concern in designing a benchmark is that

data that is to be gathered during the exercise. Currently tasks must be as well-defined as possible so that the results

we intend to require timings for initialization, input, each from different machines will be comparable. The objective

task, any inter-task data transformations. result omitpit. is to test the performance of the machines rather than the

and total processing time. We will also specify timing re- cleverness of their programmers. To this end, a recom-

quirements for some sub-tasks (kernel operations within mended method has been specified for solving each of the

tasks), and will encourage detailed reporting of an\ systemi- tasks. The input data sets will be provided to those partic-

specific overhead times. We also plan to inst runentIt tho itu- ipating in the study so that all machines will be evaluated

plementation process by requiring reports of code length, on the same test data.

languages used, deviations from the recommended meth- p
ods, hardware and/or simulator and or estimation method This benchmark task suite involves recognizing an ap-

used, and estimated programmer-hours for each task. We proximately specified 2 1/2D "mobile" sculpture composed

are also interested in the scalability of architectures, and of suspended rectangles, given images from intensity and

will thus require some estimations of the effects of factors range sensors. It is our intention that the test images be
such as increased numbers of processors and improved tech- designed so that neither, by itself, is sufficient to form a

nology. complete match. The model of the object that is provided

is approximate in the sense that the sizes, orientations, and
12. Summary depths of the rectangles as well as their spatial relationships

are constrained to within some tolerances. A set of mobile
models is provided, any one of which may be present in the

Recent attempts at defining a vision benchmark include images. The goal is to determine which of the models is
the Abingdon Cross problem, defined at the 1982 Multi- actually present, the degree to which it is visible (match- ..
computer Workshop in Abingdon England, and the Tanque able), and to update the model with positional data that,
Verde benchmark suite. defined at tihe 1991 NI tilt icomputer has been extracted from tIe images.
Workshop itr Tucson Arizona. These benchmarks involved

isolated processing tasks that were tnosvty concerned wit h
low-level pixel processing. The most recent attertpt at con- Individuals and organizations that wish to part icipate in
structing a lrench ark for vision emerged frort the I) PA this henchmark exorcise shorld cont act the author, in orh,rd

linage Inderstanding cornrniritY. where a broad set of let to obtain tte most up-i.o-dlate versioti of t Iis slI)( ificat iot.

vision tasks were defined. The benchinrk dlefined in this The authors calt also supply sample test data ard sourc'e

paper is ar outgrowth of that berchniark, and is again code for the sequenrtial imtplenientation of tre henclnark

sponsored by f)AlPA. suite.
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Abstract out knowledge-based processing it would be impossible to

The Image Understanding Architecture is a heteroge- interpret large portions of many images.

nous, multi-level, associative, parallel architecture that is Since there is no simple computational tran~sformation
designed to support real-time knowledge-based computer that will map arrays of sensory data onto the stored symn-
vision research and applications. A 1/64th scale proof-of- bolic concepts represented in a knowledge base, it has be-
concept prototype is currently under construction by the come generally accepted that many levels of representation ,
University of Massachusetts and Hughes Research Labora- (data abstraction) and many stages of processing must take
tories. This paper briefly summarizes the IUA architec- plctoriayinertasee.W wllefrothst
ture and a programmer's model of the machine. Several of representations between the sensory data and the sym- (e
algorithms are then presented that demonstrate some of bolic structures associated with objects in the environment

the features of the low and intermediate levels of the ar- as the intermediate level representation.
chitecture in performing computer vision tasks. These in-
clude both local and global associative operations, horizon- Image interpretation may thus be characterized as in-

tal and vertical communication, and SIMD, multi-SIMD, volving three different levels of processing, each with its !1
and yncronus-MMD rocssin moesown specific class of information. Additionally, those lev-

els must be able to interact through bottom-up transfor-
~mation of information and top-down control of processing.
)The low, intermediate, and high levels of representation and ,

~~1. Introduction processing, together with our understanding of how those ,'.

levels interact, provides the basis for the design of our Im-O n e g o a l o f m a c h in e v isio n is th e co n stru c tio n o f a ag n e s a d n r h t c u r I I ) h s p p r b g n
symbolic description of the environment depicted in an with an overview of the ILA design, briefly discusses the i"
image. Such an interpretation involves not only labeling porme' oe ftesseadte rsnssm ~
certain regions in an image, or locating a single object in algorithms and sketches of algorithms to provide the reader Z
the viewed scene, but often requires the construction of with a sense of the various modes in which the ILIA can be :'
a three-dimensional model of the surroundings, with asso- used.
ciated identification in the image of the two-dimensional

projections of these three-dimensional models.
Because of the inherent ambiguities that are present in 2. Overview of the Image Understanding,) "

images of natural scenes, it is rarely possible to construct Architecture (IUA)

an interpretation directly from the pixel data. Additional The Image Understanding Architecture represents a""
knowledge must be used to reduce local ambiguity and to hardware implementation of the three levels of abstrac- ,
infer portions of objects that are missing in an image due tion embedded in our view of computer vision. It consists
to effects such as occlusion or shadows. Inference via stored of three different, closely coupled parallel processors: thei !-

knowledge and the reduction of ambiguity from "low-level" Content Addressable Array Parallel Processor (CAAPP)" ,
sensory processing are a part of what is referred to as at the low level, the Intermediate Communications Asso- ,
"high-level" or knowledge-based vision processing. WVith- ciative Processor (ICAP) at the intermediate level, and the ,

'This research w,-s snpp,>rted, in part, by the Advanced R eamch Pr .p [etc
Agency of the Department f Defense via ( -ntur t N,.,. F4VI,2-

, -
1
- 
'-Al . ' The terni 'content-aadrhessable" is a synonlyml fm1 a'1:¢(i3 \(

"
Ondl

monitored by the Air Firre Office 4f Scientific Rpsearch and id(r1 ( ,ntr;act is an alternate term that now is not as widely used as it was when some
No. DACA76-86-C.o0l15 m-nit,,red by the Engineer To pogrphic Lal-.a,'ry of our work began [Foster, 1976, Weems, 1984al
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Symbolic Processing Array (SPA) at the high level (Figure image, with each algorithm performing pixel-parallel oper-

1). The CAAPP and ICAP levels are controlled by a ded- aLions within its sector of the image. In synchronous-MIMD
icated Array Control Unit (ACU) that takes its directions mode, the programming paradigm is more like SIMD than

from the SPA level. In each layer of the IUA the processing MIMD: rather than having completely different instruction "
elements are tuned to the computational grannlarity and streams executing concurrently, the ICAP processors exe-
algorithms required by that particular level of abstraction. cute similar instruction streams, (i.e. each ICAP can in-
For example, it is inappropriate to try to run concurrent dependently evaluate a conditional test and branch appro-

LISP at the lowest level, because the low level is primarily priately within a code segment tha all ICAP processors

concerned with fast pixel operations. Thus, the low-level are executing in parallel) and globally synchronize for each
processors are tuned for real-time image processing oper- stage of processing. Synchronous-MIMD has the advan-

ations. At the highest level, on the other hand, symbolic tage of being as simple to program as a SIMD system, but

Al processing will be the main objective, so the high-level without the time penalty usually encountered in SIMD sys-

processors are selected for their ability to run LISP code tems of having to sequentially execute all of the paths in a %
elficiently. branching control structure. Vp

At the high level, the IUA is purely a MIMD parallel 0
processor. Additionally, the intermediate and low levels 2.1 The CAAPP (low) Level

of the IUA may be treated in a variety of modes of par- The CAAPP is a 512 A 512 square grid ar-ay of custon
allelism to allow multiple hypotheses from the SPA to be 1-bit serial processors intended to perform low-level image
evaluated in parallel at the lower levels. These include the processing tasks. The CAAP? is similar in many ways
CAAPP operating in pure SIMD or multi-SIMD mode, and to CLIP-4 [Duff, 19781, MPP [Batcher, 1980), DAP [Hunt, .

the ICAP operating in synchronous-MIMD or pure MIMD 19811, GRID JArvind, 19831, GAPP [Davis, 1984 , and the

mode. A brief explanation of how the multi-SIMD and Connection Machine [Hilis, 19861. However, its architecture : .
synchronous-MIMD modes differ from the familiar SIMD is especially oriented towards associative processing with
and MIMD modes is required. In multi-SIMD mode, the an emphasis on hardware global summary feedback mecha- V
CAAPP cells execute in disjoint SIMD groups, with each nisms. The CAAPP is also specifically designed to interact
group receiving a different instruction stream. This allows with th-' ICAP in a tightly coupled fashion for both bottom-
different algorithms to be run on disjoint portions of the up and top-down processing. Thus, the CAAPP has been

/ *•64USPprocessorsS(MIMD) r r
- - onst ntlatonof

- - -. aiscee strategies.

- --- .. ---- •Construcion of sene

kipeatlon.p

SymboictrcoesngArray (SPA)_ Top- downMIMD
control of grouping.

512 M Bytes GloteI Shared Memory(SR) (
S J 64 x64 (4 K)Array of42 16 - tprocessois

SoSMIMD/MIMDoperation.
- Executes grouping

nIfl m- edite and Communications - ientermediate
Associative Procesor t CAP) snxzrpeetto

Parallel AssociativeComuncation11111 ~and Control.t
IG Bytes Local (CAAPP -ICAP) Shared Memory

A14TT--W : &4 - • 512xs512(256K) Array of %I - bit (serlal) procssig ng
elements.

• Custom VLSI chips. ,",
. -) Stores sensory data. ''onen AddressableArayPaalelPocessorCAAPP) * Executes low - level and
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Figure I: ItVA Overview ,
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tailored to permit flexible control, to provide rapid feedback Communication among CAAPP cells may takt place in
to the controlling processes so that they may exercise con- four different ways. One way is through global feedback '1
trol in response to actual image properties, and to integrate and rebroadcast. This method is used when all or most of I
fully into a hit: archically organized vision architecture. the CAAPP proctssors must be told the value of one of the -"

The CAAPP processing elements are linked through processors (e.g. broadcasting the maximum value so that

a four way (SpE,WeN) communications grid which is aug- all cells can normalize their values). A second way is via thea fur ay(S.,W,) ommnictins ridwhch s ag- ICAP. In some cases it is more efficient to transfer CAAPP 07 %
mented with circuitry that allows certain types of long dis- CaPa In soe c i isore effcet to v sf ros Adata to the backing store and let the ICAP move it across S

tance communication to take place quickly. Each processor the array and place it in the backing store of the appropri-
can execute an instruction in 100 nanoseconds and contains te ara and plae iti t an use the apgor-
5 one-bitate CAAPP cell. The third way uses the nearest neighbor-

hood (S,E,W,N) mesh, which allows a CAAPP processor to
bits of RAM that acts as an explicitly managed cache mem- read a bit from up to two of its neighbors at once. This is
ory. Each element has access to a 32K-bit backing store similar to the network employed in other mesh-connected
memory that is dual-ported with the ICAP. The backing simDlarale p he ein ng conicto
store is also referred to as the CAAPP-ICAP shared mem- SM anism isodesr iThe net i s ctioci

ory (CISM). mechanism is described in the next section.

The key to integrating the CAAPP into the IUA is 2.2 The Coterie Network
its combination of associative feedback and control mech-
anisms. The principle feedback mechanism in the CAAPP The fourth means of communication among CAAPP

is the array-wide logical OR output, called Some/None, processors involves a new and powerful variation on the

which indicates whether any CAAPP cells are in a given nearest neighbor mesh called the Coterie network. This

state represented by the response bit. At the end of each is similar to the reconfigurable buses proposed by Kumar

instruction cycle the global controller receives a Some/None jKumar, 1987], Miller and Stout JStout, 1986] and the poly-

signal for the full array, while the ICAP processors receive morphic torus proposed by Li Li, 1987], but differs in that
the Some/None indication for that portion of the CAAPP it allows general reconfiguration of the mesh, and multiple .
array connected to each of them. processors may write at once. By adding the simple switch ,.network shown in Figure 2, it is possible, under program

A count of all responding cells is also available at the control, to create independent groups of processors that
global controller. The counting operation is used to gather share a local associative Some/None feedback circuit. The
statistics about an image and the results of processing. For isolated groups of processors can then respond to globally
example, through counting we may quickly determine the broadcast instructions in a locally data-dependent fashion,

mean and standard deviation of an attribute v:Iue for a which permits parallelism to be employed with more flexi-

given set of processors (see section 4.4). Each ICAP proces- bility. For example, suppose that an image is divided into
sor receives the count for the 8 8 sub.rray of the CAAPP a large number of regions, and that we wish to determine
associated with it,

',V~

N NV

Figure 2: The Coterie Network
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some attribute for each of the regions. In a typical SIMD ar- 2.3 Inter-level Communication Between the *

chitecture this would be done by sequentially selecting each CAAPP and ICAP
region for analysis or in parallel by complex communication The principal mechanism for transferring data between
between neighbors where the attribute is computed via a the CAAPP and ICAP is the CISM (or backing store).
propagating wave that checks region labels at each step. Each ICAP processor has access to the 256K-byte block of
In the CAAPP, however, all regions can, in many cases, memory that also acts as the 32K-bit backing store for each
perform their own local evaluation in parallel without hav- of t,e 64 CAAPP cells associated with an ICAP processor.
ing to check region labels after one initial step oflneighbor Swapping between the CAAPP and CISM is accomplished
comparison. by dual-porting a portion of the on-chip CAAPP memory.

The name Coterie Network is based upon the similar- When data is moved between the CAAPP and the CISM it
ity of the isolated processor groups to a "coterie": that is, goes through an automatic corner turning mechanism that
a group of people who associate closely because of com- provides bit-serial data access to the CAAPP and byte-
mon purposes, interests, etc. [Random, 19871. The iso- parallel access to the ICAP.
lated groups of processors are thus referred to as coteries.
Note that the Coterie Network is separate from the nearest 2.4 The ICAP (Intermediate) Level 6
neighbor mesh, which we refer to as the SEWN Mesh.

The ICAP is designed to manipulate tokens (symbolic
Creation of a set of coteries typically begins with open- descriptions of extracted image events and their associated

ing all of the switches that link processors. Using the attributes) at the intermediate level and to support data
SEWN Mesh, the processors compare their own values with base functions that allow access to these tokens by group-
the values of their neighbors. They then close the switches ing processes running on the ICAP and by symbolic inter-
that connect them to neighbors with similar properties, pretation processes, running on the SPA processors. Fornter
leaving open the switches that would connect them to dis- example, the recognition of a house roof in an image may 
similar neighbors. Of course similarity can be defined by an require the ICAP to group together long, straight, parallel
operation such as a global broadcast of a threshold and a lines, and then to extract parallelograms that are candidate
local comparison. In this way, processors with similar prop- roof outlines. Should the need arise, the results of further
erties establish independent coteries. It should be fairly ob- processing in the CAAPP can be integrated with the repre-
vious to the reader that, among other things, each region sentation in the ICAP because the ICAP representation is
of a segmentation could be a coterie of cells. Because the
CAAPP processors can save and restore the switch settings in approximate registration with the original image events

that make up a set of coteries, it is possible to reconfig-
ure the Coterie Network from one processor interconnection The ICAP is a square grid (64 x 64) array of Texas
pattern to another by broadcasting a single instruction. Instruments processing TMS320C25 16-bit digital signal

processor chips. Each of the 4096 ICAP processors con-
Within a coterie, there is a mesh of wire that all of the sists of a CPU, 256K bytes of local RAM, 384K bytes of

processors are connected to. The ACU may instruct each dual ported memory for interacting with the CAAPP and
active CAAPP processor to output a bit onto its coterie'scommunications hardware. The ICAP

mesh and then read whatever bit value is currently on the SA n ewr omnctoshrwr.TeIA
mesh widthn isrie. when orer taesrnty on eso i processors operate at 5 million instructions per second andmesh within its coterie. When more than one processor in

can perform a 16-bit multiply and accumulate operation , 1a coterie tries to output a bit onto the mesh, the value that in a single instruction time. In addition to its speed, a

appears on the wire is the logical OR of the output bits of digital signal processor was chosen at the ICAP level be-
al, of the processors in the coterie. The shared mesh is thus cause its instruction set and arithmetic capabilities are well
functionally equivalent to the global Some/None feedback suited for performing computations in spatial geometry.
circuit except that its output is only locally formed and Three-dimensional geometric projections, and computing
available within a coterie. In addition to its associative distances, and matching operations are among the more
feedback function, the coterie mesh can be used to broad- frequently employed operations at the intermediate level of
cast a value from a single processor to every member of vision processing.
the coterie is in a Broadcast Protocol Multiprocessor [Lev-
itan, 1984). This is accomplished by first selecting a single Control of the ICAP is provided by the ACU (in Syn-

processor within each coterie, using an associatiove search chronous-MIMD mode) and by the SPA (in MIMD mode).

operation in parallel within all coteries. Subsequent ACU Once sensory events have been extracted and represented

instructions for placing a value onto the mesh will only be symbolically at the intermediate level in the ICAP (and..

performed by these selected cells. However, all of the cells continue to evolve as grouping operations take place), each

will perfo:m the operations for reading the value that is on of the SPA prucessors may then query the ICAP in par-

the mesh. In this way, the coterie network can be used for allel to establish and verify hypotheses. The ICAP pro-

local broadcasting of data values. The local feedback and vides three different global OR responses that are used by
broadcast processes can occur in every coterie in parallel. the controller to determine the status of processing in the I
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ICAP array. The choice of meaning for each signal is left data structures using a shared-memory multiprocessor at

up to the programmer. For example, the programmer may the SPA level [Draper, 1987]. This experience is providing
choose to have them indicate completion of a task in the additional direction to the future scaling up of tile IUA at

ICAP array with or without exceptions. Another use is as the SPA level.
an associative Some/None mechanism. A global summa-
tion mechanism is also provided that uses the global count Currently, the full SPA is envisioned as consisting of
hardware in the CAAPP to form a sum of an 8-bit value 64 or more processors, each capable of running LISP. Each

from each ICAP processor. processor will have some local memory and will have access
to a global shared memory that will include the ISSM, and

The horizontal links between the ICAP processors pro- the blackboard. The shared memory decouples the SPA
vide the intra-level communications necessary for grouping processors from the locality of information in the image.
and merging processes to operate on token attributes and

token relations within the intermediate symbolic represen- 2.7 The ACU: Controlling the CAAPP and ICAP
tation. In the IUA prototype, which has only 64 ICAP
processors, the bit-serial I/O links between the processors One major design goal for the ACU was to maximize the

are connected through a centrally controlled 64 x 64 bit- rate at which instructions are issued to the CAAPP. This

serial crossbar switch. Various methods of extending the meant that the overhead for controlling loops, branches,
ICAP communications network to the full-size IC'AP array and subroutine calls in the ACU had to be minimized. A

a under consideration second major design goal for the ACU was to minimize the

cost of implementing a complete development environment

for it. Preferably, the ACU would execute a commonly used
2.5 Inter-level Communication Between the ICAP instruction set so that software could be transported from

and SPA an existing machine.

The ICAP-SPA Shared Memory (ISSM) provides the Clearly, the first goal required a custom processor, while
* principal communication path between the top two levels the second goal dictated an off-the-shelf processor. The so-

of the IUA. It is viewed as an /0 device by each ICAP lution to this dilemma was to incorporate both into the

processor. A given ICAP processor can write (or read) val- ACU design. Thus, the ACU contains two separate proces-

ties to (from) an I/O buffer in the ISSM. The ICAP then
initiatessors that can issue instructions to the CAAPP (and control
inits a bo t he I /O bAffer a the ICAP as described below). The two processors are re-

#,of its choosing in the ISSM RAM. An ICAP processor may ferred to as the Macro-controller and the Micro-controller.

only access the 128 K-byte segment of ISSM that is associ-

ated with it. However, each SPA processor has global ac- The Macro-controller is a Motorola M68020-based sys-
cess to the entire ISSM for all of the ICAP processors. This tem that brings with it the wide range of software tools that

structure allows processes in the SPA to access the results are available for that processor. It can issue instructions to

of ICAP processing regardless of their spatial locations in the CAAPP in two ways. The simplest way is to take di-

the array. rect control of the instruction bus and write out data values
A that will be interpreted as instructions by the processor ar-

2.6 The SPA: High Level Processing rays. Even at its maximum rate, however, the 68020 can
only issue instructions at about one-tenth of the rate that

The SPA processors will run a LISP-based blackboard the CAAPP can execute them. The second method for the

- system ]Erman, 1980, Nii, 1986, Draper, 1987a,b,] in which Macro-controller to issue instructions is to issue subroutine
various knowledge-based processes will cooperate and corn- calls to the Micro-controller.
pete in the generation and verification of hypotheses about
the content of the image and its relationship to models of The Micro-controller is a custom processor, driven by

the environment. From the point of view of the blackboard horizontal microcode. It is capable of issuing an instruc-

system, the CAAPP and ICAP will appear as knowledge tion to the CAAPP every 100 nanoseconds, with minimal

sources at different levels of abstraction. Knowledge-based overhead for loop, branch, and subroutine control. The

processes in the system can activate different processes in Micro-controller will have a large library of CAAPP rou-

the CAAPP and ICAP either for the full array or for inde- tines in its program memory, any of which can be called by

pendent sub-arrays. Thus, the SPA processors operate in the Macro-controller. When the Micro-controller completes

MIMD mode with communication through the blackboard. execution of a CAAPP routine, it returns a status flag to

The detailed architecture of the SPA has not vet been hilly the Macro-controller which may then issue a new call.
, defined. In the first prototype of the IUA, which is a 1 6.11 h The routine-calling mechanism permits the user to write

vertical slice of the full IUA, the SPA will be a single 1\o- applications in a high-level language for the Macro-control- 'S.

torola M68020 class processor. A separate research investi- ler, and yet obtain good peak instruction rates for opera-

gation within the UMass VISIONS project is currently ex- tions on the CAAPP. Although this does not. provide 100%
ploring the implementation of cooperative algorithms and utilization (f the CAAPP, it is reasonable to expect 50%
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utilization in many cases, which should be adequate for grammed with a set of concurrent processes, some of which
most research and development situations. perform high-level vision tasks and some of which service

Although the only source of instructions for the CAAPP requests for CAAPP and ICAP processing. The server pro-
cesses run in the ACU and view the CAAPP and ICAP as

gram memory. The ICAP program memory is loaded with a pair of attached array processors.
a large library of service routines upon system initialization. The software interface to the CAAPP and ICAP takes
The way in which the ACU issues instructions to the ICAP two forms. An ACU program will usually just call library
is by storing a user program into ICAP program memory subroutines that cause the arrays to perform predefined op-
and then issuing an interrupt to the ICAP that causes it to erations. However, if an operation is required that isn't
jump to the user program. (The program is broadcast to in the library, then a new subroutine must be written.
all of the ICAP program memories in parallel.) An ICAP CAAPP routines can be written inline as part of an ACU
user program is typically just an execution script (written program via a series of calls to a subroutine that issues in-
in C, Forth, or assembly language) of calls to the ICAP li- dividual CAAPP instructions. CAAPP routines can also
brary. Thus, the ACU and ICAP interact very little when a be written in assembly language, or a high leveltlanguage
program is running in the ICAP; the exception is when the and compiled as linkable modules. ICAP routines must be
ICAP program reaches a global synchronization point: that precompiled and downloaded to the ICAP program mem-
must be mediated by the ACU. The ACU can also set the ory because the function of the ACU is primarily to is-
ICAP to operate in MIMD mode, by turning control over sue SIMD instructions to the CAAPP. The ACU merely
to a task queuing program in the ICAP processors. The coordinates execution of routines that are already stored
queuing program reads execution scripts from the ISSM in the ICAP processors whenever they are operating in
according to a predefined protocol. When the ICAP is exe- synchronous-MIMD mode, or interacting closely with the
cuting in MIMD mode, it depends upon the SPA to provide CAAPP.
coordination of any required synchronization of ICAP pro- When an application requires maximum performance .-
cessors. from the CAAPP and ICAP, it must be micro-coded for

The ACU thus supports for the close interaction be- execution on the micro-controller. The micro-controller is
tween the CAAPP and ICAP during the initial phases of designed to be a complete processor, capable of execut-
interpreting an image. However, the ACU also permits the ing general purpose programs. Thus, for real-time applica-
CAAPP and ICAP to work independently, with the ICAP tions, a typical development scenario would involve rapid
taking directions from the SPA as the high level interpreta- prototyping of an implementation on the Macro-controller,
tion processes come into play. This allows the CAAPP to followed by migration of the high-level code into Micro-
concurrently perform additional-low level processing, such controller instructions. In the future, tools and compilers
as integrating information from other sensors or starting to will be developed for the Micro-controller that will aid the
process the next image. code migration processes. However, it is reasonable to as-

sume that the Macro-controller development environment

3. IUA Programmer's Model will always be more attractive. Thus, it is expected that
the two-stage development process will remain as the stan-

Just as the IUA is a hierarchical architecture, the IUA dard approach to implementing real-time applications on
programming model is also hierarchical. At the lowest level, the IUA.
a programmer may write assembly language primitives for
the CAAPP, ICAP, and SPA. More typical, however, will The IUA programming environment currently exists as 'O

be high-level programs for the SPA. Between these two ex- a set of software simulators. The ACU, CAAPP, and back-
tremes are programs for the ACU that control the CAAPP ing store portions of the simulator are available on VAX
and ICAP arrays in cooperation with the SPA. and SUN systems, while the full IUA simulator is run-

ning on an Explorer LISP workstation augmented by a
SPA programs are written for a shared-memory multi- TI Odyssey parallel signal co-processor board containing

processor model, typically using a high level language with four TMS32020 processors. The simulators can be pro-
extensions to support concurrency. Because the SPA pro- grammed in a variety of languages. LISP, Forth C. etc.. 0
cessors are all identical, any process may execute on any .p
processor and have access to the entire intermediate level CAAPP. The ICAP processors, however, are currently pro-

daAAbPs TheM aCnP prcesos howeverrd are currensintro-database (ISSM) and the blackboard. Thre ACU is inter- grammable only in Forth and assembly language (a C corn-
faced to the SPA in such a way that it acts as a special
SPA processor that has control over the CAAPP and ICAP piler is under development by TI). The simulated SPA ms,.

arrays. Thus, ACU programs communicate with SPA pro-
cesses via the same mechanisms that SPA processes use to
communicate with each other. 4. Sample Algorithms

To the application developer, the IIJA is simply pro- While the purpose of this section is to provide a sense of
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the types and and range of operations that can take place controller saves the Some/None response so that the max-
on the IUA, it is by no means a complete discussion of imum value is available in the controller at the conclusion
all of the system's capabilities. The algorithms presented of processing. This takes 24 CAAPP instruction cycles (2.4
here are specifically intended to demonstrate the various microseconds) for an 8-bit value.
forms of communication that occur within and between the

CAAPP and ICAP levels. Processing and communication 4.2 Label Connected Components
that involves the SPA level will be left for future presenta-
tion. The local associative Some/None operation provided

by the Coterie Network is demonstrated by this algo-
This section will begin with several fairly simple but rithm. Because finding a maximum uses only broadcast and

detailed algorithms in order to show how the IUA is pro- Some/None feedback, it can be performed locally within a
grammed. The algorithmic notation used is very close to coterie and in parallel with every other coterie. This leads
one of the programming languages employed with the IUA to the simple algorithm for computing a connected compo-
software simulators. However, the notation is simplified to nent labeling of an image shown in Figure 4.
improve the clarity of the presentation. Macro operations
are also used where their machine language implementation The algorithm begins by loading each processor with its
is not an important element of the algorithmic method. For address in the array from the backing store memory, which
example, adding two 8-bit quantities in the CAAPP is ac- serves to give each processor a unique number. Next, the
tually performed bit-serially by a sequence of instructions, Coterie Network switches are opened between processors
but a typical program will make use of the standard macro that are on region boundaries (i.e. between pairs oi pro-
for addition to perform this operation. Following the de- cessors that have different values) establishing a coterie for
tailed algorithms, several more algorithms will be sketched each image region. Lastly, all regions in parallel determine
whose complexity makes them too lengthy to be presented their local maximum address value. Note this is the same
here in great detail. The concepts behind the algorithms algorithm as for finding a maximum value in the entire ar-
are worth considering, however, because they demonstrate ray except that the coterie Some/None response is used in
additional capabilities of the IUA. place of the global Some/None response to control the set-

ting of activity. As part of finding the maximum, every

4.1 Select Greatest Responding Value processor in a coterie stores the maximum address value
for all cells in its coterie in its own memory. Because this

This algorithm (Figure 3) demonstrates the use of the value is different for every region, the result is that each con-
associative Some/None feedback from the CAAPP array. nected group of processors is assigned a unique label that is
The goal is to select, from among all active cells, the cell common to every processor within a group. From our elec-
or cells that have the greatest value in a given field of their trical simulations of the Coterie Network, we calculate that .
memory. In addition, that value is to be made available in this algorithm will take approximately 50 microseconds to "_%
the ACU for subsequent processing. execute.

The algorithm begins by loading the high order bit of
a given field into the response register of all active cells. 4.3 Histogram
The global controller then tests the Some/None output of The preceding algorithms use only the Some/None Re-
the array. If any cells have their high order bit set, thenThprcdnaloimsuenyteSm/N eR-
they array. cfandidtes oravhe maximuueir hh o ich set, sponse form of feedback. The response count is of equal im-
they are candidates for the maximum value; in which case, portance in many of our algorithms. For example, we can
any cells that have a zero in their high order bit are then form a histogram of any numerical feature in the CAAPP
deactivated. However, if no cells have their high order bit using the response count. This is quite simple to do:
set, then none are deactivated because they are all still For each bucket in the histogram we associatively select
potential candidates. This process repeats with each suc- those cells whose values fall within the range of the bucket
cessively lower order bit in the field. When the low order by broadcasting the minimum and maximum value of the
bit has been processed, only those cells that contain the

maxium alu wil rmai acive.Foreac itratonthe range, comparing with the cell's value, and appropriatelymaximum value will remain active. For each iteration, the setting the response register to 0 or 1; then a count of the

- - Beginning with the high-order bit
FOR Bit-:= Field-Length - 1 DOWN TO 0 DO UP

Response:= FieldiBitNumi {Put bit in response register}

IF Some {If any cell has a I in this bit}

THEN
Activity:= Response {Then turn off activity in cells with a 0 in this bit}

Figure 3: Finding a Maximum Value in the CAAPP
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Load-ProcessorAddresses

Coterie-Switches:=(Open, Open, Open, Open) {Initialize coterie switches) 
FOR Neighbor:=North TO West DO (Initialize flag for each neighbor}

Equal:=True
FOR BitNum:=Field-Length -1 DOWN TO 0 DO (For each bit in field)

Equal:=Equal AND (Neighbor.Field[BitNuml=Field[BitNum]) {Compare own bit with neighbor}

IF Equal {If field value matches neighbor, bit for bit)

THEN {Then close the coterie switch to connect with that neighbor}
Coterie-Switch [Neighbor] :=Closed

FOR BitNum:=Address-Length -1 DOWN TO 0 DO
{Find maximum addresses in coteries}

Response:=Address{BitNumi {Put bit in response register}

IF Coterie-Some {If any cell has a 1 in this bit)
THEN

Activity:=Response {Then turn off activity in cells with a 0 in this bit)

Component Label[BitNum]:=-Coterie-Some! {Save bit values for component label)

Figure 4. Connected Component Labelling using the Coterie Network

responding cells gives the histogram bucket value. The time the usual image processing and low level vision algorithms

to form the histogram is thus proportional to the number of that do not depend upon feedback to the controller. For ex-

buckets in the histogram (typically about 1.6 microseconds ample, smoothing operators such as Gaussian convolution,

per bucket) and is independent of the number of values in edge detectors such as the Sobel and Canny operators, local

the array. pixel comparisons, line curvature, border following, etc. all
use the mesh connected operations that are typical of this

4.4 Compute Average Value class of machines.

Figure 5 gives a CAAPP algorithm that uses the re- To demonstrate communications between neighboring

sponse count to compute the mean of the values stored in CAAPP PEs, the algorithm for performing a Sobel opera-

selected cells. The algorithm begins by summing the values tion is shown in Figure 6. The Sobel computes the local X

in the selected cells. Starting with the high order bit posi- and Y gradient magnitude at each pixel in an image. These

tion of the values to be summed, each bit of the values in X and Y magnitude vectors subsequently can be combined

the selected cells is separately counted. The counts are each to form the orientation and magnitude of the local gradi-

added to the overall sum after being appropriately scaled out at each pixel. Pixels with large gradient magnitudes

by a power of two. The algorithm concludes by setting each are frequently associated with strong edges or lines in an

cell's response bit equal to its activity bit so that the re- image, and are thus likely to be of use in interpreting an

sponse count will be the number of active cells, and dividing image.

the sum by that count to get the mean of the values. The Sobel operator requires that the image be convolved
with two different 3 x 3 masks. One mask computes the

4.5 The Sobel Edge Operator gradient magnitude in the X direction while the other com-

Of course, in addition to processing that is oriented putes the magnitude in the Y direction.

around associative feedback, the CAAPP is able to perform

Sum:=O (Initialize sum)

FOR Bit Num:=HighOrder DOWN TO Low-Order DO {Count each bit in field and add to sum, scaling appropriately}

Response:= Field(BitNum
'

Sum: =Sum*2 +Response-Count
Response:=Activity {Count number of active cells'

Mean: Sumi ResponseCount {and compute mean}

Figure 5. Computing the Mean of Values in Selected CAAPP
Cells Using the Response Count Operation
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The masks are: region is a list of the positions of its corners. The following
algorithm forms the corner lists for all regions in parallel.

It begins by making each region an independent coterie,
X magnitude: Y magnitude: using the connected components labelling algorithm pre-

-1 0 1 1 2 1 sented earlier. A single cell in each coterie is selected as
-2 0 2 0 0 0 the coterie leader. In this case, the chosen cell is the mem-

-1 0 1 -1 2 -1 ber of the coterie whose cell address equals the region's

component label. The leader is responsible for collecting
the corners for its region, and passing them to the ICAP

In the CAAPP, the X magnitude is computed by first which stores them in a list.
having each cell double its own value, and then add the
values of its North and South neighbors. This intermedi- The first corner is determined by selecting the corner

ate result is then used to compute the actual X magnitude cell in each coterie with the maximum address. As part

by subtracting the intermediate value of each cell's West of this process, the coterie leader learns that cell's address

neighbor from the intermediate value of its East neighbor. and passes it to the ICAP processor associated with the

A similar sequence of operations is used to compute the Y CAAPP chip containing the leader. The selected corner

magnitude. The algorithm is shown in Figure 6: cell is then shut off and the process is repeated so that the
next corner is selected. The loop ends when there are no
more corners to select, at which point every corner will have
been passed to the ICAP by its coterie leader.

(Compute X Magnitude} This algorithm causes the corner lists to be created in

Double-Own := Own-Value + Own-Value reverse raster-scan order, which is adequate if the regions

IntResult := Double-Own + North(Own-Value) are simple convex figures. However, for more complex re-

Int-Result := IntiResult + South(OwnValue) gions, it may be difficult to reconstruct the shape of a region

X Magnitude := East(Int Result) given a corner list in this order. A better arrangement is to

XMagnitude :- XMagnitude - West(Int-Result) list the corners in clockwise (or counterclockwise) bound-
ary traversal order (ie. the order in which corners would be

{Compute Y Magnitude) encountered as the cells at the boundary of the region are

Int-Result := Double-Own + East(OwnValue) traversed, starting from some arbitrary boundary point).

IntResult := IntResult + West(OwniValue) The coterie network can also be used to accomplish this

Y-Magnitude := North(Int Result) task. Although the basic concept for doing this is quite
YMagnitude YMagnitude - South (IatResult) simple, in practice it is complicated by considerations of

regions that are one pixel wide and regions that completely

enclose other regions. Because the algorithm is more com-
Figure 6. Sobel Algorithm plex, it is only discussed here in general terms; the detailed

for the CAAPP discussion will be left to a future paper.

As in the preceding algorithm, the first step is to la-

Assuming that the operation is being applied to 8-bit in- bel connected components. After connected component
teger pixels, it would require 100 CAAPP instruction cycles labelling has been performed, each member of a compo-

(10 microseconds) to compute the components of the Sobel nent examines its neighborhood to determine whether any

operator for the image. The gradient magnitude and orien- neighboring cell has a different component label. Any cell

tation can be computed from these components by applying that has a neighbor belonging to a different region is at the

the standard formulas as a sequence of CAAPP arithmetic boundary of its own region. In the simplest case, the cells

operations. that are at a region's boundary form a chain that are at a
region's boundary for a chain that is a one-pixel wide closed

4.6 Create Border Corner Lists loop. Each cell in the chain will have two neighbors; one inthe clockwise direction and the other in the counterclock-
In addition to performing associative Some/None op- wise direction around the loop. The cells that make up a

erations, the Coterie network may be used to pass mes- boundary chain can then set their coterie switches so that
sages across the mesh by providing direct links between the chain becomes a separate coterie. (Some of the corn-
non-adjacent processors. In the algorithm shown in Fig- plexity of the actual algorithm stems from the situations
ure 7, it is assumed that some corner detection operation in which a boundary chain is not a simple closemd loop and

has been performed on the borders of regions in the image. how the different cases are handled.)

The result is a sparse set of processors that are labelled as

corners (ie. those processors whose Corner-Tag field is set A leader is selected for each of the boundary-chain co-

to true). One useful feature that can be extracted for each teries. Each leader opens the coterie switch connecting it to
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LabelConnected Components (Each component is given a unique label that is equal to the maximum cell address
within the component. The label is stored in a field called Component-Label in
each cell }

Start ICAP(Corner List Builder) {A process is started in the ICAP that will respond to each Signal ICAP operation
(except the first) by picking up a corner from the backing store, and adding it to
the list for the appropriate componcr, f region }

Activity := 1! {Turn on all cells}
Leader := Address = Component-Label {Identify the leader for each coterie}
Backing Store Write(Leader) {Copy leader tags to backing store}
Response := Leader
Latch LocalCount {Count of leaders in each CAAPP chip}
Signal ICAP {The ICAP processor associated with each CAAPP chip reads the local count to

determine the number of coteries for which it will collect corners. Each ICAP
processor also scans its portion of the backing store to determine the addresses of
the leaders in the coteries associated with it }

Activity & Response := Corner-Tag tActivate all corner cells}
WHILE Some DO {Select corner with greatest address in each coterie}

FOR Bit Num := Address Length - I DOWNTO 0 DO
Response := Address[BitNuml
Next CorneriBitNum] := Coterie-Some! {Store each bit of the greatest address in all members of the

coterie (including the leader) by ignoring the activity bit }
IF Next CornerjBit Numl THEN

Activity := Response {Turn off cells that are less than the max}
Corner-Tag := False (Disable the greatest corner once it's found}
Backing Store Write(NextCorner) (Copy the address to the backing store}

Signal ICA P (The ICAP processor associated with each CAAPP chip picks
up the address stored in each coterie leader location in its por-

tion of the backing store and saves it in a list }
Activity & Response := Corner-Tag! {Activate remaining corners}

END WHILE

Figure 7: Extracting Border Corner Lists
@

its counterclockwise neighbor in the loop. The loop is thus Each region then performs a coterie-select-greatest opera-
transformed into an open figure with the leader at one end. tion on these region labels, and a region label is output to
Every cell in the chain that is also tagged as a corner now the ICAP via the coterie leader. All boundary cells that
opens the switch connecting it to its clockwise neighbor in have the selected label are then shut off and the test is
the chain. Next, each leader broadcasts a bit to its coterie, repeated to obtain the next region label. The process is S
Because the corner cells have broken the coterie, the bit complete when there are no more labels to output. Be-
will only reach the first corner clockwise along the bound- cause a region label is the address of the coterie leader for
ary from the leader. That corner is then activated and a region, and the ICAP processors are spatially collocated
transmits its address back along the coterie to the leader with respect to the CAAPP cells, each ICAP processor can
which subsequently passes the address to the ICAP. The directly compute the ID number of the other ICAP proces-
active corner then closes the switch to its clockwise neigh- sors that contain descriptions of adjacent regions.
bor and deactivates itself so that further broadcasts from
the leader will pass through it. The process is repeated 4.8 Rule-Based Region Merging
until all corner cells have been read out to the ICAP. Once the ICAP processors have collected the infornia-

tion required to describe a specific type of image event, for -' -
4.7 Region Adjacency Graph example lines or regions, the ACU can broadcast rules (or

A similar algorithm involves collecting a list of adjacent constraints) to the ICAP that cause it, to take some action. S
region labels for each region in an image. This algorithm Given that the ICAP contains an attribute list fOr each re-
begins by having every boundary cell get the label of its gion consisting of its size, average intensity, list, of border
neighbor that is in another region, using the SEWN mesh. corners, and list of adjacent regions, the ACU could broad-
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cast a rule to the ICAP that says "If a region is below X Summary
in size, and is adjacent to one or more regions that exceed The Image Understanding Architecture is a three-level

size Y, it should be merged with the adjacent region whose parallel processor that is designed to support the multiple
intensity differs least from its own, but only if the intensity levels of representation and abstraction inherent in our viewdifference is less than threshold Z." eesorerstainadatatonihetinoriw

n "of knowledge-based computer vision processing. Each level

Such a compound rule will actually take the form of a is designed to perform a suite of tasks most appropriate for

processing script that is downloaded to the ICAP proces- that level of abstraction.
sors from the ACU via a broadcast to the ICAP program Just as the IUA is a hierarchical system, the program-

memories. The script will actually be a series of calls to mer's model of the IUA is also hierarchical. At the lowest
library routines that have been pre-stored in the ICAP. In level, a programmer may write assembly processors sup-

this case, the script would select regions larger in size than port routines for the CAAPP, ICAP, and SPA (CAAPP

threshold Y to transmit their size, intensity, and ID to all support routines are actually written in microcode for the
ICAP processors that contain regions on their list of ad- Micro-controller portion of the ACU). At the intermediate
jacent regions. The ICAP processors then compare each level of the programmer's model are applications written

region that is smaller than X to the size and intensity of for the Macro-controller portion of the ACU. The highest

each region for which information was received. If the con- level of the model, where the majority of applications are

dition for a merge is met, then an ICAP processor transmits written, takes the form of concurrent processes that execute
all of the information for the smaller region to the proces- in the SPA using a shared-memory multiprocessing model

sor that is responsible for the larger region. The processor of computation.
that contains the larger region adds the smaller region's

information to its database. The processor that contains A collection of algorithms has been presented that
the smaller region transmits the new region label to the demonstrates some of the ways that the CAAPP and

CAAPP by writing the label into the backing store for the ICAP levels of the IUA may be programmed, In par-

region's coterie leader. The ACU then instructs all coterie ticular, processing modes have been demonstrated that

leaders that have received new labels to broadcast the new use global associative processing; local associative process-

label to their coterie and then resign as coterie leader. The ing via the Coterie Network; horizontal communication

cells that are on the common boundary between the two via the SEWN mesh, coterie network, and ICAP cen-

regions then close their coterie switches so that the two co- trally switched network; vertical communication via the

teries are merged into one. The ICAP processor that was local count and CISM; and the SIMD, Multi-SMD, and

responsible for the smaller region then deletes the region's Synchronous-MIMD forms of parallelism.

information from its database. The IUA currently exists as a set of software simulators.

A variety of interprocessor communication topologies However, the custom CAAPP chips are currently being fab-

can be supported in the ICAP, due to the flexibility of the ricated and a CAAPP-CISM-ICAP-ISSM test structure has

centrally controlled network switch. For example, topolo- been breadboarded. The prototype IUA system is sched-

gies such as the mesh, ring, hypercube, or shuffle can be uled for completion in the Fall of 1988.
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ALGORITHMS AND ARCHITECTURES FOR SMART SENSINGI

Peter J. Burt

David Sarnoff Research Center, Subsidiary of SRI International
Princeton, NJ 08543-5300

ABSTRACT The overview of DSRC vision related programs is given
in Section II of this paper. Discussions of smart sensing and P

Human vision is a distinctly dynamic process in which multiresolution processing are given in the next two sections.
the eyes move through a sequence of fixations to selectively These motivate the architectures and machines described in
gather scene information for the task at hand. At DSRC we the remaining sections.
are developing a set of similar strategies for computer vision.
Included in these smart sensing techniques are mechanisms 11. IU RESEARCH AT DSRC
analogous to peripheral alerting and foveal attention in hu-
mans. Perhaps most importantly, smart sensing requires a The following paragraphs provide a brief overview of
close interaction between low and high level vision mecha- major image understanding (IU) and related programs at
nisms, as image understanding processes guide information the David Sarnoff Research Center.
gathering processes even as initial image data is being inter- * Smart Sensing. We define smart sensing as the selective
preted. Smart sensing techniques can have a profound effect gathering and analysis of scene information as required to
on the efficiency of a vision system, increasing its speed often perform specific vision tasks. It is implemented within a
by several orders of magnitude. vision system as a set of techniques and strategies that yield

The multiresolution, pyramid structure provides a coin- speed and efficiency in analysis. These include, for example,
putational framework for smart sensing. We are developing alerting, foveation and attention mechanisms. Smart sensing

computer architectures for hierarchical image analysis that is essential for practical vision systems that must work in real
support smart sensing, and we have built hardware to per- time. Our objective is to develop a unified set of techniques
form multiresolution image analysis at video rates. that may then be applied to a wide range of tasks, including

industrial inspection, surveillance, real time motion analysis,
ALV navigation and general outdoor vision. 112][131

I. INTRODUCTION * Architectures for Multiresolution Vision. A key ele-

This paper has two objectives. First, we provide an ment of smart sensing is the ability to represent and process
overview of major research projects at David Sarnoff Re- image data at multiple resolutions. Typically this yields ira-
search Center (DSRC) that relate to image understanding. provements in speed or reductions in hardware by three or

* Second, we describe in some detail a project to develop coin- more orders of magnitude. We have developed formal mod-
puter architectures for multiresolution image analysis, and els for several aspects of multiresolution processing, and are
to build machines for a variety of vision applications, formulating vision architectures based on these models. Of -

Our interest is in developing a fundamental understand- narticular interest are architectures that are modular and
ing of vision, in terms of representations, algorithms, reason- flow-through. These can be configured as very small, special
ing structures, and architectures. Our current architecture purpose designs, or large, general purpose, machines for real
project is an outgrowth of a number of diverse research pro- time vision tasks. Lattice pipeline and circulating pipeline
grais, in human vision, signal processing and image under- architectures will be reviewed in this paper. 120]1211
standing. To a large extent these projects have been tied
together by an interest in a certain style of computation, * Pyramid Vision Machine. Based on the general con-

that is hierarchical, 'flow through', and controlled by strate- cepts developed in the architecture program, we are build- 
sof '.This interest reflects aconviction ing several machines for a range of specific applications. The

thatrequiremensforffai o lae ffirst of these is called the Pyramid Vision Machine, or PVM,
that requirements for efficient computation place fundamen-iu
tal constraints on the form taken by a vision system. It is and is intended primarily for industrial applications. The

e. the need to make the very most of limited resources, that has machine is relatively small but can achieve remarkable speed ,

dictated some of the most striking features of natural vision, through fhe application of smart sensing strategies. A proto-

including the foveal organization of the eye, and alerting and type PVM was completed in 1985, and a second generation a

attention mechanisms. Similarly, the basic requirements for machine is now under development. J51138)

efficiency have led us to architectures based oii hierarchical * Real Time Motion Analysis. A second machine based 0N
processing and smart sensing. on hierarchical, flow-through architectures is being devel- A
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oped for continuous, real time analysis of motion in a video * Image Representations. The representation of image _
sequence. This machine will be built with the same pro- information is key to the success of analysis. A good repre-
cessing modules as the PVM. Initially it will be applied to sentation will not only capture salient information in a easily
motion directed processing of television signals, but applica- accessible form, but will support rapid search and analysis
tions to computer vision are planned, including object track- algorithms. DSRC has been active for a number of years
ing and ALV navigation. [7][22] in the development of multiresolution, pyramid based, im-
* Surveillance. A third machine, also based on PVM coin- age representations. These have proven useful not only for
ponents, is under development for 'smart surveillance' appli- computer vision, but in signal processing in general. Ma-
cations. This is a very small device that could ultimately be jor applications outside vision include image compression,
part of the camera itself. Again using smart sensing strate- enhancement, and graphics. [15][16]
gies it will monitor motion within a camera's field of view, * Joint University Programs. DSRC has active or de-
discriminate between possible target motion and other back- veloping vision related programs with several universities.
ground actively, and locate and track selected targets. [4][17] These include the University of Pennsylvania (algorithms),

* Princeton Engine. A very high speed parallel processing NYU (representations), Princeton (robotics, neural biology),
machine, known as the Princeton Engine, is under develop- and Rutgers (machine vision).

ment at DSRC and will be completed in mid 1988. This is a III. SMART SENSINGcoarse-grained SIMD machine designed to perform relatively While vision research at DSRC spans many disciplines,
complex iconic processing on video signals in real time. High from algorithms to hardware, much of this work is devel-
speed data paths move images through the machine. In its o m with m o neptual framework is de -ful 208 pocesorconiguatin te mchie wll perteat ped within a common conceptual framework. Our objec-
30,00full 2048 processor configuration the machine will operate at tive is the development of highly efficient vision systems that30,00 MPS. 25]can perform significant vision tasks in near real time. To a
* Object Recognition. A major objective of our research large extent computational strategies for this performance 0
program is the development of systems that can locate and are captured in the notion of smart sensing. [12][13
recognize objects of interest within complex scenes at near
real time. Again, the techniques of smart sensing are critical
for speed. Emphasis is given to the design of model-based
reasoning structures that can rapidly assimilate new scene ,"v_") . .
information in order to direct the ongoing information gath- c'-t. -.
ering processes. As an initial implementation we are devel- -

oping hierarchical pattern tree object models that combine a
compact object description with object specific recognition
strategies. [13] I

* Human Vision. DSRC has had a significant basic re-
search program in human vision for many years. In the 50's Smart sensing may be defined as the selective, task ori-
and 60's Rose and Shade were first to characterize human ented gathering of information from the visual world. It is
perception in terms of signal-to-noise limitations and mod- a distinctly active process in which the viewer, be it man .. kulation transfer functions. These powerful notions led oth- or machine, probes and explores the visual environment to "'V

ers to develop the now familiar multi-channel models of hu- extract information for the task at hand. Such selective pro-
man vision. Members of our staff have contributed to these cessing is essential for any vision system to function in a com-
later endeavors, and we continue to extend vision models plex environment. The visual world contains vast amounts WAV
to describe such basic functions as the perception of motion, of information, often far more than can be analyzed even by 0
depth, and texture. Our program includes applied as well as today's supercomputers. However, only a minute fraction
basic research, and models of human vision have been used of this information is required to perform most vision tasks.
to measure image quality for video displays and to design When just this salient information can be efficiently located
industrial computer vision systems for the detection of cos- and extracted then even a modest computer can perform
taetic flaws. (1(2Jf6J[81[91(18[19j]231[241[291[35(36[391[401 sophisticated tasks.

* Neural Networks. We are developing neural net ap- Many aspects of smart sensing are already familiar to us
proaches to various vision related computations. One objec- from our own visual experience. Imagine, for example, the
tive of our current work is 'data fusion', the conibining of in- driver of a car traveling on a country road. His visual task
formation from different sensory modalities, including tactile is to locate and follow the road, observe oncoming traffic,
and auditory senses as well as vision. Our approach includes read appropriate road signs, and avoid any objects in the \, -
the development of biological models for brain structures road. To perform this task he does not examine the world
that perform these functions as well as computer architec- in uniform detail. Rather he moves his eyes to fixate in
tures for the same functions. The objective of the program turn certain critical points in the visual field, the road, an
ultimately is the development of neural techniques and ar oncoming car, a sign. Two or three such fixations per second
chitectures for object recognition and robotic object utanip- suffice to drive the car, yet he 'sees' only a minute fraction
ulation. [33][34)(37 of time world before his eyes.
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The eye is capable of gathering detailed scene infor-

mation only in the small region centered on its fovea. Its a Match to Resolution and Scale

resolving power falls rapidly outside this region, towards pe- The resolution required to perform a given vision task is

ripheral vision. Thus while the driver fixates the on road not fixed, but may vary from moment to moment and from

he hardly notices individual leaves, or even trees by the side region to region over a scene. In some cases only coarse pat-

of the road, or objects in the fields beyond. What is re- tern structure needs to be measured over a relatively broad

markable is the skill with which his visual system locates area of the visual field; in other cases details are required in

and extracts just that information required to drive the car, small patches of the field. In computer vision, it is impor-

while it ignores the vast flow of information not relevant to tant to match the scale and resolution of analysis operations

this task. to that of salient information within the scene. Not to do

The same behavior is evident when humans perform an so can mean the vision system becomes mired in irrelevant

industrial vision task. Objects to be inspected, for example, detail, 'missing the forest for all the trees'.

may be large and intricate, but a human inspector quickly As a simple but telling demonstration of the importance

locates just those points that need close examination. As of scale and resolution, consider the problem of locating a

machines are designed to perform such inspection tasks it target pattern, T, within an image I. If the target measures

will be imperative that they also implement smart sensing M by Al samples, and the image measures N by N, then

strategies. Even the relatively constrained industrial envi- the cost of correlation search is order A 2N2 . Next sup-

ronment is too complex for exhaustive visual analysis. pose we wish to search for the same target but increased in

What are the basic elements of smart sensing? In the scale by a factor s. Two approaches may be considered. In

case of human vision three such elements are apparent in the the first a larger copy of the target pattern is constructed,

driver example. First is the marked concentration of resolv- and the search is repeated as before. The cost is now order

ing power within the fovea of the eye. This serves at once as s2 M2 N 2 . In the second approach, the image is decreased

a probe by which the visual system can explore the world, in scale by s and correlation is repeated. In this case the

and as a mechanism by which it can limit the amount of de- cost is decreased to order M2 N 2/s 2 . Provided the target is

tailed information it must process at any moment in time. represented in sufficient detail to permit identification, the

Second is the broad field of view provided by peripheral vi- two methods will yield the same results. The cost of com-

sion. This serves alerting and guidance functions. While putations in the first approach, however, exceeds that of the

sensing the world at much reduced resolution peripheral vi- second by a factor s4 . This can indeed be large for scale

sion can detect unexpected objects or events, and can direct factors of 10 or more that are common in vision tasks! It

the fovea for close examination, can be shown that when searching for targets over a range

A third element of smart sensing evident in the driver's of scales and orientations the cost is proportional to the 6t h -

behavior is the high level cognitive control of eye movements, power of the target dimensions (in samples). [refs. Proc.]

As a viewer performs a task such as driving, lie understands The importance of performing analysis at minimum size and

its requirements and moves his eyes to gather the specific in- resolution is clear.

formation needed for the task. This aspect of natural vision

is most remarkable, and most unlike present day computer
vision systems. It reveals a tight coupling and dynamic in- * Foveation.

terplay between high and low levels of visual analysis. Even It is the nature of the physical world that objects of in-

as the low level system gathers pieces of scene information terest are localized in space and events are localized in time.,

through the sequence of foveations, the high lvel system is In computer vision it is expedient, therefore, to focus analy-

attempting to interpret the world based on this partial data. sis just on those regions of the visual field that carry salient

In effect the high level system continually forms and reforms information, and to move the analysis region dynamically L
hypothesis about objects in the scene, and directs the eyes as events unfold. This dynamic allocation of computer re-

to gather additional information to confirm or reject these sources to regions of interest is analogous to foveation in hu-

hypotheses. mans. Likewise, the additional analysis steps applied within

Ultimately smart sensing must be understood in terms a region of interest is analogous to attention in hurians. In

of computational efficiency. It is based on analysis strategies computer vision, however, many such analysis regions may

for rapid identification of the salient information within a exist at once, and they may change in size and resolution as

scene, and on data structures and fast algorithms for effec- required.

tive extraction and representation of this information. To Mechanisms of foveation and attention can yield very

a significant degree, the form taken by a vision system is significant improvements in the efficiency of a vision system.

dictated by these structures and strategies that serve fast They require, however, that alerting and guidance mecha- #I

analysis. nisins be inplemented over the full field of view to detect V

Analogous structures and strategies support smart sens- events of potential interest and direct foveal analysis. They

ing in computer vision. Five basic elements of smart sensing also require high level, model based, guidance as outlined

are as follows: below.

0.
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* Fine-to-Coarse Generation of Feature Sets. Definitions
Selective visual analysis is generally not applied to raw A pyramid is a sequence of images of decreasing reso-

image data, but to data that has been preprocessed in var- lution obtained by repeatedly convolving a filter w with an
ious ways to enhance features important to interpretation, initial image. The unique feature of this hierarchical convo-
to compute local measures, such as texture or motion char- lation procedure is that w, called the generating kernel, is

acteristics, and to adjust resolution appropriately for anal- 'expanded' with each iteration. This means the distance be-
ysis. Highly efficient fine-to-coarse hierarchical algorithms tween filter taps is increased by a constant factor, typically 2,
can generate many such feature images rapidly and at mod- with each filter stage. In the basic Gaussian pyramid, w acts
est computational cost. as a low pass filter. Successive doubling of w means that the

* Coarse-to-Fine Search. band limit is reduced in octave steps from image to image in
I sotenosile teachieve efficthe pyramid sequence. As the band limit is reduced, sampleIt is often possible to achieve efficiency by performing a density may also be decreased by the same factor of two in

given analysis task first on the image represented at low res- densia als sb sam e ato r ow o in
olution. Results of this initial analysis are then refined in a each die is sub n g is optinal, her. We t.
sequence of steps while moving to progressively higher image s tat mae s n a ' ful density' pyraid if it
resolution. Cost is minimized at low resolution because data is not subsampled, or a 'standard density' pyramid if it is.

is represented at low sample density, and minimized at suc- A Gaussian pyramid may be viewed as a discretely sam-

cessively higher resolutions because results at one resolution pled 'resolution space'. In the case of a standard density

guide processing at the next. Such coarse-to-fine strategies pyramid, subsampled levels may be further compressed into

are commonly used in motion and stereo analysis, and are smaller arrays. The scale of images and image patterns is

important in guiding 'foveal' vision in object recognition. then reduced by two with successive level. This subsam-
pled and compressed pyramid represents a discretely sam-

* Model Based Control. pled 'scale space'.
As is evident in the example of the automobile driver, While the generating kernel, w, is typically small, suc-

humans have a remarkable ability to direct their eyes to cessive doubling in the hierarchical convolution procedure
those regions of the visral field where important informa- means its effective size grows exponentially. Let we be an
tion is likely to exist. The sa.ne should be true with smart ezpanded kernel in which taps are separated by a distance

sensing in computer vision. The selective gathering of scene 2 1-1:
information must be guided to a large degree by an under-
standing of the visual scene and objects that may be within wt(m,n)= w("---r-' n1), for m and n multiples of 2

t -
1

it. There should be, therefore, a tight coupling between the 0, otherwise.
interpretation processes of a vision system and the informa-
tion gathering processes. Perhaps the most challenging task Then the levels of a Gaussian pyramid, A0 , A,, ..., At, ... , k

in implementing this aspect of smart sensing is the develop- formed form an original image, A, are defined recursively:
ment of object models that permit very rapid assimilation A0 = A, the original image, and for t > 0
of new information and reasoning structures that support
rapid decision processes to direct further steps in the selec- At = we * At-,.
tive gathering of scene information,...' The 0th pyramid level is obtained as a cascade of e con-

IV. A COMPUTATIONAL FRAMEWORK volutions with the original image:

The computational elements of siiart sensing will be At = we * w- * ... *W * A

illustrated in tlie next section with a number of examples.
Here we introduce notation for computations based on the Alternatively we may express this as a single convolution
image pyramid since this will provide a computational frame- with a hierarchical kernel, W,:
work for smart sensing.

The pyramid is, first of all, an image transformation A, W, A
that is compact, and complete, and that in its various forms where
isolates and enhances image features, such as edges, that We = w * * ... * Wl.
are important in analysis. As a multiresolu! ion representa-
tion, the pyramid provides a data structure in which analy- Although the hierarchical kernel is never explicitly cons-
sis operations can be matched to the scale and resolution of puted in pyramid image processing, it is convenient for de-
salient image patterns. Furthermore, because the structure scribing the net result of a hierarchical convolution. Hier-
is hierarchical, it provides the computational fri nework for archical kernels double in size with each iteration, but for a
fast fine-to-coarse algorithms that generate local image niea- given generatilng kernels, their shape is fixed. For example, a
sures, or features sets, and fast coarse-to-fine search proce- commonly used choice of generating kernel yields Gaussian- S
dures for locating features or objects of interest. All of these like hierarchical kernels of many scales.
techniques are essential for smart sensing, and all may be In computer vision, Gaussian pyramid construction is
combined elegantly within the pyramid structure. 10f 11 often performed as a first step in constructing other types of ,
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image pyramids. Of particular importance is the Laplacian,E S A Q
or band pass, pyramid. If Gt is the eth level of a Gaussian IMAGE DELAY ALU FILTER PYRAMID LUT

pyramid, then the corresponding Laplacian level, Lt, is given
by: 2Sb

Le = (1- wt) *Gt.

Levels of the Laplacian pyramid represent differences be-
tween successive levels of the Gaussian pyramid.

Gaussian pyramid construction is also frequently used 2b: Integrated Measure

to integrate local image properties within Gaussian-like win-
dows of many sizes. This hierarchical integration process will

be illustrated in the next section. Zf"4t

It is useful to adopt a shorthand notation for Gaus- Lk f T2 G E

sian and Laplacian pyramid processes since these will be the 2c: Change Energy Measure

basis for examples given below. Let Gt[.1 and Lt[.] be opera-
tors that construct the gh Gaussian and Laplacian pyramid gi.
levels from any image specified in the brackets. For exam- I Lk . 2 Gt Eu,
pie, At =GI[A]. Similarly E,,, = G,[(L,[AI) 21 indicates
that an 'energy image', Em,,, is constructed in three steps: 2d: Feature Sets

first Laplacian pyramid level m is generated for an original
image A.; second, the samples of this band pass image are-p
squared; and finally, local energy measures are formed by in-
tegrating the squared Laplacian values within windows W,
by constructing a Gaussian pyramid to level n.

No distinction is made in this notation between pyra- E(r) L&d ++V7alt)'+
rmids represented at standard and full density. Because ira-
ages are band limited, and standard sample density approx- fL
imates the Nyquist sample rate, both pyramid forms accu-
rately represent the same underlying signal. In vision appli- 2 Motin Energy
cations, however, efficiency is often critical, and subsampling -et°
is almost always used. In practice, intermediate results in

- multiresolution computations are often represented at twice

* the standard sample rate, in 'double density' pyramids. This InD JaDI DO

is because certain iconic operations, such as squaring or n
image-image multiplications, double the band width of the

resulting image.

Image Flow Diagrams
Iconic analysis procedures for early vision can often be I2_1 + +

y ~~i,4DO +t2

* represented concisely by image flow diagram.s such as those 2f: Moments
shown in Figure 2. Each operation is represented by a sym-
bol, Figure 2a, while the sequence of operations required for
a processing algorithm is indicated by arrows between sym-

" bols. One may imagine a processing network in which images X
move betwwcn physical computing modules as they undergo

-processing steps. Indeed this view will be taken quite liter-S2

ally in defining architect ures for hierarchical iconic analysis.

Images entering and exiting the network are shown as
shaded rectangles in the diagrams. Often an image is de- s 2

composed into sets of images through pyramid processing,

then subsequent operators are performed on all images in -

the sets. Open arrows are used to indicate patlts on which 2g: L. 'r Fit Filtering '.

sulch image sets mttove together. Multiple, overlappiing sym-
bols may be ised to indicate operations performed on each
image in these sets. Figure 2: Image Flow Diagrawti
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Image flow diagrams without loops define a class of op- sum, occurrences of the pattern element within small neigh- 1.,'e"e

erations that are particularly important when vision tasks borhoods. Integration is achieved through the construction

must be carried out continuously, in real time. Images may of a Gaussian pyramid. For integration within window W,

then enter the network, flow through its processing stages, the e" Gaussian level is selected as the fiual integrated mea- 41

and exit without interruption in processing. We refer to this sure.
as flow through analysis. An integrated measure image is analogous to an array "

of complex cells in the human visual system. An individ-
V. EXAMPLE,", ual complex cell becomes active if the particular pattern

In this section we present a number of examples to il- for which it is selective, such as an oriented line element,

lustrate the basic computations! elements of smart sensing. occurs anywhere within an extended receptive field. Cell

These examples also help motivate the architectures pre- activity represents the fact that the pattern has occurred

sented in the next section. in the image but only specifies its location roughly, as be-

A. Multiresolution Representations ing somewhere within the cell's receptive field. In the same

It is often useful to view a pyramid alternately as a corn- way, a positive value of an integrated measure indicates that

putational structure and as anl image representation. As a a selected feature occurs somewhere within its integration

representation the pyramid and related hierarchical struc- window.

tures have attracted considerable interest in recent years for

a wide range of apphcations. The Laplacian pyramid, for C. Alerting and Foveation

example, represents an image as a set of sampled, band pass Perhaps the most familiar aspect of smart sensing in

images, or equivalently, as an array of Gaussian-like basis natural vision is the foveal organization of the eye itself.

functions of many sizes. Gradient and oriented Laplacian Through the concentration of resolving power within the

pyramid decompose images into primitives indicative of edge fovea, the system call selectively gather scene information

features. The Laplacian pyramid has found important appli- through a sequence of fixations. At the same time periph-

cations in image compression and graphics.15[161 Gradient eral vision monitors a wide field of view at low resolution,

pyramid have been applied quite successfully to image en- providing alerting and guidance for foveal examination. A

ancement.[31] QMF pyramids, based on quadrature mirror similar allocation of resolution and analysis is important in

filters, have recently proven particularly effective for image computer vision to achieve an efficient use of computing re-

compression. [3][32] sources.

Related hierarchical representations in term of self sinit- Integrated measures provide a basis for alerting and S
lar basis functions have attracted considerable interest in sci- guidance. This can be illustrated with an application devel-

entific fields far removed from image analysis. For example, oped at DSRC to 'smart Surveillance'.[4[17] Suppose that

'wavelet' representations are proving to be powerful tools in al automated surveillance camera is required that can moni-

the study of quantum physics and geology. [26][27][28] tor an outdoor scene, and detect when certain critical events
occur while ignoring uninteresting background activity. Sup-

B. Iniage Detail at Reduced Resolution pose further that the canera-analysis system must be low
It is often assumed that multiresolution techniques are cost, and hence that it call have only limited computing

,ot applicable to many of the most challenging vision task, power. de

such as the analysis of satellite images, because critical fea- powe.r
tures are very small and are lost if the image resolution is We have developed a prototype smart surveillance can-

even slightly reduced. In fact such fine pattern details can era consisting of specialized pyramid hardware (the PVM, .,%

often be represented at low resolution through conversion described below) and a standard microprocessor. The pyra-

to incgratcd mcasurcs.[11[13] These record the presence of mid hardware is used to compute integrated measures over

small features within a region of the image, but represent the full field of view at, video rates. These 'change energy' •

their position with reduced precision. The use of such mea- measures serve as the basis of alerting and guidance, direct-

sures can be particularly important in the analysis of very ing simple analysis programs in the microprocessor to exam-

large format images, or in recognizing objects under varia- ine small regions of the filed of view that contain suggestive

tion.s im position, scale and orientatiou. activity.

Four distinct steps are typically required in generating The basic computation used in the change energy gener-
an integrated measures, Figure 2b. First, time source image is ation is shown in Figure 2c. A difference image is first formed
decomposed into band pass comnponents through Laplacian between successive frames of a video sequence. This is non-

pyrami(d construction. Second, t lie component best matched zero only where changes are taking place in the scene. The
in scale and resolution to t lie features of interest is selected difference image is decomposed into a set of hand pass con-
for further processing. This image is convolved wit h a filter, ponents, filtered, squared, atdl integrated, as in the standard
f, that enhances tile feature of interest. Third, the resulting procedure for integrated measures. The resolution band, k,
'feature image' is typically band pass, with both positive and and filter, f, are chosen to be selective for events of interest.
negative values. Thlv image is converted to strictly positive All levels of the integrated pyramid are nmade available to
values through a rectification operation, such as squaring its time microprocessor for analysis. Because t lie microprocessor
sample values. Finally, local integration is used ,o group, or has limited computing power it has time to examine only
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a small 16 by 16 region of the change energy pyramid each 'j.;Vo

frame time. In the normal mode of operation, the micropro-
cessor examines only the 16 by 16 low resolution pyramid
level. Any change in the scene with the appropriate charac-
teristics can be detected by the microprocessor at this level,
even changes in single pixels, if these are deened interest-
ing. If a possible event is detected the system 'foveates' the
appropriate region of the visual field through a homing pro-cess. After detection within a 16 by 16 window at level e

in one frame time, the system shifts in the next frame time
to examine a 16 by 16 analysis region at level t - 1. This

a analysis region is centered on the location of the detected
activity at level e, and represents a smaller area of the scene
at higher resolution. The homing process is illustrated in
Figure 3.

In this example a single integrated measure was used to
guide 'foveal' analysis. More generally a vision system will
base alerting and guidance on a set of different integrated
measures. Through appropriate combinations of these mea-
sures the system can be made selective for a very limited
class of events or a broad range of events as required.

D. Energy Measures and Feature Sets 0

Hierarchical computations are also an important source
b of local image measures used in higher level image analysis.

Random textures, for example, are often best characterized
at, two scales, a finer scale corresponding to pattern elements
that make up the texture, and a larger scale corresponding
to the regions over which the statistical distribution of the
elements can be measured. Measures of local displacement
in stereo and motion analysis are also most economically
computed within a nmultiresolution structure. Larger dis-
placements are represented economically at lower resolutions
while small displacements are represented at higher resolu-

tion.
Figure 2d shows a general framework for generating tex-

ture measures. This is like the basic integrated measure
c computation, Figure 2b, except that each band pass pyra-

mid level is processed with a set of filters {f,}, and the re-
sulting energy images are formed with integration windows
of many sizes. The result is sets of energy inages, {Ekt-m},
where k indicates feature scale, C indicates the integration

window size, and n the feature type.
The importance of this computation lies in part in the

fact that the computations are highly efficient and regular.
Efficiency is the result, of its hierarchical organization: con-

plex measures within large windows are computed as sunms
of simpler measures within smaller windows. Intermediate

results are used repeatedly in te fornation of later results.9

In this way, it is often possible to generate multiple features
at, multiple scales and wit hin windows of iany sizes at a cost

Figure 3. Homing process over four franies. (or- that is only slightly greater than that of conputingjust one
tier marks indicate the image region examined each feat ire image at a selected scale and window size. [111 30]
frame time. The region becomes smaller, but rep- Jules: Tcrturcs. Texture energy easures can also be .
resents higher resolution, as analysis moves between used to model texture perception by humans. Recently 
pyramid levels. Bergen and Adelson have shown that a simple neasure based
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by appropriately combining such homogeneous operations. in gathering information from a scene, it must anticipate
It is even possible to perform regular operations on irregu- where that information is likely to occur. Such anticipation
larly sampled image data. This is necessary, for example, must in turn be based on internal models of the objects
when applying filter operations to image segments of irreg- of interest within a scene. Even as these models direct the
ular shapes, or to motion or stereo displacement estimates searching process they must be refined and updated to reflect
that are known only at scattered points of an image. A newly gathered scene information.
general procedure for both filtering and local integration in- To implement model directed sensing within a com-
volves fitting polynomials to the available image data, then puter vision system it is essential that model and reasoning
performing the desired operations to the extrapolated data structures be carefully designed to support very rapid deci-
(Burt, 1988). A highly efficient procedure for obtaining best sion and update processes. Information gathered from one
fit polynomials within local neighborhoods of each output 'foveation' must be assimilated and lead to quick decisions
sample begins with the computation of local image moments. about where to direct the next 'foveation', typically within
Such moments are useful in other aspects of image analysis a fraction of a second. Needless to say, such dynamic inter-
as measures of local pattern properties. play between reaooning and sensing is not characteristic of

A normalized order p moment within window We cen- present day computer vision machines. Its implementation
tered at point (i) is defined as will require innovations particularly in the design of object

models and reasoning structures. S
Ipt(i) = W 1 (m)I(i + m)mP. At DSRC we have begun the development of model .,

2P based smart sensing with hierarchical object models called

pattern trees. While still in a relatively early stage of devel-
(The definition is given in one dimension to simplify no- opment, this structure is already suited for certain industrial
tation.) Note that a moment is defined with the window vision tasks. [13] In its simplest form the pattern tree rep- .

centered at each sample point. It can be shown that the p'th resents an object in terms of a set of characteristic features
moment in widow W, can be computed as a simple combi- over a range of scales. In general, large features are repre-
nation of p and lower order moments in window We-, [ref.]: sented at low resolution, while small features are represented

at high resolution. Typically, the root of the tree corre-
Ipk = -lk w *Iqk-1. sponds to the overall pattern shape, while branches represent

2P local features in progressively more detail. Recognition pro-
cesses begin at the low resolution description. The pattern

Here wr is a moment generating kernel which combines a tree provides both a compact object description and the con-
moment arm with the standard Gaussian generating kernel: trol structure for directing object recognition processes. Thedecomposition of the pattern into parts provides efficiency

wr(m) = w(m)m'. and flexibility. As was observed earlier, the cost of pattern
search over positions, orientations, and scale, can grow as the

In the above equation r = p - q. This is a fast, robust, con- 6 ih power of the pattern size. The decomposition of large,
putation when performed with a standard density pyramid. complex patterns into smaller, more primitive patterns, can

The computation of zero, first and second order mo- yield remarkable savings in computations. At the same time -,

ment images is shown as an image flow diagram in Fi ure the decomposition directs analysis to the most significant

2d. Here the pyramid operations labeled Dp are the Caine features of the object, and provides the framework for han-
as in standard Gaussian pyramid construction except that dling object occlusion.
moment geierating kernels are used. The pattern tree supports the desired interaction be- %

A polynomial fit within window W, centered at image tween sensing and reasoning processing. Initial feature in-
point i can be obtained directly from the corresponding oo- formation (e.g., from alerting mechanisms) is used to select
ments. Let S be a support image with value '1' everywhere candidate models for objects that may be in a scene. Models ".r
samples of source image I are known. Let i_ be the image are reinforced and refined as sensing process gather scene in-
obtained through polynomial fit filtering. Then formation, while the branching structure of the pattern tree

IOnS2i - IlmSlm serves to guide the selective search. ,
T = SO,,S2_, - SlSl, An example pattern tree description of a playing card

is shown in Figure 6. Boxes drawn over the pattern, Figure 1-
The image flow diagram in Figure 2 g shows that linear fit 6a, show regions represented as features in the pattern tree. -C
filtering begins with parallel computation of moments for In this case all pattern components are represented directly .

the source and support images, followed by several stages of as sample arrays. Here all arrays measure 8 by 8 samples, '

image-image arithmetic operations. so larger boxes correspond to lower resolution subpatterns ,,

F. Structured Search and Fast Object Recognition in the tree. The tree itself is shown in Figure 6b. Figure 6c

A tightly coupled interplay between high and low level shows the pattern information actually included in this tree,

analysis is key in smart sensing. If a system is to be effective obtained by sum~ning its subpatterns.
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Figure 6. Pattern tree representation of a playing card. .

cient in a niesh machine.
VI. ARCHITECTURES A pipeline design provides an attractive choice for pro-

We now consider architectures for vision systems de- cessing subsamnpled and windowed iniages. In this arclhitec- •
signed to perform niultiresolution imiages analysis guided by ture, processing is performed as image data moves through .
the principles of sinart sensing. A number of the structural processing elements. Changes in sample density and in (anal- "

and functional requirements of such anl architecture are evi- ysis) window size take place as data is in transit. The time
dent form tile forgoing discussions. These include somie func- required to complete an operation is directly proportional .
tions for which existing architectures are well suited. For to tie number of samples that must be processed. In this

example, all iconic operations discussed thus far have been way thousands of operations can be performed onl low reso- i
'local', 'honiogeneous' and 'registered'. 'Fie first two of these lution and] windowed imiages in the time required to perform •

characteristics are familiar, and have been definied. To say a single operation onl the a image. -%,
that anl operation is 'ill register' means thle output image has It might be argued that anl SIMD miesh is inherently , ,

thle sane spatial coordinate as thle input image. We will refer faster than a pipe because it has such large numbers of pro- ,' %
to this general class of computations as 'THR' operations. cessors. If there are half a million processors performing a "d,"
Such operations are well suited for parallel computation onl task in parallel, can it really matter if some are idle? Still, i,,

SIMI) nesh architectores or onl pipelined architectures. pipeline designs can also be made fast by running multi-
Other structures and[ functions are not well suited for pie pipes in parallel, and in practice the processors used in a

current architectutres, particularly SIMI1) iesh designs. For pipe design are often significantly more powerful than SIMID-

exanplu., snmart sensing techniques described here rely heav- processors. It seems, in fact., that when two mnachines are I- %, .
ily on tile ability to process iniages at multiple resoltitions signed to perform LIlR operations at, the same overall speed,r'.-"
and( sample densities, and to restrict, processing to regions a pipeline design requires far less hardware than a niesh.[20]- 1P'- :' '"

of interest that, are dynamically define([ and redefined in the liere we develop two architectures based oil pipeline ,
coarse of analysis. Mlesh architectures are poorly matched processing modules. Tile designs differ in the way image•

io, such operations. Subsainpling and windows can be ini- data is moved between these elements. Tile first design, ,x*
pleniented through mask operatrions ill which all processors called a lattirc pipeline, offers minimal delay through a se- ,..,
are disalbled except those corresponlding to selected samiple qulence of operations, and is aplpropriate for specialized sys- ,
positions, But in doing so a system cannot take advantage tens that must process large amounts of data in real time. "'k,"
of file comp~utational efliciency that samp~ling and region of The second design, called a circulating pil,'Hinc", provides . 3-..

interest processing should afford. Reductions in efficiency more efficient use of complutational resources, alnd is suited a
and speed of several orders of magnitude would be typical. for general purpose vision systems.
A further complication in the inesh implementation of hi- In bo,,th architectures we have favored niodular design, .:

erarchical processing is that when processing low resolution so that large and sniall systenis call be assembled from a.'
data, processing elenents that. represent neighboring sai- common set of omponents, as required to, iel the data .'"
pies are far apart in flhe unesh. This necessitaies either a rates for differ'ent vision tasks. "

transfer operation in which samples are" rpacked ito neigh- Ill practice, architectures that cm bie features flat- " " '

boring pr,,cessing ,elellents ," r long rangeO (oiminication of fice F-d circiilatiti:," designs are preferred. The IPVM is )lie•
inlform'l|aionl b~etweenl elements. flhth ;iterltudives are inelli- such hybrid design..,,
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Processing Modules In addition to the operation it performs, a module is

In order to define hierarchical iconic processing archi- characterized by the 'delay' incurred as image data flows

tectures in the most general terms, we begin by adopting a from its input to output ports. If we assume the module
standard model for a processing element, as well as a stan- performs its computations fast enough to keep tip with input

dard symbolic notation, Figure 7a. It is assumed the module data, then the delay is dominated by the time between when

performs an iconic operation, generating an output image a given input sample arrives and the time the neighborhood

by applying an operation f to an input image. In ge.:eral, a is centered over that sample, and the corresponding output

module may operate on a number of input images, and gen- can be computed. As shown in Figure 7b, this is roughly

erate a number of output images; howevet, we will consider half the minimum buffer size, times r, the time between

modules with only one or two inputs and a single output. successive input samples: t = (- M + m - 1)1. This delay

A given module may be capable of performing a number is a critical factor in designing an efficient system.

of different operations, however it is assumed that when an The module shown in Figure 7a is assumed to run syn-
operation is applied to an image, it is applied to the entire chronously with other modules within a processing network.
image. The operation is set by an external control line, as For some applications asynchronous modules are preferred.
shown, and may be changed from image to image. Each module is then provided with an output buffer as well

as its input buffers. Data flow through the network is con- O
Function Select trolled locally by individual modules and transmission links.

A module computes an output sample when (a) requisite in-
put data is in the input buffer, and (b) there is room in the
output buffer for the result. A transmission link transfers

data when (a) there is data ready in the o,,tput buffer of the
Figure7a: Synchronous Module sending module and (b) there is room in the input buffer

of the receiving module. Transfers are coordinated through

handshake protocols.
Other control information may travel with the images

. -.-.. Output at themselves, indicating, for example, image dimensions, or
.... time t even tihe sequence of operations to be performed.

N... .. .Large system can be assembled from synchronous or
N *-asynchronous modules. With asynchronous modules this is

simply a matter of linking appropriate units; there is no need
for a supervisor system to synchronize data flow. For syn-

Inputat chronous modules, data rates need to be matched carefully,
time t but individual modules are considerably less complex than

M in the asynchronous design. Such systems can be upgraded

Figure 7b: Buffer belay for mxn neighborhood operation readily by replacing individual modules with more powerful
modules.

It is assumed that input data samples arrive sequen- Lattice Pipeline
tially, in raster scan order, and that output image samples Iconic analysis algorithms are implemented by arrang- N,
are generated and transmitted in raster sequence. In the ing processing modules appropriately in networks. We de-
case of LHR operations, output, samples are matched to in- fine a lattice pipeline as a network consisting of one or more
put samples, so that computations can proceed even as imu- pipelines running in parallel, possibly with branching and
age data arrives. This is not always the case. In non-LHR merging paths, but in which there are no loops. [201[211.
operations, such as image warp, a given output sample may Thus a lattice pipeline may be represented topologically asK>
depend on arbitrary input samples, and it is necessary to a directed graph, with modules as nodes, and data paths as
wait for the entire input image to arrive before the compu- links. The term 'lattice' is used here in the mathematical
tation of output samples can begin, sense of a partial ordering: given any two nodes, one node

A module includes buffers for each of its input ports. may be said to be greater than the other (upstream on a
The buffers serve two purposes: to accumulate image data as common data path) or they are unrelated (on different data '
required to provide the support for computing output sam- paths). The lattice pipeline architecture is a direct trans-
pies, and to help align data streams arriving over different lation of image flow diagrams, such as those in Figure 2,
paths. The minimal buffer size depems on the operations into physical devices that perform the indicated computa-
being performed. In the case of a point operation, no buffer tions. For example, Figure 8a shows a network topology to
is required. An LHR operation with neighborhood size n by implement the change energy computations of Figure 2a.
nm requires a buffer of size (n - I)M + rm samples, where To operate efficiently a lattice pipeline must be 'bal-
M is the length of an image row, Figure 7b. A nou-LHR anced'. That is, time total delay along all paths between any
operation generally requires an input buffer the size of the two processing modules must be (roughly) equal. Figure Ab
entire image. illustrates the importance of balancing, as well as the means

h
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larly well suited to this design. A lattice pipeline provides
minimum delay between system input and final output, and

is therefore to be preferred for real time applications in which
system responsiveness is important. -

8a: Lattice Pipeline Realization of change energy computation Analysis based only on LHR operations is particularly

powerful. Since the delay incurred at each element repre-

Asents only a few rows of the input image, a given image may
be undergoing a sequence of operations simultaneously, and
final results may emerge for the beginning rows of an image

8b: Balance the Lattice Pipeline by inserting delay ' while the later rows are still being scanned from a camera.
Indeed the lattice pipeline may be essential when analyzing ,
certain very large images, such as those obtained by lineal
push broom sensors in satellite surveillance and in some in-

dustrial inspection tasks. Figure 8c. It is impractical in

such cases to store intermediate images; final results must
be obtained in flow-through fashion, as image data is being

YT sensed.

On the other hand the lattice pipeline design often does

gc: Continuous flow-through processing of a "push broom" image. not provide the most efficient use of available computing
resources. Due to subsampling and the use of restricted ,

by which it can be achieved. Here module A sends images to analysis windows, the data rates along some pathways will

module F along two pathways. One path is direct, without be significantly less than along others. Thus while some -

processing, while the other is by way of processing modules modules run at full capacity, others may run well below their 0

B, C and D. A 'delay element' E is inserted on the direct maximum capacity.

path to provide balance. E is a buffer that accumulates and %

retransmits data samples after a prescribed delay. If B, C Circulating Pipeline %

and D have delays tb, tc and td then the delay of E should An alternative architecture is shown in Figure 9a. Here

be (roughly) t,=t4+t +td. Without E in the network, the it is assumed that a system consists of a large pool of process-

process can deadlock. In an asynchronous design or misreg- ing modules, another pool of memory modules, and an inter-

istered synchronous design deadlock occurs when the direct connection network. Modules are the same as in the lattice

path input buffer in F becomes full, and A must stop trans- pipeline, but data flow is quite different. It is assumed that

mitting before it has sent sufficient data on the indirect path an iconic operation does not begin until all required input

to allow all of the modules B, C and D to start processing. image data resides in memory. The output of the operation
A network is balanced when the minimum delay on any is returned directly to memory. Thus a given image cannot

path between two modules is less than the maximum delay be undergoing several sequential operations simultaneously,

on all other paths between the given modules. A pipeline as in the lattice pipeline. Computations are performed as •

network can always be balanced through the addition of ap- images move from memory to processor to memory. e

propriate delay elements. The processing algorithms run on a circulating pipeline %

The significance of the lattice pipeline design is that can be identical to those on a lattice pipeline. Indeed it is

relatively simple modules can be configured in networks to often expedient to implement 'virtual' lattice pipelines on

such a machine. The advantage of the circulating pipeline is %p e r f o r m c o m p le x i c o n i c a l g o r i t h m s v e y r a p i d l y . T a s k s s u c ht h t p o e s n m d u s c a b e s d v r y fi i n l . T e e

as the generation of texture or motion energy are particu- that processing modules can be used very efficiently. There

1 0.

Memory :..I Processing Memory ".... Processing•

Modules Modules Modules Modules i

Figure 9a: Circulating Pipeline Figure 9b: Hybrid Design i
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is a cost however, in increased memory as well as in increased (512 by 512) memory modules and two clustered process-
overall delay. Since a module does not begin a processing ing modules, interconnected by a limited switching network.
step until all input data is ready, the module can proceed One clustered module consists of a multiplier, anm ALU and
at the full speed when it does begin, and will complete the a shifter. The second is a custom built component for per-
task in time proportional to the number of samples pro- forming pyramid operations at video rates. Not shown is
cessed. The module is then free to take part in another the host computer. This controls data flow and computa-
task. This system can support multiple independent pro- tions, and performs higher level vision functions. The host
cesses concurrently in order to make full use of computing can access data in any of the frame stores. While the PVM
resources. Scheduling must be coordinated by a system su- generates various feature images rapidly, in a fine-to-coarse
pervisor, but is relatively simple with flow-through process- fashion, the host can explore this data and locate informa-
ing. tion of interest through coarse-to-fine search strategies. The

Figure 9b shows a hybrid design, combining features of PVM has been run with several different host, but most de-
both lattice and circulating pipeline architectures. With the velopmnent has been with an IBM/AT.
hybrid design, advantages of both system can be realized. The PVM1 is designed to run continuously, in real time,
This will be typical of actual machines built for hierarchical on images directly from a video camera. It is capable of con-
image analysis. structing full CGussian and Laplacian pyramids for 256 by

240 image frames at the rate of 30 per second. The pyra-
VII. AN IMPLEMENTATION: THE PVM mid module performs a five by five separable convolution,

and handles boarders (very important in a nultiresolution
We are developing several machines to perform mul- system). The pyramid module includes its own micropro-

tiresolution image analysis. As was indicated in the Section grammable controller, as well as look tip tables for perform-
II overview of DSRC research, machines are currently being ing point operations on pyramid levels as they are generated.
considered for machine vision, surveillance, and motion anal- To date 9 PVM1 systems have been built. Several can
ysis. Two q'ite different designs were completed in 1985. be interconnected to achieve enhanced processing speed.
One was built as a lattice pipeline for the processing and A second generation pyramid machine, the PVM2, is
enhancement of television signals [51, while the other was now under development. The basic system is shown in Fig- v
developed as a hybrid machine for vision applications 38]. ure 10b. This system includes numerous enhancements when
The latter system, called the Pyramid Vision Machine, or compared to the earlier PVM1. In addition to the increased
PVM1, has been used to demonstrate the basic elements of number of memory modules and processors, the system has
smart sensing, as outlined above, in Section 1II. The machine increased speed, precision, and interconnection flexibility,
has confirmed that these techniques can provided consider- and can handle large format images. Components of this
able power even to relatively modest vision systems. The system include VLSI integration, and are intended to be
approach has been shown to be very appropriate for such niodular, so that they may be used in other configurations
applications as surveillance, industrial inspection and object within larger systems.
tracking and recognition.

The PVM1 is shown schematically in Figure 10a. The
machine itself is shown in Figure 11. It consists of three

I-'
%

Figure 10a: PVM1 Figure 10b: PVM2 Figure 11. PVM1
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ABSTRACT that particular process, design the required data structures, .
and finally implement the algorithm on a machine. If all

In our efforts to understand images, while we still work three levels are well understood then we can talk about
on initial processes of low and middle level vision, emphasis is understanding that particular visual process. So, a part of
being placed on the integration of multiple sources of informa- modern computer vision works top-down in the Marr para-
tion for visual reconstruction, on navigation and on object digm (see Figure 1). When, in this paradigm, the theories of
recognition. We introduce a new methodological paradigm shape from x, structure from motion, projective invariance,
for research in vision, namely: while we continue our research and so on, have been highly developed, then the solution to
top-down in the Marr paradigm, we can also work in a the hard problems of object recognition, navigation, visual
bottom-up fashion in that paradigm. We also suggest that learning, etc., may be easily determined. On the other hand,
the Marr paradigm (computational theory, algorithms, data one who wishes to develop visual systems should perceive the
structures, and implementation) should be augmented with problem as finding a general solution to a specific problem, as
one more level, that of robustness, that Marr left implicit in opposed to finding a specific solution to a general problem-
his writings, classical Marr paradigm research, such as shape from x, etc.

Indeed, one does not need (for example) to recognize the
objects in the extrapersonal space in order to navigate. Sim-
pie collision avoidance and homing procedures would be ade- Z

i. INTRODUCTION quate. One does not necessarily need "structure from
In this paper we describe some results of our recent and motion" or "stereo" in order to avoid obstacles. There may

current research. We analyze many low, middle and high be other processes for accomplishing such a task. But in
level vision problems, from edge detection and "shape from building a visual system for navigation, for example, we
x" to navigation and recognition of objects. Our research is should do the analysis in the spirit of the Marr paradigm, by A..

focused on visual abilities rather than on the construction of developing a computational theory for the task. The only
entire systems, i.e., systems that exhibit some vertical integra- difference now is that we are, in a sense, working bottom-up
tion and use knowledge at all levels including domain specific in the Marr paradigm (Figure 1). In addition, a theoretical
information. "in order to complete the construction of such stability analysis of the algorithmic level (implicit in Marr's
systems, it is almost inevitable that corners be cut and many writings) is becoming explicit today by necessity, because
oversimplified assumptions be made" IBrady, 1982]. Such sys- excellent computational theories result in unstable algorithms
tems might be able to carry out a limited number of opera- ITsai and Huang, 1984].
tions (possibly beneficial in simple industrial situations), but An example will help to clarify matters. Extracting

they do not enhance our understanding of vision in general. information from images (shape from x, for example, which
aims to reconstruct the visible world) is a lot of work. TheDue to the inability of the general theories developed up visual cortexes of animals which carry out complex visually

to now in the Marr paradigm (shape from x, optic lo, struc- moderated behaviors, contain millions of neurons, each of
ture from motion) to find applications in practical systems which performs computations which by the lowest estimates *"

(such as recognition systems, navigation, etc.), some research- require thousands of computer steps per second to simulate.
ers are de-oting their efforts to developing systems. We feel Much of this capacity is probably necessary to carry out corti-
that such an approach should be conducted in the spirit of ca.l image processing. Thus, extracting shape from r (recon-

- the %farr paradigm.te arprimstruction) is hard and although recent literature has shown

To be more explicit, a large part of modern computer excellent results, few of the published theories have found

vision develops theories for the explanation of visual abilities, practical applications. Motivated by this, recognitionists pro-

in the spirit of the Marr paradigm, i.e., before we do anything pose solving problems, specific problems.
we must understand what we want to compute and why, and The reason for the limited success obtained by the recon-
develop a computational theory for the problem at hand struction school is either that the theories are not. well
(develop constraints between the desired unknowns and the developed yet or that the fundamental approach is overambi-
data) Then we should design the algorithm that will execute tious. This second reason is a result of the tendency to

The support of the Defense Advanced Research Projects Agen-
cy and the Center for Night Vision and Electro Optics under Con-
tract DAAB07-86 K F073 is gratefully acknowledged, as is the help
of Sandy (erman in preparing this paper.
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shape from motion, stereo, optic flow computation, and edge

detection are ill-posed and for some of them a unique smooth
Marr paradigm solution exists. Let us consider, as an illustration, the shape-

I A from-x problems (texture, shading, stereo, motion).
Computational Theory In all the cases of shape from x (with the exception of

shape from contour), the constraint relating the gradient
Algorithms and Data Structures (p ,q) of a surface patch to the data at the point (x,y) which

Implementation is the projection of that patch is of the form

L(p,q,x,y)=A (x,y)p2 + B(z,y)q 2 + C(x,y)pq
+ D(x,y)p + E(x,y'q + F(x,y)=O

Figure 1: Shape from x or x from y research comes under I

the top-down Marr paradigm. Research for where A, B, C, D, E, F are functions of the position in the

developing a system for solving a particular image and depend on the particular physical parameters

problem should come under the bottom-up Marr (data). The idea of solving ill-posed problems such as the

paradigm. above, i.e., restoring "well-posedness", is to introduce suitable
a priori knowledge that will restrict the space of admissible

attempt to reduce multiple visual tasks to some common solutions. The assumption iptroduced by Poggio is that of

denominator (a set of visual modules)-something established smoothness. The problem of finding (p,q) at every image

in the Marr paradigm and indeed the scientific way of point then reduces to finding the minimum of

approaching the problem. For example, the problem of visual
navigation has often been considered a subproblem of the ffL2(p,q,x,y)+X(p + P,2 + q2+ q2)dxdy
"shape from x" problem and it is mentioned as an applica-

tion of the more general studies designed to extract accurate, We are faced immediately with the following problems:
quantitative information about the three-dimensional struc- (a) The constraint L =0 is nonlinear, and standard regu-
ture of the world. However, despite the numerous elegant larization deals with linear constraints. The situation is
theoretical results, none of the shape from x studies have different if L is convex, but it is not for the above shape
yielded systems which can actually be used to navigate in a from x cases, with the exception of the stereo case.
real environment. The usual situation is that a mathematical
solution to the general problem can be obtained only under (b) Surfaces are not everywhere smooth; they are smooth

specific assumptions which are not particularly valid in the only in between discontinuities. If we require smooth-

real world. On the other hand, recognitionists who have been ness as the a priori assumption, the solution we will

working with practical applications have been so concerned obtain will have been smoothed over discontinuities and

with performing one narrowly defined operation as to render so it will not be correct. 'p

their results devoid of useful general principles. We feel that (c) Even if we incorporate smoothness, why use the Dirichlet
there is another approach, between reconstruction and
recognition. While doing research on obtaining a specific solu- norm (p+ q+ p + q, 2 )dxdy? Why not
tion to a general problem (i.e., shape from x), one may seek a 'P

general solution to a specific problem, for example, solving the second order derivatives or higher exponents? And what
visual obstacle avoidance problem with no specific restrictions determines the optimal X?
on the shape of the environment. In this approach, qualita- In [Aloimonos and Shulman, 1987] we answered the first "'
tive measurements which are specific to the problem at hand, I1
but which can be obtained practically in real world environ- question. It is always possible to get a unique smooth solu-

ments, can be used. Such recognitionist research can be tion, but one may have to overmooth.'

classified in the bottom-up Marr paradigm, and if there is a To answer the second question one would have to
module in the human visual system that performs this partic- develop a theory of regularization in the presence of discon-
ular task, then the recognition and reconstruction schools are tinuities. Considering this problem very interesting (since its
no different. We know that there is no module in the human solution will advance other fields too), we have been working
visual system that recognizes yellow Volkswagens, but toward the development of such a theory. Up to now, we
modules may well exist for tasks such as obstacle avoidance, have developed a linear theory of discontinuous regulariza-
visual stabilization, homing, navigation, and the like. In the tion, and we are currently working on its nonlinear extension.
sequel we will describe our work on the low, middle and high In the rest of this section we will briefly describe our theory
level aspects of vision, but we will apply it to nonlinear problems (shape-from-x) so

that the existing problems for the nonlinear theory will
2. EARLY (LOW LEVEL) VISION become clear. J

Several approaches to regularization in the presence of
2.1. Discontinuous Regularization discontinuities have been discussed by computer vision

Most of the early vision problems are ill posed in the researchers. Many of these approaches require that a binary
sense of Fladamard. Poggio and his colleagues suggested the distinction be made between points that are and points that
theory of regularization as a possible solution (in a common are not discontinuity points. However, even if a point is not a
paradigm) to such problems. It means that we find the solu- discontinuity point, if the data provide evidence that there is
tion that is as consistent as possible with the data and we a sharp change in orientation in the vicinity of that point,
also require that the solution be smooth. One can show that then we do not want the smoothing term in our regularization
the problems of shape from shading, shape from texture, condition to force us to smooth over the stirp orientation .,"
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change. Many of the existing discontinuous regularization derivatives. Indeed, if we are given the value of a function h :'
techniques require that a segmentation of the image be per- at a finite number of points PI, P2, P3 • . • P. and we
formed. But segmentation is a difficult problem; there is no know these values are corrupted by noise, then the optima)
rigorous theory of segmentation. One of the reasons we want approximation to the derivative of h need not be a linear.- -
to know the shape of an object is to facilitate segmentation, function of the values h(PI), h(P2) . .. h(P,,). This is '
and if we are to do explicit segmentation, we should learn true despite the fact that ahlax is a linear functional of h.
how to segment. Existing techniques do not facilitate However, because linear learning is simpler than nonlinear
automatic learning of segmentation. Other discontinuous reg- learning, we will temporarily restrict ourselves in this paper to -'
ularization methods involve complex non-linear equations that linear approximations to the derivatives. Thus, our estimates
are solved stochastically. This theory is simpler and corn- of derivatives should be very much like Poggio's. But we do
pletely deterministic, and it has already been applied to the not have to actually compute these derivatives. All we need .
nonrigid motion case [Shulman and Aloimonos, 19881. to know is that the derivatives of L will be approximated by

The asi inigh istha we an xpet te eror of linear functionals of L and we can learn which linear func-
he b asiointsgt is threate Thas expectx the erorsof tionals to use. Thus the first integral of our variational condi-

Should be small. The reasons errors of nearby points are tion is approximated by an expression of the form (AL )
2

correlated are many One reason is that the errors in deter- where A is a matrix that has to be learned. The second and
miin te igt ntnstis fnerb pins recoreatd third integrals are approximated by a polynomial that is qua- g

mningoth alofis corensitios removear by p reprcressing. dratic in the variables 'fj" gij, which represent the orienta-
Andnoter tor tis tharre udation srmoedsyureromohess, tions at the data points (ij). This procedure would result in

suchn~ter~l[ac~r i tht a uadaticm~aure f soothess nonlinear learning, which is not well understood yet. There is -
suhas ,1lf)2 +(f )2 + (g)I+(g)21 excessively penalizes a better way to obtain a linear learning problem and that

large changes in orientation. This measure of smoothness involves first learning how to compute derivatives of intensity.
implicitly assumes that the variables f.:, f , gz, g, have nor- Once we know how to do that, we know how to compute the
mal distriLutions. A more correct smoothness measure would derivatives of the coefficients that appear in the formula for
allow the derivatives of f and g to have probability distribu- L and thus we can compute derivatives of L. We will obtain
tions with bigger tails. In order to correct for an incorrect an Euler-Lagrange equation of the form .
smoothness measure, we have to force the derivatives of L to_ r(L""
be small. (The usual regularization condition produces A( L ) aA 'L) =-PI

extremely large jumps in the value of L in the vicinity of
discontinuities.) Another way to think of discontinuous regu- A() ()=_ .
larization is that not only must the solution be consistent ag ,
with the data but the derivatives of the solution must also be where A (L) is a matrix obtained by applying a possibly non-•
consistent with the derivatives of the data. linear functional to the matrix L. In fact, A (L )is a sum of.,-.

In general, a variational condition in discontinuous regu- the form -AiJ(L) where the aij are constant coefficients.",
larization theory takes the form and .the A°(, are approximations to the derivatives %'

minimize Eaij(,9+ L /lax"Oyi )  dxdy a Ja,19 ,J(L us final we ~ obtain .

__ b (aO,)- +J fla I ay j)2 
= (D

f0 with the A q(L ) being functions that we know how to com- %,,
pute. Write ,/() for the known function

00r

Ecj0 g04a1 .JL)O JL)ca then we have -
+f0 1 L)0 L)lgI.

Here the aij, hi2, eli are constant parameters. The first E.a ,j)() I -

integral involves a summation from 0 to oo because it is arbi- where the a~i and (I) have to be learned. We will impose .
trary to require only the first order derivatives of L to be additional constraints to insure that the values of (a,;,A.)2 a,, .,d.l
small and not to im pose a requirement on the higher order unique. We still have to describe how to compute A' (L) .(L!
derivatives. Similarly, the smoothness condition (i.e., the (i.e., how to compute derivatives of intensity). If we assume 1
second and third integrals) must also involve a summation that we are only able to do linear learning this is simple:AA
from 0 to o. Some f the coefficient, aq, b, ,j can be 0. aE/lax, aE/Oy, etc. are linear functions of E so we have 0O
Because of the noisiness of higher-order derivative estimates, equations such as aE/lax = AE mid we have to learn the -.
the coefficients aij should rapidly approach 0 as i,3 - oo. matrix A that approximates trhe derivative. A priori, we .11

We do still have a problem because computing the expect that A will be obtained by applying a smoothing filter
values of derivatives of L requires calculation of the values of (such as a Gaussian) to a weighted sum of difference ."V

derivatives of the data and that calculation is numerically coefficients AE/AX' A'E/AXO, A3 E /AV3. etc-.'

unstable. As Poggio suggests, in order to differentiate nnmer- To summarize, this trheory of discontinuous regulariza-,,',
ically (and numerical different iat ion enables us to do local tion requires us to impose constraints on the derivatives of
edge detection), we apply the theory of regularization. This the "error" L This leads to equations of the form

2A

tl'eory of numerical differentiation is different from Poggio's Eauoj(5) = 4¢5 where we need to learn a 2, (V Mlore gen-because it is concerned about preserving discontinuities in the erally, we could let the a2 be matrices rather than constants

1 5re ru ta

formed But sgetto isadfiutpolmthrisn kowhesevle recrutdby.ie.hn h pia
rioru teoyofsemnttin Oe fth raon w an apoxmain o h driaiv o nednt e%% ina

to kno th hp fa beti ofcltaesgetto, fnto ftevlushP) ( 2  ( u) hsiandif e re o o eplcitsemenatonwesholdlean ruedesit th fct ha akazis lnea fnctonl o'A



P
(the constraints that the derivatives of L be small could be smoothly as a function of position (and so we can use regular-" "

relaxed at certain points). We must find a procedure for ization). The r we use is partly determined by examples and .
learning the matrices a , (V that is simple, robust, implement- partly by a priori knowledge. As we acquire more examples,
able in a neural net and leads to a unique solution. the influence of a priori knowledge on our estimate of F

Being biased in favor of sparseness, we want ai to be decreases. ,

near zero if i~j are large and a00 to be nearly the identity Before going on, let us review what learning (rather than '
matrix. If a00 I and aij = 0 for i~j > 0 then we obtain stipulating a priori) the value of F will accomplish for us. F 1
the equation hides the regularization parameter X. This parameter might I%' t

L0la - b be allowed to vary from place to place. (We might require a
LOL/'q - I'different amount of smoothing near the boundary than at the

center of the visual field.) Our smoothing condition might
OL/Oy --- - I>'2{involve first, second, or higher-order derivatives or some linear

which is the usual nondiscontinuous regularization condition. combination of derivatives of different orders. r weights the 60 '

-4*

Rewrite E.au '( ( ) - P- a~s relative importance of the derivatives of L being small. This .
can vary with position. By varying F, we can take into

E~a,;¢,i)-() + 'D E: 00o() account all these possibilities. We do not know which of '

whr o-Iadd i tews.Thstefrttr these possibilities is correct. That is why we wart a general
learnin theor to help us Find othrwse prpehusFn the )irsaterin the equation represents the discontinuous correction to the sqares sltoy of the p reus e atipone). tofn te as .,

usual regularization con dition and we want this term to be as sursslto ftepeiu qain.,..

small as possible. To make it easier to work with, rewrite the %fe sland hnw aete"cul osrit ,
previous equation in the form for shape from x problems. If we then solve this equation ,

F 6- -000 (nonlinear in shape) we can compute shape from x. Hlow one

weeEithvetrcan solve the resulting equation with a method that works all(t e ishe tht thederivaivesofctue time is not known yet. Maybe the learning of can be-

alinanuanean d tdone in such a way that the solving of the equation will be
a o seasy. All these considerations constitute important research

nat ( e) When all this is understood (and much research is

required for it), then research will turn to learning the con- ".

straints themselves. According to what was prev; )usly dis- -
;" . cussed, tile constraints for shape from x can be learned in the .-

framework of discontinuous regularization, This learning is1'.

;. m,,(E) not from scratch (lately some researchers are trying to solve '.
L /gsuch problems with learning from scratch) because the basic .

laws of physics and geometry are first used and then factors
and I is a matrix to ie learned. 1 The same questions we ask nch ao s variational corditions, relative importance of smooth-
about (P. we now ask about F: what do we do if the exam- ing vs. the constraint, etc., are learned from nature through

. pes give incomplete information or incorsistent information examples.of

0) aboaucat sp td
0 Twhe F we choose ihis solution. Under 2.as. Structure from Motion (Dynamic Imagery)

4+ rwsonable and quite general statistical assumptions the least After suspecting (unfortunately without a proof as yet.

squares solt is t e most prolbable value for 1'. 'o(puting but from experimentation) that the problem of structure from e
the. ht suares solution involves Calculating the Moore- motion asoed on point correspondences is unstable, we have
Penrose Inverse This procedure is optimal in the sense that put our efforts into solving the probem fron correspondences

it ae acurate an estimate (if F" ,as we Part obtain of naro-features (lines, contours, etMcy ) or without crrespon-

fr,,m ijr hinited set o+f examph,-s, but it requires a neural net deuces (based onlyN oin the intenisity function), and to ,heorcti+ -
to st,,re tar,, muatris' and nike very complex ral('ht ions. eillyd analyzing the struture from motion proble (the prob-euto wi

st ,f searching f,,r Ih- optil solultionl (4 tile above lern Atself ma e unsable no matitr hat algorithn s aresear
anO cai tla the hest shlution wethn a restrited used} In lpetsakis and e Atoiniods 19 we give ia cosed

ub pa,, The pr-,,,dtre- F,,r (lcuti ting this restricted SOb- fr i s flution it, the proble m , f tll cture form motion froth con-
. l Il ,) v,-rv similar t,, that for +'alculating the full biC cs rrais pmdeves ( ues not in e seg ents p IeI loin is-

-p 11' Pl' ,, hi+ Ln t 11W 0 ) I'[ll 141 l¢)n;tl ( (MlpllVXIt Is nHlu Ih lo ss Ind -u liISX Nre IIIr's ,' prolevi 4, struc(ture fr,,in
ll

t  
h!, J- t( 'l l I, ill 'h grmt r Aruiwr Ii-'l- It1cussdi, fre> c n tri c forr s hp,)tde r m of pe lear ndUIS, i he

%,' I, Ino, . pr,, ,r, "ht results in, poIt correspondences Finally. som e have found a solution I,)
Nr g'Tl " 111t tiH lo<, t ; 'r 

,  
I (,;% imlphl l tilw str t f e fro m e t yn problem wit hu t a rresponden ce

ad i is ,l \ r ,, it rrnra trike to Ib llre gThsrne q'au.'t. wls lllau rt conditilllptloive ipTnhe st n Issmot

at ,, I, : Fnow ask ao tJ a prFha kndoweddo, the ex Fa-ll(vs thecostri, thct . (a r. e, tld foi n aceler-
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of all images form surfaces in xyt space, with t being time). 3. MIDDLE (INTERMEDIATE) VISION

The derivatives of those surfaces are related to the instan- We continue to work on the general integration problem,
taneous velocity of the camera through nonlinear equations. with the goal of deriving a robust description and explicit
Thus, speaking in theoretical terms, the passive navigation representation of the structure of the environment and its r
problem could be solved without correspondence for inertial properties through the fusion of various early vision algo-
motion, if a particular nonlinear system (as described in [Ito rithms. Although more work needs to be done in the area of
and Aloimonos, 19881) could be solved. Our attention has early vision algorithms, we have for some time been thinking
also turned to the robustness analysis of the structure from about the integration of multiple visual information sources in
motion problem, independent of the algorithm used. Maybe a robust vision system. This stage of visual processing we call
the problem is unstable by its nature and should be formu- intermediate or middle level vision. Here, the problem is to
lated differently. But to prove that the problem is unstable, integrate information about the physical processes that under-
regardless of the algorithm used, is not easy. In a sense, one lie imaging, in order to form a unified and robust description.
would have to define a probability distribution on the space Our theory of discontinuous regularization can be extended to
of all problems, and then compute the probability that a deal with this problem, i.e., that of integrating information
problem is unstable, where instability can be expressed as the from several sources. The extension is not hard and is one of
distance from a set of ill-posed problems. Such an approach our current research topics. It is worth noting that Poggio N
has been initiated in numerical analysis. and his colleagues are working on the same problem but using

In addition, some recent research by Chou and Kanatani a different vocabulary, namely a probabilistic one.

J1987] has rigorously analyzed the correspondenceless struc- Our research up to now on the interaction of modules,
ture from motion problem for the case of planar surfaces. i.e., on the computation of x from y and z (and w), can be
Finally, we have devised a very robust method for egomotion summarized in Figure 2. On the left of the figure are intrinsic
that will be described in Section 4.1 [Nelson et al., 1987]. parameters and on the right are cues. We see that an intrin-

sic parameter is computed from the combination of two or
2.3. Robustness of Visual Algorithms more cues. Some problems that were ill posed now become

This kind of research is methodologically important. well-posed, simply because there are more constraints; and .r

The literature in recent years has offered a plethora of elegant some problems that were unstable now become stable, simply
algorithms that are unstable. There exists a need to enrich because there are more constraints. In [Aloimonos and Basu,
the Marr paradigm with the level of stability. An unstable 1988] one can find processes for the computation of shape
algorithm can serve neither as the basis for the explanation of from texture and motion, texture and contour, etc. We are
visual capabilities nor as the basis for the construction of still working on extending the list of results, and as we have
intelligent machines. On the other hand, it is hard to study already stated, developing the mathematics for this
the sensitivity and stability of an algorithm that takes input integration (which mathematics will be an extension of the
form nature. One of the reasons is the difficulty of specifying theory of discontinuous regularization).
the probability distribution of the noise. When uncertainty is
introduced, several known techniques can be used for estimat- 3.1. Active Vision
ing a bound on the error (in [Aloimonos and Basu, 1988] such We now know the problematic aspects of passive mono- %
techniques are demonstrated ). cular vision. Some alternatives have been suggested such as

The case of evaluating the error due to quantization in discontinuous regularization and combining information from
computer vision has been extensively studied [Kamgar-Parsi different sources. While discontinuous regularization is a
and Kamgar-Parsi, 1987] in our laboratory. Quantization is topic of current research, combining information from several
always necessary in order for the image to be processed by a sources seems promising but it suffers from the fact that addi-
digital computer, and spatial quantization is not the only tional information sources may not be available. The active
Kind. The digitization of brightness is important too. vision paradigm attempts to account for this problem.

Due to the important role that digitization error plays in An observer is called active when engaged in some kindDue o te iporant oletha diitiatio eror lay in of activity whose purpose is to control the geometric parame-
the field of computer vision, a careful analysis of its impact on of tt who e purpose is to c ttri a
the computational approaches used in the field is called for. ters of the sensory apparatus. The purpose of the activity is
Such analysis can serve two purposes: a) It helps us learn phenomena in order to improve the 'quality of the perceptual
how much the results of the computations are affc(Icd by this results. For example a monocular observer that moves with a -error. b) It can provide insight on how to reduce the impact known or unknown motion or a binocular observer that can . "
of this error. Note that unlike most other types of error, rotate its eyes and track environmental objects are just two
digitization error cannot be reduced by performing more accu- examples of an observer whom we call active. In other words,
rate experiments. Rather it is caused by the inherent limits- still staying within the paradigm of combining information
tions of the instruments used in image processing. Therefore, from different sources, we create one more information source
a careful analysis of digitization error can reveal the intrinsic (the particular activity), by making th, observer active. This ,
limitations of a given approach or algorithm paradigm is partly motivated by human perception, which is

The thory developed in the above reference car be used active. Perceptual activity is exploratory and searching.
to evaluate errors ii the estimation of spatial derivatives, call- When humans see and understand, they actively look. In the
bration, stereo triangulation anud the like This approa'ch process of looking, their eyes adjust to the level of illumina-
yields probatuiliiv dist ribut ions For the required pararmzeters tion, focus on certain things, converge or diverge, and their

heads move to obi.ai a better view of the scene.
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Figure 2

One can ask why human observers operate in such a tions that are measurable and provide powerful constraints

way, because certainly humans are very efficient in visual for the computation of the unknown scene parameters. Weo

tasks. In other words, how does the fact that an observer is are, of course, interested in the rates of these stimulus
active affect the levels of a visual system (as described by changes, which have traditionally been thought to be difficult w,

Nlarr). namely computational theory, representations and pro- to measure. However, it should be pointed out that in the
censing algorithms, and implementation? Does an active Active Vision (AV) paradigm we do riot work with a small set . r

observer have any advantage over a pa.ssive observer, in any of discrete observations, but with trajectories in the stimulus
computational theoretic, algorithmic, or implementational space, termed flow lines. These trajectories are smooth, since
way? the viewing transformalions we use are themselves smooth,.-

The activities studied up to now in the case of an active and therefore can be computed accurately enough for our pur-.'-
observer include touch and motion [Bajcsy, I986; Aloimonos poses. Thus we do not need to rely on the smoothness of pro-.--
et al., 19J87[. while many of them are unexplored. In the case perties of the observed scene, such as illumination and depth. .'-.

th bevr(r The real power of the approach is due to the avoidance of ""'
where the activity is aknown mto fcmlctosuulyascae ihiutve prahst

Reial mootino h osre o

tracking environmental points and/or converging the copiainuslyascitdwh uivwapraeso.-,
visual perception. For instance, the problem of correspondence"

cameras). results have been reported loimonos et al., 19871 of microfeatures is not involved in the AV approach. S
that state that all the shape from x problems become well-"
conditioned a nd uniqlue solutions are possible. This, which Table 1 [Aloimonos et al., 19871 compares the perfor- ..

should not. be surprising, is due to the fact that th~ere is an mance of a passive and an active observer in the solution of .%
additional information source, controlled by the observer several ba.sic problems. .

him herself. "'

The basis for the approach lies inl being able to work in a Finally, work on act ice vision will determine the feasibil- .'

rich .stoiulis doimtain witht a partially known parame.trizat ion. it\' of vision systems and will open up research issues of 5
"l'h is knrowledlge is dule to the fact, that the viewing t ransfor- exploratory and feedback vision Exploratory vision amo unts = =
niat ion is kniowni As I he" vi ewing parameters are conitinuously to findiiig the activity (from the space of all activities) th at.-"

variert, the, observed visual st imiih undergo local transforma- will give rise to the niost stah, algo)rithm for the task ait €
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Table 1

Problem Passive Observer Active Observer

Shape from shading Ill-posed problem. Needs to Well-posed problem. Unique
be regularized. Even then, solution. Linear equation.
unique solution is not Stability.
guaranteed because of ron-
linearity.

Shape from contour Ill-posed problem. Has not Well-posed problem. Unique
been regularized up to now in solution for both monocular
the Tichonov sense. Solvable and binocular observer.
under restrictive assump-
tions.

Shape from texture Ill-posed problem. Needs Well posed problem. No as-
some assumption about the sumption required.
texture.

Structure from motion Well posed but unstable. Well posed and stable. Qua-
Nonlinear constraints. dratic constraints, simple

solution methods, stability.

hand. This can be quantified. For example, given a known such as that aboard the Voyager spacecraft. Most of these
motion for the active observer, we can prove that he/she can depend on sensory data other than visual, though the infrared
uniquely compute shape from texture, by solving a linear sys- detectors in the Stinger, and the star location system of the 0
tem. But for what motion (activity) is the solution of the sys- Voyager, can be considered as simple visual systems. These
tem the most stable? Feedback vision will have to do with systems operate within rather simple, predictable environ-
how information gathered from the environment can be used ments, containing few objects besides the system vehicle and
to guide future activities. Researchers have begun to imple- perhaps a well specified target. Navigation can consequently
ment systems that exhibit active vision characteristics, be adequately performed on the basis of an inertial system, or

from the location of a few stars or radio beacons.
4. HIGH LEVEL VISION Such limited sources of information do not suffice, how-

Here we describe our research in navigation, object ever, when the environment contains complex features with
recognition and learning. which the system must interact. A spacecraft in outer space .

can steer from point A to point B by the stars. A vehicle fol-
4.1. Navigation lowing a road cannot. One solution to this problem is to pro-

There are two motivations for our study of navigation. vide the system, beforehand, with a complete, model of the

First the practical. There is presently a growing interest salient features of the environment. The cruise missile uses a

in automatic systems capable of adaptive interaction with a system of this type. The disadvantages are, first, that com-
plete models are extremely memory intensive so that a given r

physical environment. By adaptive, we mean that the move- pystemodes ae etemely m itnsie so enment of the system is governed by some sort of sensory feed- system can be competent only within a few specific environ-
ment ofithe system is goveredttom soriatof ensrymetl ments, and, second, that the required model may be unavail-
back which allows it to adapt to variation in environmental al vni rnil frisacapirmdlgvn h
conditions rather than being limited to a small set of fixed atio o ln a puic a at a givn t e ism o t o n s as s t e as e w i t . f r i s t n c e c a a c i v a e d l o c a t i o n o f a l l c a r s o n a p u b l i c h i g h w a y a t a g i v e n t i m e i s "e '

motiny amispthecse witsuh foryistane camughly aced untenable). An alternative is to use a more sophisticated sen-
machinery. Examples of such systems (roughly ordered from sr ytmt rvd h eesr nomto ndritd
the extant to the hypothetical) include applications in sory system to provide the necessary information on dem:ind. S
automated manufacturing, guided weapons systems, auto- Vision, in principle, has the capacity t, provide the
nomously piloted vehicles, automatic assembly of structures in necessary information for a large nu;nber of complex and
space, and household robots. All these applications require practical navigational operations. Ample evidence of this is
the system to utilize sensory input to mediate movement, provided by biological systems. There are a number of pro-
either of the system itself relative to the environment, or of posed applications of automation, including automatic
one component of the environment relative to another. In guidance of ground vehicles, various "'smart" weapons sys-
this document, the term navigation refers in a broad sense to tems, construction or repair in hazardous environments, and 0
such sensory mediated movement. Ilowever, the emphasis exploration of planetary surfaces, which require interactive 9
will be primarily on the movement of the system within the navigational abilities which cannot be provided by simple sen- ,.
environment rather than on the more complex task of maii- sory syst ems of the type discussed above, and which, m[ore- '
pulating one part of the environment with respect to another, over, seem to be irovil.d hy visual means in biological sys-

There exist a number of automatic systems which per- terns. This is Ilie practical rnlivati, n for the study of visual
form various forms of navigation quite successfilly. Examples navigat ion.

include interrontinental ballistic missiles, heat seeking missiles The second. nore phiilosolical mt viat ion addresses the 0
such as the Stinger, commercial aircraft navigation systenis manner in vlhich the stidv of vision can itself be most
which can effectivety fly a plane across an ocean and land it prlitably atproache, On, mthol. k hich might be called
withom> iu lot interventon, and celestial navigation systenis tle top dn iil,rach stiris I)y formuulatin a - eneral"
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theory independent of the use to which the visually obtained working on real data at all, particularly one which is obvi-
information is to be put. Hopefully, specific applications will ously impressive. The area of mathematical theory has his-
follow. Such .heories have the advantage that they can stand torically proven more fruitful in terms of generating new and
on their own without being tied to any particular application, interesting results; furthermore, a mathematical theory may
The corresponding disadvantage is that theoretical develop- still be of interest mathematically even if it proves to be inap-
ment can proceed almost indefinitely without necessarily gen- plicable in practice, whereas an actual system which does not
erating any practically usable techniques. An example of such work is of very little interest to anyone. Second, there has
a situation is the mathematical development of shape from been a perception that practical results will eventually flow
motion theories. A great deal of excellent theoretical work from a successful theory rather than vice versa. This percep-
has been done in this area. Mathematical frameworks have tion probably has more to do with the lack of any practical
been set up, theorems proven, algorithms developed, and systems to work with than with philosophical conviction,
literally hundreds of papers have been published. However, since historically, empirical engineering applications or unex-
the theory has found little practical application because the plained observations have preceded theoretical developments
algorithms tend to be extremely sensitive to inaccuracy in the at least as frequently as the reverse. If there were suddenly to "
input, and it has proven extremely difficult to obtain motion appear a number of vision systems working robustly in
estimates from real image sequences which are sufficiently different real-word domains, it is practically certain that an
accurate to yield usable results. This is not to say that the equal number of theories explaining their commonality would ("
effort was wasted. A lot has been learned in terms of under- soon appear.
standing the information potentially available and the There is also a third reason that may explain the dearth
inherent limitations of the methods, and some of the tech- of examples of working vision systems, which is that the
niques developed may eventually prove useful in certain situa-
tions. However, as a practical means of extracting precise generally accepted goals for such systems may be misplaced,
three dimensional structural information about the environ- or at least over-ambitious. There are two commonly held
ment, the technique has not lived up to its original claims, touchstones for practical vision systems. These are, one, a

An alternative riethod, which might be termed the hot- system which generates an accurate three dimensional descrip-
Anup apteroachnsativ e ady dicussd, wh s ihto ek anm der- tion of objects in the world from one or more input images,tom up approach, as already discussed, is to seek an under- and, two, a system which can recognize classes of objects

standing of visual processes in the context of specific problems (such as people or trees) in a complex scene with something
by developing systems which actually perform certain practi- approaching human reliability. A large proportion of the
cal tasks visually. Hopefully, commonalities observed among published papers on computer vision address, at least impli-
several such systems will allow the eventual formulation of a pi oe oftes o oals. Thse are h level objec-moregeneal teory Suc a mthodis avocaed b Broks citly, one of these two goals. These are very high level objec- ?-
more general theory. Such a method is advocated by Brooks tvs fbt eeaheeatmtcsseswudhv
who suggests that artificial intelligence should be developed tives. If both were achieved, automatic systems would have
by building robots with increasingly sophisticated abilities, many of the capabilities of the human visual system. Given

the lack of success in developing systems which realize eitherThis approach lacks the intellectual appeal of a general of these goals in any robust manner, it would seem reasonable
theory, and has been criticized on the ground,, that it will to consider simpler problems. There are applications which
produce results of too narrow a scope, and without adequate do not require the full realization of either capability, yet
theoretical foundation. On the other hand, if it produces any- which are both non-trivial, and potentially useful. To take
thing at all, it is guaranteed to prodiuce results which can two biological examples, the housefly can maneuver visually in
actually be applied. Moreover, there is no reason why a solu- three dimensions in a complex environment without striking
tion to a specific problem cannot have a solid theoretical obstacles, and a number of bees and wasps can recognize and
foundation within the domain of its applicability. Although return to a particular location in such an environment from
the ability to design such working mechanisms for specific an arbitrary nearby starting point, an ability referred to as
tasks does not necessarily demonstrate complete understand- homing. Human beings can perform these tasks, but obvi-
ing of the problems of vision in general, no computational ously they can be performed with far less computational
theory which does not provide such a capability should be equipment than humans posses. It would seem reasonable to
considered adequate. In particular, theories of vision which consider some of these more restricted, specific problems with
are based on the results oT some "lower level" processing a view towards producing examples of visual systems which
which has not been demo:i:;trated, or which utilize unrealiz- can actually be demonstrated to work well on real-world data.
able assumptions about the mathematical nature of the Such restricted problems appear to provide the best hope of
environment, shoutl be viewed ,as partial solutions at best, producing a machine vision system fulfilling the criteria of the
with the realization that the hardest problems probably Nfarr paradigm.
remain to be solved. Visual navigation represents an ideal example of a e

The preceding discussion can be viewed in the light of specific problem which could be profitably studied. First, it is
the Marr paradigm. If this paradigm is accepted, then posses- a practical problem as has been mentioned already. Second,
sion of an adequate model for any process implies the ability navigational abilities form a natural hierarchy beginning with
to buil (given sufficient resources) a working mechanism. simple abilities such as orientation and obstacle avoidance,

Ideally then, a computational theory of vision in a given and extending to more complex ones such as pursuit of a tar-
domain should eventually lead to a demonstrated ability to get and moving using specific knowledge about an environ-
perform visual tasks using real data front that domain "l'hre ment. Lower levels can operate as independent systems,
is. however, a disconcerting lack of visual systems which per- though a higher level module may depend on, or inteact
form well in real-world environments. particularly when com- with, a lower one. For instance, a module plotting an inter-
pared to the amount of high-powered mathematical theory ception course with a tmoving target might, depeid on an
which is published on the subject. There seem to be se'eral orientation module to keep the system stable with respect to
reasons for this. First, it is very difficult to get a system the environment while the target trajectory is detertntind. ,
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The hierarchy of levels provides an approach to producing The common factor in the above examplos is that they
practical visual systems of inicreasing complexity. Finally, do not require precise quantitative information, and that in
providing information for navigation is one of the primary, each case, the information niecessry to perform the task can
and at the same time, one of the most basic tasks of natural be represented in a space having only a few degrees of free-
vision systems. Almiost all mobile organisms which are dom. This is exactly Lte kind of qualitative inforniation
photosensitive to any degree use that sensitivity to guide their which can be provided by pattern recognition systems. The%

movement. If any heed is to be paid to the role of vision in important point is that, although solving any of the problems
biological systems, there is an important connection between of navigation using quantitative techniques requires essentially
vision and navigation, a complete solution of the reconstruction problemn, many of

the samec problems can be solved by qualitative techniques
4.1.1. Qualitative mnethods using restricted forms of pattern recognition. As we shall see,

Work in computer vision can be divided into two broad the pattern recognition abilities required for some of the basic
navigatioinal skills appear to be particularly simple. The hopeclasses which are sometimes termed the reconstructive school is that, by applying qualitative methods to visual navigation,

and the recognition school, as already emphasized. fl0th prciasytm cnbedvledwchontdpndna
schols ave omenioest uccsse to hei crditbutthe full solution to the quantitative reconstruction problem.

most notable result has been the discovery, if it can be called
that, of the almost incredible coniputational difficulty of the 4.1.2. Basic navigational abilities .
visual abilities which human beings take for granted. This
point has been driven home by the repeated failure of theoret- It was noted above that navigational abilities fall into a
ically plausible models to yield usable systems. This is most natural hierarchy. Here we consider three of the most basic
notable in the reconstructive school where the criteria for suc- of these abilities, namrely, passive navigation, obstacle1
cess or failure are fairly clearly defined. Excluding structured avoidance, and simple visual homing. Passive navigation is W
light analysis, the most successful of the reconstruction Lte ability of a systemt to dletermuine its own motion with
mnethods are various stereco techniques, somne of which work respect, to the environment. Obstacle avoidance implies the
reasoniably well on real images from certain restrictedl capacity to move about in an environment containing physical0
domains. There is a large amount of theoretical work onl objects without, striking them. Ilomning refers to the ability to
shape from motion in various fornis, but so far, this has nlot reach a special point in the environment from an arbitrary
resulted in practical methods for accurate reconstruction from starting location. These problems caii all be approached by
real images. A n umber of other techiniques have similarly (qualitative, pattern-recognition techniiiques. Moreover,
robust theoretical development, and( even more dismal practi-I together they constitute a solid set of elementary navigational
cal performance. Success or failure in the recognition school tools for practical application. It is interesting to note that 0

is somewhat. more difficult to judge since there is no direct these navigational abilities can all be found in the simpler bio-

(quanititative connection. The most successful application of logical vision systemis Such as those possessed( by flying
recognition techniques have been in two-dimensional binary insects. Perhaps this is a reason to hope that they may be
applications such as optical character repognition and various easier to emuntlate than humnan visual skills. hielow, we coi-
iniduist rial inspection tasks. nIhe re Iias beeni somne succeKS in sid er the prob)lemsn in div iduiially, aii (Ipr~opose qualitative
hiigh ly (loimain specific scenle n do ratand ing p roble ma, biit miiet hods of app roachlin ig them.
such systems tend to be quite brittle. Passive navigation is a termn usedl to describe the%

Visits1 navigationi has geneirally been considered to be a processes by which a systerri canl deterine its motion with

siilup rob le mu ol thle recorist ru ctiv ( scoool of v isionm. rhIie coin- respect to th eniv iron men t. This is im port ant for k iniet ic sta-
rict bon is a natuiiral onie, since niavigat ion Inivolvyes shiape anid b ilization whIiichI, ti its simiiplest form, requiiires a systern to

di stance relationships lbe twee n the( systemn and the e vivroii - nmainiitapin a fixed posit ion ani att itud ie iii space in thue p rese ncc

in rut whIiich l it hsi e expressed in termns of thle qiu aiititat ive of peCrtuirb inrg in luienlea. More gieerally, stailIizat'in can
il ioin of t he reconst ct i ye school. Tlbis perception hias re fer to anly con di tions placeid onl the motion piarame.ters; for

teiiiedl to d iscourage explicit research oii visual nayvigation instance, the syst('m might be reqiiired to tranislate withbout

Since it is considered as aL Special case of sri imiportan t geiieral rotation. The two abiilities are munterrelated because st aiilizs.-

prorolln. It, Iias also tend~edl to ol,sciire thej( fact itt manly of tioi is, generally achieved hiy brinuging tite miotioii pa~rameiters
the ope rations it-cessary for niav igation i-;tin be expj)ressed ill to certain Specilied v aliie:. 'Iloe- capacity for passive iiac igii-

qIialit ative terins whi ch are muore aptly describiei ti I erniis of tnoni is ir-reu'iisite for any ot her niav igationial ability. IIn

the recognition iduon Coiisider, for examuple, the problein of orider to guide the system, Somei idea iif the( present mnotioni

kiniicnat ie st abilizationo It is not necessary to kniow exactly andl some miethioid of setting it to kinowni values iniist. foe avail-

how the( systin is inoving withI respiect to the eiivirolinmenit,, stile. II hireseiit robot systfenis the( necessary inform ation is

bitl ((lly whither it. is r,,~ting or traiislating at aIll, anid if so often expolicit ly aval:,ble as a ri-stit of a biiilt-iin (oolitiite

in what direction forces Twiist be applied too reus ce the 111,t,on. Systfi IT lor an at~i OmOIIIUSly miioving systemil, however, there
Iiidiec~si ,f hotaie x, ((Iaicet le nuoi4 l rily elvan. InistI' hoe anl active Senising capacity It is possible to oitaili

in formano i is inot the exact ol istamice tin inches froiute tlen-~iiuli orn tumueoaial si oiu ytenr
obsrve t( ech ooiitiiithu iuvilorrniri, lut.whthe th tal giiuiocer systn in giiold muissiles. Hlowever, fiie task

systmr is o,it a eollision oiu ,irse with a unearbiy ostarle, aniil. i ni also boe perfoornied by v isii l hhians It is ti l is p, 1i,si1o-

so,, ITT which direction it Shoould move to avo'ld the flangeel of it it' thait wv are interested.

crutsh InI the ease of hoinig, it is not. niecessairy to I.now fo~r Passive iuavmg~ut (i, aLs it s-as origiiially *vF,,rmiiiitu-d, iti
exaruople- tit# viii- irI-pl, shi,,ntest. pathI t.o the ga,:l, hult u.s 'st lite's .t t Ilie trojuoio Iid too, u~s of scet1-0,Iiits to.

just it oirctl~ oof rrovemiint Thao~t will b~ring t lle Systemi +l.swr 1leterimre bothI thle mtion o~f tie oblservvr mid
1 thle thiree-

to the( goaliiiil p~io0s1 4, thle setiv piiis A niioioubr 4, vacua-%
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tions have been explored in great detail. Ullman proposed The above technique is practical to implement, and can
that sets of corresponding points at discrete times could be be theoretically shown to be insensitive to inaccuracy in the
used, and showed that at least three views of four points were input.
required. A large body of work has been published concerning There are two main points to be made here. The first is
the theoretical aspects of this method. A second method util- that by considering the full visual sphere, rather than a res-
izes the two dimensional projection of the relative motion of tricted field of view, the problem of determining the motion
the scene points. This vector field is variously referred to as parameters can be solved much more robustly. The second is
the motion field or the optical flow. Various authors have that, once cast in this form, the problem can be solved using k %

described methods which utilize various derivatives of this a simple, qualitative algorithm, with no need to solve complex
field to obtain inform ation about the motion of the observer s e quaio .ti s iterest n to t i th conn e

and the shape of the environment. In general, these methods sets of equations. It is interesting to note in this connection
mak cetan asumtins bot te aaiabl inoratin, that flying insects which rely on vision for navigation have

make certain assumptions about the available information, fields of view which subtend almost 360 degrees.

and derive sets of equations which are then solved for the f o w bs d

motion parameters and structural information. The main Obstacle avoidance refers, simply, to the ability to utilize

problem with all of these methods is that the information on sensory information to maneuver in an environment contain-

which the theories are based, correspondence in the first case, ing physical objects without striking them. This can be con-

and projected motion in the second, is extremely difficult to sidered a second-level ability. It requires some capacity for

obtain accurately from real image sequences. Moreover, the passive navigation, but little else, and could thus be con-

mathematical equations are typically unstable with respect to sidered the lowest level of active navigation. This task can be I
small amounts of error. This has prevented these methods performed non-visually by range sensing methods, and it is

from finding much practical application. There are some generally proposed that the problem be solved visually with a

recent results which suggest that the shape from motion prob- similar algorithm utilizing depth data from a reconstructed Pd'

lem, at least in certain aspects, may be essentially ill scene. Visual obstacle avoidance has, consequently, received
little individual attention. Nevertheless, it is an important

conditioned. basic ability, and one which seems to have a surprisingly sim-
The sensitivity to error in the quantitative methods pIe and robust qualitative solution.

mentioned above is primarily due to the fact that the optical The method we propose uses the fact that the expansion
flows due to very different motions of the observer can be of an approaching obstacle produces positive divergence in the
quite similar locally. However, topological properties guaran-
tee that such flows cannot be similar over the entire visual optical flow, and the fact that divergence is invariant under p

sphere. With this in mind, we have proposed a method of rotational motion. Thus a divergence detector would respond

determining the motion parameters of the observer using the to approaching obstacles regardless of the motion of the

motion field over a 360 degree spherical field of view. The observer. Moreover, regional divergence, such as that associ-

method is based on the observation that the spherical motion ated with an approaching obstacle, is a persistent feature in
the sense of being robust under perturbation of the input

field for a observer translating without rotation contains a dta O s se of ebto o ein

focus of expansion and a focus of contraction separated by data. Our system makes use of a set of one-dimensional

180 degrees, and is parallel to the geodesics connecting the divergence-like measures called directional divergences. These
4 two foci. it can bc shown that no motion containing non-zero are essentially the one-dimensional divergences of the projec-

rotation can produce a motion field satisfying these condi- tions of the motion field in various directions. They have the

tions. Thus the presence or absence of a particular, simple advantage both of being easier to compute from image
pattern is sufficient to establish whether or not the observer is sequences, and of conveying more information than the single

rotating JNelson and Aloimonos, 19871. divergence value. It can be shown that the directional diver-
gence possesses the same qualities with respect to rotational

The component of the motion field produced by rota- invariance as the ordinary divergence.
tional motion is purely geometric, and independent of the The main theoretical difficulty in using divergence meas-

three dimensional structure of the environment. The effect of urements for obstacle avoidance has been that motion

a specified rotational component can thus be removed from towards the observer is not the only factor that can produce

the motion field by a process of derotation. Thus, in theory, divergent flow. In particular, translation parallel to a tilted

the rotational components of motion could be determined by surface can result in positive or negative divergence, depend-

calculating the derotated flow field for different combinations ing on the direction of the motion. If only the ordinary diver-

of rotational components until the pattern characteristic of gence is used, the combination of such effects can make the

pure translational motion appeared. Unfortunately, the interpretation of a divergence value difficult. For directional -

search space is too large to make this practical. However, it divergence, however, it is possible to show the following.

can be shown that the effects of the three rotational parame- First, for an observer undergoing arbitrary rotational and

ters decouple along the three equators corresponding to the translational motion, any object having a component of rela-

principal axes. The rotational parameters can be determined tive motion towards the observer will produce a positive

independently by searching for a rotation parameter value for directional divergence in some direction. This means that no

which the derotated circular flow field along the correspond- matter how the observer is moving, a potential collision can

ing equator can be partitioned into disjoint semicircles of always be detected on the basis of divergence measurements.

clockwise and counterclockwise flow. This is also a pattern Second, detection of divergence in the flow field always indi-

recognition problem, but the search space has been reduced cates an object which is nearby in a sense which can be w-l-
Crom five dimensions to two, The original problem is thus defined. Thus even if the detection of divergence in some por-

decomposed into three independent problems which can be tion of the image does not indicate an inimmient collision, it is

solved with a simple best match search, worth noting because it represents a nearby obstacle which

16 .
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would become a collision hazard if the direction of motion provides a method of programming the reflexes required for a
were to change. A much stronger result can be stated if the particular environment by showing the system how to move
observer is undergoing purely translational motion as could be from certain points. The second attribute is important
achieved using the stabilization method mentioned above. In because the pattern-motion association function is expected to
this case; an object is on a collision course with the sensor if be mostly continuous. This continuity arises from the
and only if there is positive divergence at a point of zero flow requirement that the vector describing the visual scene from
(i.e., a focus of expansion). one viewpoint be similar to the vector generated for a nearby

The practical question is whether the directional diver- viewpoint, and from the fact that, in most cases, the motion ,

gences can be determined with enough reliability for the necessary to head for home is similar for points close to each

above approach to be usable. Because only inexact estimates other. Occasional discontinuities may arise in situations

of the divergence are required, it turns out that a relatively where it is necessary to decide which direction to go around

simple procedure provides sufficient information from real an obstacle, but these will be the exception rather than the
images. Briefly, a differential technique (a la Horn) was used rule. The ability to generate a meaningful output for an

to approximate the projection of the motion field parallel to input which is similar to, but not identical to one in the train- -

the local gradient at each point in the image. The informa- ing set is sometimes referred to as generalization. Since it is

tion for each direction was then used to estimate the clearly impractical to include every possible viewpoint in the

corresponding directional derivative by considering the training set, the design of a homing system which utilizes a

difference of the average projected motion in adjacent neigh- reasonable amount of storage will depend critically on this

borhoods. The method depends on the existence of enough ability.

visual texture for the differential method to "grab". In prac- The simplest associative system possessing the above
tice, the texture in ordinary objects such as cinder blocks and properties is the linear associative network described by
tree bark proved sufficient. Kohonen and others. These networks implement a general

Using the above technique, we have developed an obsta- linear transformation between the input and the output vec-

cle avoidance system for a robot mounted camera which was tors. Because the transformation is linear, certain limitations

able to navigate successfully between obstacles in a real-world apply to the associations that can be stored. For instance, .

environment {Nelson et al., 1988]. discontinuous transformations cannot be represented. More
generally, similar input vectors cannot be easily made to map

The third problem we wish to consider is that of visual to highly dissimilar outputs without severely decreasing the
homing. This refers to the ability to move to a special point storage capacity of the network. Practically, this is mani-
in the environment from a more or less arbitrary starting fested by increasing error in the output vectors as the stored .

location. The system might also be required to reach the fse yicesn ro nteotu etr stesoe
pointin. ah specifie orintao This seiad pt wh be representations interfere with each other. Such interference is
point in a specified orientation. This special point will be referred to as crosstalk, and it is minimized if the input vec-
referred to as the home point or the zero point. The home tors are orthogonal. On the other hand, these systems are
point is not assumed to have any special qualities aside from relatively well understood, and the training procedures rela-
its specification. It could be any point in the environment. tively efficient. Moreover, if the input vector space is large,
An example of this ability is the behavior displayed by certain and typical input vectors are sparse (i.e., most of the entries
wasps which are able, upon returning from a considerable dis- are zero), then problems with crosstalk can be reduced siace
tance, to locate an obscure nest on the basis of surrounding separate inputs are unlikely to have many members in corn-
visual features. This ability is slightly more complex than the mon.
preceding ones, as it requires the system to be trained to S
respond to features specific to a particular environment. It A number of more complicated systems have been inves-
can also be considered a third-level ability, since a practical tigated; examples include Boltzman machines, non-linear
homing system would probably incorporate stabilization and multi-level networks, and networks of complex elements.
obstacle avoidance. This problem is more obviously in the Most of these systems, however, are not well understood, and
domain of pattern recognition than the two preceding opera- significant questions remain open about the correctness or
tions. There is no simple method of utilizing a three dimen- even the existence of the representations produced by such
sional reconstruction for its solution. Current systems which neural networks. Moreover, the few training algorithms
perform homing do so on the basis of a beacon-a unique, which have been proposed for these systems are extremely
unmistakable feature. The challenge is to find a way of train- slow, even for simple problems. However, preliminary investi-
ing a system to home using only the features naturally gations indicate that the linear associative network, with the
present. addition of some simple non-linear pre- and post-processing

It is proposed that the problem be approached by imple- stages, will be sufficient for encoding homing knowledge.

menting a direct association between visual patterns and pat- The difficult part of designing the system seems to lie
terns of motor control. This idea is based on certain concepts not in the design of the associative network, but in the choice 0
of associative memory which have seen a broad resurgence in of the appropriate factors for use in the visual input vectors. 7
the past few years. The aspect of this work that is attractive It was mentioned above that in order for generalization to
with respect to the problem of horning is the capability of work, the mapping from system positional coordinates to

some systems to "learn "2 a set of associations on the basis of input vectors must posses a degree of continuity. There is a
exposure to a training set in such a way that an input which balance that must be struck in this regard. In order for the am

is close, but not identical to one of the inputs in the training system to be able to generalize, the features in the input vec- 4
set produces an output which is similar to the corresponding tor must be detectable o'er some range of system positions 5
output. The first of these attributes is desirable because it However, the more general a feature is, the less use it is in

"Learning" here means adaptive estimation. .A,
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accurately specifying a particular movement. Yet the system 4.3. Learning
must both be able to generalize in order to conserve storage, Our efforts in the study of learning are centered around
and be able to make fine course corrections near the goal. A the discovery of the constraints that govern the problem
possible solution to this dilemma is to provide the system under consideration. We are not trying to do learning from P
with different associative memories for use in different scratch, in which many parameters have to be learned.
domains. In the simplest example of such a scheme, the sys- Recent research efforts have shown how boolean learning in
tem would use the contents of one memory to make coarse neural networks is possible by learning the and-sets (conjunc-
adjustments while far from the goal, and then when it got tions in a disjunctive normal form) for a given class of 4'
close enough, switch over to another memory which utilized boolean formulas. Extensions introducing uncertainty (inac-
features at a smaller spatial scale to make fine course correc- curate feedback, noise, etc.) are under development.
tions.

This scheme can be modeled as a combination of a set of 5. CONCLUSIONS
associative networks with a finite state machine. In the We have summarized a large body of our current and

appropriate situation (for example, when the coarse associa- recent research on understanding images. Our research is ,
tive network no longer indicates a strong correction), the done both top-down and bottom-up in the Marr paradigm.
machine switches states, and a new network is brought into We have enriched the Marr paradigm by considering the sta-
play. Such a system has the potential to execute much more bility level, and we propose that robustness analysis should
complicated actions than the simple homing described above, accompany any proposed algorithm. Finally, we should take I
For instance, multiple goal locations could be stored, to be into account all constraints and learn from nature through
activated in the appropriate situations. Longer paths could examples all undetermined parameters, thus avoiding ad hoc
also be executed by storing a series of subgoals which are assumptions.
activated in the appropriate sequence.
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Abstract
(1) Area-based matching tries to match an area of pixels in

one image to another image. A small window is chosen as the
This paper presents a new algorithm for stereo matching which matching unit. A window in one image is matched with a range

makes use of simultaneous matching, surface reconstruction, and of windows in the other image using cross-correlation or similar

segmentation of world surfaces. By integrating these three phases, measure of the similarity between two windows.
which are traditionally temporally separated, the algorithm can

make use of the current surface information to help disambiguate (2) Feature-based matching attempts to match some specific

the potential matches. points, individual edge points, or linear edge segments which con-
sists of chains aligned edge points. However, the feature matching

After discussing the required mathematical background,th necessarily leads to a sparse depth map and the rest of surface
*paper describes the integrated process of matching, reconstruction must be reconstructed by approximation. ,

and segmentation. Unlike past attempts at integrating these pro- ma
cesses, the presented algorithm uses a single smoothness criterion Feature-based matching has been more effective in stereo (see

for both matching, reconstruction and segmentation. The segmen- [Medioni and Nevatia 85]), and the remainder of the paper will

tation part of the process is based on estimates of surface bending concentrate on an algorithm that uses this approach.
energy, and is significantly different from previous segmentation

algorithms. Examples are presented showing results on both syn- A

thetic images and camera acquired images. The camera-based ex- 1.2 Motivation

amples include both a traditional type scene with two objects, and

a scene with transparent objects. Traditionally, there are a number of constraints that can be used *
to prune the possible search space for candidate matches. For

example, many algorithms use the sign of zero crossing, the "ori-

1 Introduction entation" of the feature, epipolar geometry, etc.. These constraints
are heuristically-based on assumptions about the imaging system

and feature detectors. Yet, in general, these constraints are in-
Stereopsis is a technique for computing depth from two disparate sufficient to remove the matching ambiguity for all features, and
images of a scene. This section discusses the background the prob- systems must employ more potent assumptions. an

lem which caused us to adopt our integrated approach. The pro-
- cesses of feature detection, matching and surface reconstruction Among the most common classes of powerful assumptions is

and their inter-relationship are also discussed, the imposition of a smoothness constraint. Even before the advent
of computer vision, it was noted in [Gibson 50] that depth usually
varies "smoothly" across surfaces. Thus, the disparity values de-

rived from matching should also vary "smoothly"." This smooth-

1.1 Background ness constraint can then he used to further constrain the matching )
process, and thus resolve most of the ambiguities. While this is an ,

'p As stereo vision is very important in many areas, the central task important observation, it leaves the meaning of "smoothly" up to

in stereo is to solve the correspondence problem, i.e., identify fea- the reader.

tures in two images that are projections of the same entity in the In vision research there have beein many stereopsis models pro-

three-dimension world. Once this is done, one can compute the posed with different "smoothly" varying disparities, such as, theone ryin diprtis uh•s h

distance to this entity. Ideally, one would like to find the corre- continuity constraint of []Narr and Poggio 79], figtral contiinuity
spondences of every individual pixel in both images ofa stereo pair. in (Mayhew and Frisby 81] (see also [Kim and lovik 861), the dis-
lowever, it is obvious that the information content in the inten- paity gradient limit of [Koenderink and vanDoorn 76], (see also

, sity value of a single pixel is too low for unambiguous matching. [Pollard, Mayhew and Frisby 85]), the analytic disparity fields of

* In practice, therefore. coherent collection of pixels are matched. [Eastnan and Waxman 85], and the local planar/quadric tpatches -

These collections are determined and matched in two distinct ways
[arnard nd Fs r 21) *Note that this constraint does not hold at ,he boundary of three dimnen-

S. csional objects and Itierefore the disparity along projeclions of such discontin-
* ties need not he smoott.
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p

of [Hoff and Ahuja 87]. All the constraints are intended to enforce surface. The determination of boundaries will be relegated to some

model of surface smoothness. However, they only partially cap- secondary process which will not be discussed here.

ture the desired model. There are several problems in the above In computer vision, as well as other domains, researchers have
models: used minimal surface bending-energy as an assumption to aid in

surface recovery, i.e., the acceptability of a "smooth surface" is in-
versely related to the energy (in term of a regularizing functional)

1. It is difficult to translate surface smoothness constraints into of the surface, for example, see [Grimson 81], [Terzopoulos 841],
disparity smoothness constraints. Depth is a nonlinear func- [Wahba 84], [Franke 82], [Hoff and Ahuja 85], [Lee 85],

tion of camera geometry, pixel position, and disparity. There- [Choi and Kender 85], [Blake and Zisserman 86], [Boult 86], and

fore, smoothness assumptions are different in disparity space [Lee and Pavlidis 87]. Thus, bending energy appears to be a natu-
ral choice for a "measure" determining if a group of points belong

and real world. (Most of the above references model smooth- to the same surface. The bending energy of a surface f is given
ness in disparity space). While it may be possible to define a by:
realistic smoothness assumption in disparity space, it seems %f' . 2 s , 2 821 2\ 4
more likely to be able to do so for world surfaces. J_ ) +2" + -)) di (1) ,

2. Obviously, the matching process provides constrains for sur- "p.

face reconstruction. One interpretation of the smoothness Of course, the above measure can only be the basis for a practi-

constraint is to impose conditions on the matching phase cal measure for segmentation. Other issues that must be addressed

such that the resulting reconstructed surface is generally by a practicable meastre include:

smooth.. Traditionally, matching and surface reconstruc-
tion are two separate and time-sequential processes. Thus, a Determination of the threshold for separation of a group or
matching could not make use of information from the recon- alternatively defining the tradeoff between the number of sur-
struction stage. faces and sum of the energy of these surfaces to keep the sys-

3. There may be multiple surfaces in the image. An edge seg- tem from segmenting the data into a large number of planar
m.Thert may croes liffer surfaces nheige. n ee st- patches (which have zero energy). (The algorithm presented
ment may crosses different surfaces (e.g. when the contrast herein follows the first approach.)
between the boundary of surfaces is not strong enough), and
the disparity will not vary smoothly along the edge segment. o Careful determination of how to handle surface size or equiv-
Thus, algorithms that try to use a disparity smoothness over alently, the area over which the energy is measured.
a window to locate the correct matcher will fail if the window
cross several surfaces. This implies that surface segmenta- * Relation of the energy to the number of data points,

tion must be incorporated into the matching process. # Determination of which point(s) in a group are the cause of

a surface energy which is too high, i.e., the credit assignment

As to the surface segmentation problem, the most common problem. 'p

approach is to determine the "discontinuity boundaries" in sur- * Relation of "depth" discontinuities and "orientation" discon-
face depth, surface orientation and/or surface curvature. This ap- tinuities and how they effect the energy measure.

*proach usually requires some reconstruction of the surface, and this
presents numerous problems. First, in order to correctly recon- -er
struct a surface, knowledge of the data segmentation is generally The authors acknowledge that there ae inumerous other mea-
required. This results in a difficult chicken-and-egg problem. To sures of "surface smoothness" as might be implemented by para-
make matters worse, the quality of the reconstruction in the neigh- metric surface patches (e.g. [Allen 85]) or volumetric models (e.g.
borhood of an unmarked (i.e. as yet undetected) discontinuity is see [Rao, Nevatia and Medioni 87], [Boult and Gross 87], or
generally poor. Thus the localization of the discontinuity of it- [Bajcsy and Solina 87]. These approaches deserve careful consid-

erative reconstruct/segment approaches, see e.g. [Terzopoulos 84] eration in future research efforts.
or [loff and Ahuja 87], will be questionable. Furthermore, any
boundary-based segmentation approach will require considerable P
post processing to handle extended multiply connected objects (say 2 Mathematical Model and Tools .

behind a picket fence) and may never be able to handle transpar-
ent surfaces where locally there are only a few points on any one From the above discussion, what we need is a model of smooth

surface. world surfaces. By using such a model and some mathematical

A final remark about traditional segmentation is related to tools, we can simultaneously do matching, surface reconstruction V
the definition of "boundaries". It is well known that the perceived and segmentation.

"boundaries" of surfaces in depth share many characteristics with
subjectivecontours, see [Julesz 71], [Marr 81]. Thissuggests that a 2.1 Definition of the Model of World Surfaces

* definition of "boundaries" in depth might be accomplished by some
secondary processing which is shared with "boundary" detection
from other visual modalities. The assumed model of world surface is intimately related to tech-

ni(ies for regularized surface reconstruction, see [Boult 96]. The
To ameliorate the above mentioned problems with boundary- t Of course this viw cannot te taken too far, there musi he sonic unit to

based segmentation, this paper proposes that segmentation of 3l) he nuuuticr of possifbte "transparent" surfaces and some ilmit to the exicnt of

, information should simply classify points as belonging to the same any "disiconnected" obje t whch wil I Ile rpci,gizeI as uonnccIed

1-7

* .4 4~ *5.~** ~. . .".'.....- - *'--.-*... .-- . %



class of surfaces used is defined as those functions (distributions) can be expressed as:

with their second derivative (in a distributional sense) in H2 , k

where A is the Hilbert space of functions such that their tem- a. = -ctK(x,y;xi, y) + 01 + f#2x + 0l3Y (3)

pered distributions v in IR2 have Fourier transform P9 that satisfy
where the constants cj and Oi are the solution to the system of -

d, I< (-. linear equations:

This class of functions, referred to as D-2Ij, is equipped with A1  1,1  B 1,2  B1,3  Z1

the second Sobolev semi-norm, . . : :
2Ak, ... Ak, Bkj k,2 ,3 o

II lf.254=(~~)+2(±L-~)+( )') dx dyl C131 .. C1,k V 1,l D1 .2 V1,3  0
JIH xy a 2 C2,1  . C~ 2, 1 Vj2,2 P2.3  0

(2) C3,1 ... C3,k V3,1 V 3,2 D 3,3  0

which makes it a semi-HilberL space. where (4)

Intuitively these functions are smooth (almost everywhere) up Ai, = 1.
to derivatives of order approximately 1.5, i.e., they are significantly

smoother than membrane surfaces but are not as smooth as thin- .,j - as(K(xj, yj;xi, yi)), ij = I,...,k, i $ j;
plate splines. The motivation for this choice is this "intermediate" Bij = Cji = jpj (xi, yi) i = 1 .... k, j = 1. 3; .1w

level of smoothing assumed, and is supported by the results of and Di,j = 0 i = 1,... 3 j = 1. 3;

[Boult 87].

The important properties of the above solution to the surface

2.2 The Definition of Reproducing Kernel-Based reconstruction problem are:

Spline -, .

1. The algorithm is efficient for very sparse data (anything more

An essential ingredient of the current algorithm, at least from than 3 non-colinear points will do, and the fewer the number

the point of view of efficient serial implementation, is the use of of points, the faster the surface can b. :omputed).

the reproducing kernel-based spline reconstruction as described in 2. The surface is defined by the solution to a linear system

Boult 86'. This section introduces some aspects of that algorithm which depends only on the location of the data. If the solu-

necessary for later discussions. tion to this system can he updated quickly, the surface can
alo be uipdated quicklv.

Among all furctions in the above class, the surface reconstruc- 3. The surface is given in a functional form, thus the evaluation

tion aspect of the segmentation algorithm is required to find the of derivatives is trivial, and bounds on the of the

surface which minimizes surface can be energy
suracecanbecomputed analytically.

A , (a(xr, y) - z, (2 4. The surfaces are independent of the "boundaries" of discon-
6'1DH" tinuities, and depend only on the data values. However, the

actual surface will change if the number/value of data points
where the data z, at point (xi,yi). i = ., n is assumed to be on"'on the boundary are changed.%

one surface. The global smoothing parameter, A, should depend o ud a n

on the overall error in the initial data, and the factors 6i allow

for individual points to have greater "noise"; the factor A effects 2.3 Definition of the Energy Measure .N

the overall tradeoff between surface smoothness (as measured by

the norm [1 efet and the fidelity to the data points z s The basic form of the energy measure is given by equation 2 except

the factors 6, effects the contribution of a single data poiat so that the region of integration may be different than that expressed

as not to penalize the surface as much (or to penalize it more, therein.

depending on the value of 6,) for not closely approximating the

data at that point. Techniques for choosing these parameters have The energy of the surface will depend on the size of the region
been discussed by other researchers, see [Bates and Wahba 82]. in I2 over which the energy norm is computed. The two most

natural choices are IR2 itself, and the convex hull of the data
One solution to the above reconstruction problem is a re- defining the "current" surface. Unfortunately, neither of these is

producing kernel-based spline. It has already been shown. see appropriate. For the above class of functions, the integral over

[Meinguet 83, that for the above model of world surfaces, the ap- IR2 is not necessarily finite. Although the energy norm over the

propriate reproducing kernel here is convex hull of the data defining the "current" surface is obviously

K(x,y; n.v)= - u)2 + (y r )) 2 finite, this choice has two difficulties:

for a known constant 1 1. The convex hull would be continuously changing as new (]ata
points were added to a surface.

Given the above kernel, the spline which approximates the 2. The use of a domain which ends near the data points will

inforination allow the addition of new points to actually lower the sur-

Z -Z1 Zk = {f(X 1 , Y1 . f(yk. /k i = 10 ...') face energy, thus the energy will no longer he nionotonicly
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increasing and segmentation could not proceed with a region A,
growing method. can be written in terms of similar to %

Because of the above difficulties with the "natural" choices [ fx'- f . .u(x y y2 dx d ) I-
for the domain of integration, the algorithm uses the following _t = I , ,)
heuristic: given the starting basis, the algorithm computes the fu'" (Ky~xiy)) 2 dz dy,') 1
energy of the surface over a square region which is centered around (. y
the centroid of the data (including the points not yet considered)
with the length of the side of the rectangle 100 times larger than While the general energy integral has not been computable
the larger dimension of the rectangle bounding all data points, in closed form, the above simpler integral is computable in closed

form. In particular, one can derive:

2.4 Derivation of Bounds on Energy of Surface jX J (h(x,y;s,t))
2
dx d = "1'

Given the definition of the spline as in equation 3, one can symbol- 4 - a X
icall'v compute bounds on the energy. To begin, the exact form of 9 [tan-l( ,- ). (-
the energy integral is manipulated to explicitly expand the squar- + 2- • -3 Xu
ing operation and move the differentiation and integration inside 2

the sum, to wit: + ( t -
+ tan-( L. (_-t .Y Lit

=y 2.y t. y2 + (tI 4s))
22 k )2 %5

{JX.JY. ((;2 Xi,~ Y" + (Yu-t).(Xu.-L.(6.t.Y Y't)(S .X2-.+ X))P

/2 + S 0j K(x,d u +2) r. d 3 + 9 .(S. - . ))+2OY + 3 + Xu.(3 Y +9(t 8-
2 )/ nsr 5s,. \2

x. . (( ( i' 2 (r , Y/ , ;.,.) ro ,.x, s.x) 2

4 f, -9 tan-a.) - s X1 3

++ + 21- 2 .( -2 .X-'
- )(-s ,-'A'..

+~~ ~ tan-' Y' txy+- -.Y3~~

,1 0"Y2 xd

(5) + (Yu - t).(X -L.(6. t l-Yu 3.(Y' _t2)) (7) ,'{J J (( t.+ •(3.X3 + 9, (8 9 X2 2 .• XI)))

,,Z :,f; f;(.,t.-(X, Y; xi, y,)) 36
dxdy + X,.(3. u+9.(t .2 -  t2.Yu))

(±Y-(3 "X3") + to' x s (8~ .2 S2 XI))

1 .J

( ] -

( o K Y. ( , : .. +.) ) dX , .Y ,31 2+ 9. ( t . 3
+.+.[,,-'(} - s).-, ..

(oA55r~yIr, S4)) dWhile it would hie iost appropriate to symbolically integrate
t ho tInS in the lasi of the above equations, the authors (and + (), - )- (X\ .(6 .t -_3.(12 _ 12)) A
,I A(CSYMA) have been unable to obtain a solution. Fortunately, + I
a svibolic solution can be obtained for bounds on the above equa-
tions. First note that if V, >O = 1i ..._nthen + X,. (3. 1'3 + 9,( . 2-t2. lf)) (t 1,

y k__I E k. , ,. (,,,, ,, ; V:,)? :"
( 2 i 2%, o n ,. (6) + 3.Y7. (3..xi?±+ 9 . , . 82 - . A .. ))] '..S

Ek I , -a (ra V,,, <; 3? V:

i fact. the upper bound is trivially true even if some of the L 's p.

arc negative. Thus an itpper bond oit the energy integral above %
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(Xu S. X.X 3 2. feature detection,

-9- t1an- - t 4 • 3- s•x
+ 332 'X

2 
- 83 X0) 3. determination of the pc, ential matches, and the amount of

2 u ambiguity for each feature,

" tan-i( ) 4 -t t 4. initial reconstruction and segmentation of surfaces,

+ 3tYt -t
'
Y+ (

4 
-s 5. disambiguation of the remaining ambiguous features with

" (Yj - t) -(X. ' - (6 t. Y - 3 (y2 t2)) contin ial refinements of the segmented surface reconstruc-

1 "3 tins

" Xu •.(3" .113 + 9. (t1- 112 - t2 . 1' )) Each of these phases is described in turn.

+ ' t (. + .s.¥ -s '  )]3.1 inage Acquisition and Camera Calibration"i

Similar derivations exists for the two integrals The stereo images were taken using a single camera at two dif- 6 -

X Y ferent positions. Because of the rotation of the cmera and lens

tYt

(" .(K. (x, y;s, t))2 dx dy distortion, it is difficult to have a horizontal epipolar line. How- -

JX, 1" ever, we still can estimate the non-horizontal epipolar geometry
and X. Y. (xy;st. (see the feature detection phase)1

+ The aim of calibration is to calculate the perspective transfor-

(The latter can, in fact, be obtained by a change of variables in mation matrix between 3-D world coordinates and image cooirdi-
equation 8.) h-ates. The algorithm used by the system is based on a procedure

in [Duda, and Hart 73], see also [Ballard and Brown 82]. Given the /

'ombining equations 6 and evaluating the formulas as in 8 measured 3-D world coordinates of a number of non-coplanar cal- ,one can obtain closed form equations for the upper bound on ..e ibration points and the corresponding 2-D image coordinates, the

of kernel-based spline. The lower bound is coefficients in the perspective transformation matrix can be cor-
a bit more difficult. If the terms K (x,-y; xi, yi), K.(x,y;xi, yi), puted by least square solution. Given the perspective transfir-on

and K~y(x,y;x,yi) were all nonnegative, then the bound from mation matrix, the camera parameter can be calculated if needed

equation 6 would apply Unfortunately, the terms may be negative. (e.g., see [Ganapathy e4), and th a snle of features can also

be co.nputed after the matching phase completes. c a l
For the segmentation process, it is considerably more conve- dlp

nient to use a single number (i.e. if energy nthreshold) rather than g

developingsome technique to handle both upper and lower bounds. 3.2 Feature Detection s)

While the upper bound alone could be used, this seems to produce o i a en
too conservative a estimate. Thus throughout this paper, the The ar used teste based on ore

Combini"negy euonsf a n sufceevalti thehersi formae asivn 8 h meaure 3-d oral orintest ofeatumbe oifoopanar cal-

onrse an"obtinercosedformc euais fo the pperstic b e on and the zero crossings of the Laplacian of the Gaussian (e.g. seee
benegy ofe aerodun ernbad sne. the lower boundf [Marr and Hildreth 80c)e The reasons for using multiple features 4
equation 6 divided by the number of points defining the surface. .
While this is theoretically a meaningless number, the results in atio me e bd

later sections support this as a reasonable heuristic. When we de-
Ste e on e i t sam e c e 1. Since the feature points of interest operator are very spars,,

aproat e on , w beniene robst, most of the points are uniquely ifatched. We can make use

lopin som t iue to e rboth of the already matched pairs to estimate the non-horizontal
Wiepipolar geoetry (mainly the verical disparity). This is
p n a r t t tneeded to inatch the zero-crossings which cannot be easily '
qu3 The Integration of Matching, Surface Re- are:

diWilethinistheretcaly ameninlesanuber.th reult'i

construction, and Segmentation r s The zero crossing oft ie unqe mae a large numnher ofea-

tures for matching algorithm, unfortnmately the localiation

\ latching, surface reconstruction and segmentation work "coop- of these fe'aturc-, is nlot highy acurl (speciallyv if there •+eratively" in this stereo algorithm. The first pass deterines the are rrors in vertical disparirnv .The features front the inter-

potential matches for features, and the uniquely matching features est operator are not ry dnse, however, they provide very
determine initial depth data which is used for surface reconstruc- accurate localization of the featurs. By comt ining the two

tion (and segitentation). The current surface reconstructiot pro- di frc nI types of features, we can avoid the problem t lint

vides lite surface s moothIess constra int which is used to disaitl features of the stereo st'selnt are too sparse, have poor local-

liguate the remaiiing potential niatching features. ulpdatos the ization, or are sensitive to noise.

sirface as it goes. IAlthough it is tot diffi lt it, priniije Io alhilat, t or.-iorizontal ,,pipular

gcom try frout camera paratut' r' and iiagtig guotietr. iuo't sicr,,o Se cnl mJ

h eri a lg o ritiu htas fiv e jth a s :\ i ra th e r s a t a ra l li I atrti ra tli dI,- Ito a llo w tv I e ' , o I h t r- ,'- is i,- I i t

in-li-l''O Vi-t v i tin raint

i age acquisition and canera calibitation.

1 7 A

-.

• - -. i'r* * .... .- -.- ..., .'r* .- - . .. ,, . . -. . .-, .-. -.-.- ? t.., ~ ~ .., .- .. *5 . ,.S .- . - ' -..- t-..- -. -rr: - . . :'-'..-r.



3. A final reason, possibly unique to our approach, is that wc the lowest energy will accept the point. If no surface can accept.-.
need a r umber of "unique matches" to build out initial sur- the point, a "new" surface is created and the point is added to -

face reconstruction. The features from the interest operator that surface. This prcess is continued until all data points have

generally produce a unique match, and thus supply numerous been processed.
points for our initial surface reconstruction. -

Additionally, to reduce error due to digitization and early )rO- 3.5 Disambiguation of Ambiguous Features
cessing, the zero crossing are thresholded based on the gi .. ient U
magnitude. A quantitative argument about the threshold value Aisth
was described in [Kim and Bovik 86]. If necessary, the output of After the initial surface(s) are "reconstructed" from the uniqe

interest operator also can be thresholded to ensure unique match- matches. the amius tches are considered maining creasingtial

ing. order of ambiguity, and within a given level of ambiguity, the re- %

Since the number of points provided by two feature detectors constructed world-surface is incrementally updated by considering

are different, in building the resulting surface, each data point must the matches from left to right and from top to bottom. For each %

give a weight. Otherwise, the zeroing crossing (with 1000-2000 ambiguous match, the algorithm uses the information from the ,

points) would totally dominate the point's generated by interest calibration phase to compute the possible three dimensional co-

operator (with 100-200 points). ordinates of the "feature" for each of the possible matches. The
potential match which corresponds to the three dimensional point 0
"closest" to any of the existing surfaces is consid,,red the correct

3.3 Determination of Possible Matches and Feature match. The point is then added to the reconstructed world-surface,

Ambiguity using the level of ambiguity to adjust the associated parameter 6i. U
First, match the points produced by interest operators. Because

these specific features are very sparse, the searching space can 4 The Good points and the Bad Points of
be expanded vertically, and the result will have little ambiguity. the Approach
As mentioned above, after matching these features, the epipolar

geometry of the image can be calculated. It is also assumed that
some information about the experimental environment is known, This section critically reviews the algorithm described in this paper e

(vergenc winow cane be estmaed mao adatae p, mao 1o me.g. the maximum and minimum depth, then by the perspective pointing out some of the major advantages +, major problens -,
transformation matrix, the location and width of searching window and some aspects which can be viewed as either a good or bad +,
(vergence window) can be estimated. depending on ones point of view...

Secondly, for every non-horizontal zero crossing in the left im- + The segmentation algorithm can handle transparent and oc-
age, a search is performed along the corresponding epipolar line. cluded objects with few problems. *

Assume the width of the searching window is L. A feature can

match only those features in the window with similar features. ± The segmentation process is based on surfaces having low bend-
"similar" is defined as having the same sign, ing energy, a heuristic which can be directly related to the

For zero-crossings, "ila"physical process of surface formation.
and an orientation within ±30' of the other feature.

+ The functional form of the reproducing kernel-based spline al-
Each possible matching feature within the window iil the right lows for direct estimation of the surface energy, thus mak-

image is considered for a given feature in the left image. If there ing the segmentation process reasonably computationally ef-

is only one point, the match is considered unique, otherwise the ficient.

number of potential matches (< L ) characterizes the degree of ",.

ambiguity. Currently, the algorithm will reject any point which + In the algorithm, multiple features are used. This reduces the

has more than L possible matches. need for the severe scan-line coherency constraint, while still
allowing a large number of reliable features.

± In the camera calibration phase, only the perspective transfor-
3.4 Surfaces Reconstruction and Segmentation mation matrix is calculated. This is flexible, allowing one to

use a single camera to acquire stereo images. However, when

After the determination of potential matches, those matches which base line information cannot be obtained correctly and there

were determined to be unique are converted into depth data. Sur- is a certain amount of vertical disparity, the depth value is

face(s) are reconstructed incrementally using reproducing kernel- best computed by a least, square solution (i.e. not by the tra-
based spline(s). Surface reconstruction and segmentation are two ditional triangulation techniques). Since we use least square

concurrent processes. The algorithm proceeds by building a ini- method twice (the first time used is in calibration phase), one

tial approximation of a surface from the depth data.** Points are might expect the error to be large, however, the experimen- ,%.

added to a surface as long as the addition does not cause the en- tal results show the error of this procedure is still acceptable,

ergy of said surface to exceed a certain threshold. When multiple partially because the reproducing kernel-based spline allows
surfaces exist, the different surfaces are tried, and the surface with individual points to have greater "noise".

. For the current implementation, this is 4 data-points. The points are ± 'Tite algorithm does not recover "boundaries" for the segnented
chosen as a local cluster, although this is not critical to the performance and data. This is advantageous because it allows for transpar-
may cause problems when transparent surfaces are considered. ent and/or occluding surfaces, and because data is generally
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sparse (and often noisier) near the boundary resulting in a assumptions are satisfied (For example, consider a rough sur-

poor boundary definition. This is a disadvantage because it face similar to a plane covered with a large number of small

requires a secondary process (possibly using ideas borrowed densely packed cones. If the data supplied to the algorithm

from work on subjective contour perception or Gestalt psy- are points on the background and the peak values of the .70

chology) to determine the actual boundary. It is also is a cones, the algorithm is hopelessly doomed to predict two .7

disadvantage because depth discontinuities induce a region planar surfaces.)

where no potential matches can exist. Because the algorithm -The algorithm is surfaced based, and cannot deal with data
does not develop boundaries, it cannot make use of this ob- from multiple views of a volumetric object. Additionally, it V

servation. will often fail if noise is such that a single x, y location is

+ The algorithm can easily be adapted to different measures of assigned multiple data values (of the same type).

surface smoothness. This is advantageous because it allows
for greater flexibility, but disadvantageous because determi-
nation of the most appropriate measure is difficult. The mena- 5 Experimental Result
sure used in the experiments presented herein has proved to
be a reasonable one. One set of synthetic images and two set of real images are presented %

± The algorithm uses reproducing kernel-based splines which are to illustrate the performance of the algorithm. Both are 512 by 512
essentially a global surface reconstruction algorithm and pro- with 8 bits of grey scale. The purpose of the synthetic images was

vide for efficient serial implementation for sparse data (say to enable us to obtain some estimates of the error of the system. -.

< 1000 points per surface). If there are more points then the The other scene poses more realistic problems.
algorithm can be extended to use local reproducing kernel-I',,
based splines (loosely based on [Franke 82]), at the cost of We first comment on the graphical display of surfaces. The

making the surface definition localized to patches. The lo- reproducing-kernel splines (like almost any approximation algo-

cal method has been evaluated and performs reasonably well rithm) are not extremely good at extrapolation and display of

on large data sets but very poorly on sparse data (probably the surface far from any data would be misleading. Since the re-

because some of the patches may have little or no data). construction does not determine boundaries, there are no "clean" '

Since the current algorithm segments the depth data by one edges for display. Thus, the graphical display shows only the por-

pass, the order of processing of points will effect the resul- tion of the surface in the convex-hull of the data. The display of

tant segmentation, especially when two surfaces come into occluding or transparent surface is alsodifficult (with resorting to a

direct contact and join in a rather smooth fashion (e.g. the ray-tracer) and thus, some of the surfaces are presented "floating"

wedge example above). This may actually be used to help in in space.

the segmentation process by processing the data in multiple Figure 1 shows two planes synthetic image, the x, y value

orders and using any difference in data labeling to suggest a are in the range [-.1,2.0] with two synthetic camera locations WK0
refined segmentation. at a distance of approximately 40 units. The equations of the

The linear systems which define the splines are known to be underlying planes are z = 0 when x < 1, and z = 2x when x > 1.

moderately ill-conditioned, see [Boult 86]. This problem is The reconstructed surfaces can be seen in figure 2.
exacerbated when the data used to define the splines is nearly

linearly dependent. Unfortunately, because of the smooth- The system uses 2 synthetic images, first for calibration and
then for the stereo processing. In the calibration phase the z value

ness assumptions implied by the model, if two points are
very close in x, y, (relative to the size of the area x, y being for the center of each square is assumed known, and the image

considered), and have similar z values, the information be- coordinates of each square are obtained by thresholding and com-

comes more linearly dependent (if the Z values are different puting the centroid.
they will almost assuredly be segmented). Fortunately, and After stereo processing, the estimated depth values were com-

pared with the underlying plane equations, assuming the error was
mation does not significantly effect the reconstructed surface. in the direction of left-camera position. The RMS of error is 0.0,19

Thus, the algorithm can determine that such information is with variance 0.045. The maximum value of the error was .111 on ,1
redundant and discard that information. Currently, this is the plane z = 0 and .45 on z = 2x.
done heuristically but future work will investigate the useful-
ness of such information in modifying the confidence of those Figure 3 shows a stereo pair of images of a cup and a playing
points which are maintained by the system. card. The range of depth values is 90 mm to 140 mm (measured

- The algorithm currently uses a heuristic approximation of the in z direction), and the camera location was at about 500mm (left

surface energy divided by the number of data points in the camera on the z axis). Figure 4 shows some of the output of two

surface as a threshold for the segmentation. This is a hack, feature detectors. In this example, the algorithm found 264 ,,nique %

and future work must attempt to redress this issue. Luckily, matches and 923 ambiguous points which could be disamhiguated. %

this threshold for energy-based segmentation does not seem Tme reniaining 230 points were rejected (declared unnatchahle)
as sensitive as say thresholds for segmentation of an image either because they bad too many potential matches or no potential ,.,
based on intensity, matches with siniilar features. Figure5 shows retonstruct ions after

the algorithin has successfully performed matching, reconstruction

- The algorithm assumes one is interested in smooth surfaces and and segmentation on the two surfaces ihi the scene.
will most likely fail when this assumption is not satisfied.

Unfortunately, the algorithm cannot even determine if the ''he third exam ph" shows that the algoritimi can work well
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even with transparent (or extended, multiply con tiec t ed) objects. is possible. Future work will address this issue and will also inies-
li figure 6 the reader can see a few square labels on a wall behind tigate tile use of adaptive thresholding (depending on the actual
a glass plate with triangular labels on it. data) and the use of other properties, say rate of change of energy,

as the mteans of realizing segnmentation.
The range of depth value in the scene is -5 toni to 1410 ton, and

again the camera was at about .500[nln. li this exalple, the algo-
rithin found 155 unique tiatches and 786 ambiguous points. The Ackno
other 204 points were rejected. Figure 8 shows the reconstructed wledgments
surfaces.

Currently tile algoritht requires about 20niin (wall clock time) This work was supported in part by l)arpa contract #N00039-8--

on a Vax75O when processing a 512 by 512 image.tt This is an C'-0165.

unacceptable time requirement for practical problems, and future
work on optimization and possible parallel implementation will References
address this issue.
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Figure 3: Left and right image of cup and poker card
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Figure 4: The left image is the output of interest operator, and the
right image is the zero crossing of the Laplacian of the Gaussian.
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Figure 5: Rleconstru~ction of two) seginented sllrf:wcvs
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Figure 6 Left and right image of glass

Figure 7: The left image is the output of interest operator, andl the
right image is the zero crossing of the Laplacian of the Gaussiaul.

Figure 8: Reconistructioni of two segmiented suirfaces
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THE MIT VISION MACHINE R
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ABSTRACT visual cues. lor this reason we are developing a Vision

Machine System to explore the issue of the integration of
We describe the MIT Vision Machine, our goals early vision modules. The system also serves the pur-

and achievements to date. The Vision Machine is a pose of developing parallel vision algorithms since its
computer ystein that attempts to integrate several vi- mtin computational engine is a parallel supercomputer
sion cues to achieve high performance in unstructured - the Connection Machine.
environments for the tasks of recognition and naviga- The idea behind the Vision Machine is that thetion. It is also a test-bed for our theoretical progress main goal of the integration stage is to compute a map of
in early vision algorithms, their parallel implementation the visible discontinuities in the scene, sompwhat similar
and their integration. The Vision M achine consists of a t o a diston tin e-drasin The re s eveal s ons
movable two-camera Eye-Head system - the input device to a cartoon or a line-drawing. There are several reasons
- and a 16K Connection Machine - our main compu- for this. Firstly, experience with existing model-based
tational engine. We have developed and implemented recognition algorithms suggest that the critical problem
several parallel early vision algorithms which compute inmthi thype of recognition is to obtain a reasonably good
edge detection, stereo, motion, tezture and surface color map of the scene in terms of features such as edges and
in close to real-time. The integration stage is based on cdt
the technique of coupled Markov Random Field models, recognition works with noisy and occluded line draw-

and leads to a cartoon-like map of the discontinuities ings - and of course it cannot be perfect. But it should
in the scene, with a partial labeling of the brightness be significantly cleaner than the typical map provided

edges in terms of their physical origin. We will inter- by an edge detector. Secondly, discontinuities of surface S
face the output of our integration stage with available properties are the most important locations in a scene.
recognition algorithms. We are also beginning to study Thirdly, we have argued [Poggio, 1985] that discontinu-

reconiton lgoithm. W ar alo beinnng o sudy ities are ideal for integrating information from differentanalog and hybrid VLSI implementations of the Vision in

Machine main components. visual cues.

It is also clear that there are several different ap-
proaches to the problem of how to integrate visual cues.

1. Introduction: The Project and Its Let us list some of the obvious possibilities:
Goals

1) There is no active integration of visual processes.
Their individual outputs are "integrated" at the

Computer vision has developed algorithms for sev- stage at which they are used, for example by aeral early vision processes, such as edge detection, stere- navigation system. This is the approach advocated
opsis, motion, texture, and color, which give separate by Brooks [1987]. While it, makes sense for auto-
cues as to the distance from the viewer of three dimen- matic, insect-like, visio-motor tasks such as track-
sional slifaces, their shape, and their material proper- ing a target or avoiding obstacles (e.g., the fly's
ties. Biological vision systems, however, greatly outper- visuo-motor system [Reichardt and Poggio, 1976)),
form compter vision programs. It is increasingly clear it seems quite unlikely for visual perception in the
that one of the keys to the reliability, flexibility and r- wide sense.
bustness of biological vision systems in unconstrainied

environments is their ability to integrate many different
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2) The visual modules are so tightly coupled that it Finally, the goal of the Vision Machine project is no II
is impossible to consider visual modules as sepa- less than the ultimate goal of vision research: to build
rate, even in a first order approximation. This view a vision system that achieves human-level performance.
is unattractive on epistemological, engineering and
psychophysical grounds. 2. The Vision Machine System

3) The visual modules are coupled to each other and To
to the image data in a parallel fashion - each pro- The overall organization of the system is shown incess represented as an array coupled to the arrays Figure 1. The image(s) are processed through inde-

associated with the other processes. This point of pendent algorithms or modules corresponding to differ-

view is in the tradition of Marr's 2 D sketch, and ent visual cues, in parallel. Edges are extracted using
a2

especially of the "intrinsic images" of Barrow and Canny's edge detector. Stereo computes disparity from
Tenenbaum [1978]. Our present scheme is of this the left and right images. The motion module estimates atype, and exploits the machinery of Markov Ran- an approximation to the optical flow from pairs of im-dom Field (MRF) models. ages in a time sequence. The texture module computes

texture attributes (such as density and orientation of4) Integration of different vision modalities is taking textons [see Voorhees, 1987]). The color algorithm pro- vi--place in a task-dependent way at specific locations vides an estimate of the spectral albedo of the surfaces,

- not over the whole image - and when it is needed independently of the effective illumination, that is, illu-
- therefore not at all times. This approach is sug- mination gradients and shading effects, as suggested by
gested by psychophysical data on visual attention Hurlbert and Poggio [see Poggio, 1985].
and by the idea of visual routines [Ullman, 1984; see
also Hurlbert and Poggio, 1986; Mahoney, 1987]. The measurements provided by the early vision

modules are typically noisy and possibly sparse (forWe are presently exploring the third of these ap- stereo and motion). They are smoothed and made dense
proaches. We believe that the last two approaches by exploiting known constraints within each process (for I
are compatiblc with each other. In particular, visual instance, that disparity is smooth). This is a stage of ap-
routines may operate on maps of discontinuities such prozimation and restoration of data, performed by usingas those delivered by the present Vision Machine, and a Markov Random Field model. Simultaneously, discon-
therefore be located after a parallel, automatic integra- tinuities are found in each cue. Prior knowledge of the
tion stage. In real life, of course, it may be more a mat- behavior of discontinuities is exploited, for i:.stance, the
ter of coexistence. We believe, in fact, that a control fact that they are continuous lines, not isolated points. I
structure based on specific knowledge about the prop- Detection of discontinuities is aided 'y the information
erties of the various modules, the specific scene and the provided by brightness edges. Thus each cue - dispar-specific task will be needed in a later version of the ity, optical flow, texture, and color - is coupled to the
Vision Machine to overview and control the MRF in- edges in brightness.
tegration stage itself and its parameters. It is possible T'he
that the integration stage should be much more goal- physical discontinuities in the surfaces - depth dis con-
directed that what our present methods (MRF based)
allow. The main goal of our work is to find out whether tinuities (extremal edges and blades), orientation dis-this is true. 

continuities, specular edges, albedo edges (or marks),shadow edges - and coupling them with each other andThe Vision Machine project has a number of other back to the discontinuities in the visual cues, as illus-
goals. It provides a focus for developing parallel vision trated in Figure 1. So far we have implenented only
algorithms and for studying how to organize a real-time the coupling of brightness edges to each of the cues pro-vision system on a massively parallel supercomputer. It vided by the early algorithm. As we will discuss later, "'

attempts to change the usual paradigm of computer vi- the technique we used to approximate, to simultane-
sion research over the past years: choose a specific pro)- ously detect discontinuities, and to couple the different
lem, for example stereo, find an algorithm, and test it processes, is based on MRF models. The output of the
in isolation. The Vision Machine allows us to develop system is a set of labeled discontinuities of the surfaces
and test an algorithm in the context of the other niod- around the viewer. In our implemented version of the
ules and the requirements of the overall visual task system we find discontinuities in disparity, motion, tex-
above all visual recognition. For this reason, the project ture, and color. These discontinuities, taken together,
is more than an experiment in integration and parallel represent a "cartoon" of the original scene which can
processing: it is a laboratory for our theories and algo- he used for recognition and navigation (along with, if
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focus, and focal length by the host computer (currently

Maps a Symbolics 3600 Lisp Machine). Other hardware allows %o
~of

physical discontinuities for repeatable calibration of the entire apparatus.

Because of the size and weight of the motorized

Line lenses, it would be impractical to achieve eye move-
H. .. I and ment by pointing the camera/lens assemblies directly.

processes Instead, each assembly is mounted rigidly on the head,

with eye movement achieved indirectly. In front of each
ttion 1'camera lens is a pair of front surface mirrors (Figure

Stereo Motion Texture Color 2b), each of which can be pivoted by a galvanometer

also mounted rigidly on the head. The mirrors are posi-

tioned to provide two degrees of freedom in aiming the

_ _ cameras. At the expense of a more complicated imag-

ing geometry, this allows for a simpler and faster control
system for the eyes.

The head is attached to its mount via a spherical

Figure 1: Block Diagram of the Vision Machine joint, allowing head rotation about two orthogonal axes

(pan and tilt). Each axis is driven by a stepper motor

coupled to the drive shaft through a harmonic drive.

needed, interpolated depth, motion, texture and color The latter provides a large gear ratio in conjunction
fields). with very little mechanical backlash. Under control of

the stepper motors, the head can be panned 180 degrees
The plan of the paper is as follows. We will first from left to right, and tilted 90 degrees (from vertical- .,. r

review the present hardware of the Vision Machine: the down to horizontal). Each of the stepper motors is pro-
Eye-Head system and the Connection Machine. We will vided with an optical shaft encoder for shaft position
then describe in some detail each of the early vision al- feedback (a closed-loop control scheme is employed for
gorithms that are presently runing and are part of the the stepper motors). The shaft encoders also provide
system. After this, the integration stage will be dis- an index pulse (one per revolution) which is used for -%

cussed. We will analyze some results and illustrate the joint calibration in conjunction with mechanical limit
merits and the pitfalls of our present system. The last switches. The latter also protect the head from damage S.
chapter will discuss a real-time visual system and some due to excessive travel.
ideas on how to pit the svstem into VLSI circuits of , o
analog and digital type. The overall control system for the Eye-Head system

is distributed over a micro-processor network (UNET)-
developed at the MIT AI Lab for the control of vi- %

3. Hardware sion/rohotics hardware. The UNET is a "multi-drop" P.

3.1. The Eye-Head System network supporting up to 32 micros, under the control of
a single host. The micros normally function as network "r

Because of the variety of visual information pro- slaves, with the host acting as the master. In this mode

cessed by the Vision Machine, a general purpose image the micros only "speak when spoken to", responding to

input device is required. Such a device is the Eye-Head various network operations either by receiving informa-

system. Here we discuss its current and future configu- tion (command or otherwise) or by transmitting infor-

rations, mation (such as status or results). Associated with each
micro on the UNET is a local 16-bit bus (UBUS), which

3.1.1. The Present is totally under the control of the micro. Peripheral de-
vices such as motor drivers, galvanometer drivers, and

The Eye-Head system (Figure 2a) consists of two pulse width modulators (PWMs), to name a few, can
CCD cameras ("eyes") mounted on a variable-attitude be interfaced at this level.
platform ("head"). The apparatus allows the cameras
to be moved as a unit, analogous to head movement. It At present two micro-processors are installed on
lso allows the lines of sight of the cameras to bc po..tc.! the Eye-Head UNET: one for the galvanometer and one

independently, analogous to eye movement. Each cam- for both the motorized lenses and stepper motors. The

era is equippcd with a motorized zoom lens (F1.4, focal processors currently employed are based on the Intel

length from 12.5 to 75mm), allowing control of the iris, 8051. Each of these micros has an assortment of UBUS
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S %

L. Lenses
M. Mirrors
G. Galvanometers (2 of 4)
S. Camera lines-of-sight

Figure 2: The Eye-Hlead Systemn

peripherals uinder its control. By making these petiih tat ion of vision algorithms. In implementing these ailgo-

erals sufficiently powerful, each micro's control task canl rithrns, several different models of using the Connection
remain simple and manageable. Code for the tmicros. Machine have emerged, since the mnachine p~rovid1es sev-

writ ten in bo0th assembllly language and C, is facilitated eral dlifferent communication modes. The Connection

by a Lisp-based debugging environment. Machine imnplementation of algorithms cultn take ailvani-
tag- of the t drlyinag a rchi 1t,'c ti of the mtachIinie iii

3.1.2. The Future novel ways. We dlescribe here- several comnoi eletinet-

tary operations which recur throughout the followiuic I
Asingle enhancement remains for the Eye-Head dsuso fprle loi os

system. Currently, a Symbolics Lisp Macline acts as
the host p)roce'ssor for the UNET. Soon anl interniedi- 3.2.1. The Connection Machtine
ate real-time processor will be placed hetween the Liqp
Mfachine and the UNET, acting as master of the latter. The CMI-I version of thle Connect ioni Machinme

The real-timte processor (referred to as the DSP. being [Hillis. 19S5J is a parallel coniptiing mtachjine with bie-
based onl a Digital Signal Processor c hipl~) will relieve thle tween 16 K atnd 641K proce(sso~rs, opera ti ng tunde r a sin gle %

Lisp Machine of all the UNET protocol tasks, as well as instructioni sttean b~roadlcast to all processors. It is a
variouis low-level, real-time control tasks for which the Single Instrtict ion Mtilt iple Data ( SINID) niaclxa' all
Lisp Machine is ill-sttited(. Amiong the tasks envisiotned processors exectte the sameo control st reun). Ea ch pro
for then DSP is optimal pos' tioni 'st itnat ion of m lovintg cessor is a siml 11111 -hit procwessor. torren t ly with IN1

targets from mtotioni (iata. hits of memory. TIhetre ale two nio'es of cot io iticail-
tion amtiong tile pr-ocessors: first, thI ey are cotineced %

3.2. Our Computational Engine: The Counec- byams toa1S\52grdiewk(tiNES
tion Machine net,,work, si -('llel 1 ecau thtle c'oninec tion: aiti tfIhe

TheConecton achne s poerfl fne-raied fottr carditial (lire('tiotis ). allowitng tapid (hir('ct colittiti-
The onnetio Macine s apoweftilfin-granednicat ion between nieighiboritng processors, ahd stvcotd.

parallel tmachinte whichI has prve tusefult for inuipleti int thle routeCr, wh ichI alIlows tio'ssa g(' to beha setnt frolai atlly
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processor to any other processor in the machine. The

processors in the Connection Machine can be envisioned
as being the vertices of a 16-dimensional hypercube (in processor-number - [0 1 2 3 4 5 6 7)

fact, it is a 12-dimensional hypercube; at each vertex of A = [5 1 3 4 3 9 2 6)

the hypercube resides a chip containing 16 processors). PlusScan(A) - [5 6 9 13 16 25 27 33)
Each processor in the Connection Machine is identified Max-Scan(A) - [5 5 5 5 5 9 9 91

by its hypercube address in the range 0... 65535, impos- FP

ing a linear order on the processors. This address de- Figure 3: Examples of Plus-Scan and Mar-Scan.
notes the destination of messages handled by the router.
Messages pass along the edges of the hypercube from can cause significant delay, we will usually only con-

" source processors to destination processors. The Con- sider exclusive read, exclusive write instructions. Ve
nection Machine also has facilities for returning to the will usually not allow more than one processor to access

%Ihost machine the result of various operations on a field the memory of another processor at one time. The Con-
in all processors; it can return the global maximum, nection Machine can combine messages at a destination
minimum, sum, logical AND, and logical OR of the field. by various operations, such as logical AND, inclusive

To alhw the machine to manipulate data structures OR, summation, and maximum or minimum.
with more than 64K elements, the Connection Machine Scanning

supports virtual processors. A single physical proces- The scan operations [Blelloch, 1987] can be used
sor can operate as a set of multiple virtual processors to simplify and speed up many algorithms. They di-
by serializing operations in time, and partitioning the rectly take advantage of the hypercube connections un-
memory of each processor. This is otherwise invisible to derlying the router, and can be used to distribute values
the user. Connection Machine programs utilize Coin- the andcbesusedatotdisribute values

among Lisprocessors and to aggregate values using as-
mon Lisp syntax, in a language called *Lisp and are s,ciative operators. Formally the scan operation takes
manipulated in the same fashion as Lisp programs. a binary associative operator B, with identity 0, and

3.2.2. Powerful Primitive Operations an ordered set [a0,a...,..ian-], and returns the set

3aP,(a ulal)... i.(n0 e n ... o, 1 )]. This oper-
Many vision problems must be solved by a com- ation is sometimes referred to as the data independent

bination of communication modes on the Connection prefix operation [Kruskal et.al., 1985]. Binary associa-
Machine. The design of these algorithms takes advan- tive operators include minimum, maximum, and plus.
tage of the underlying architecture of the machine in Figure 3 shows scans using maximum and plus.
novel ways. There are several common, elementary op- The four scan operations plus-scan, max-scan, mn-
erations used in this discussion of parallel algorithms: scan and copyscan are implemented in microcode and

routing operations. scanning and distaiice doubling, take about the same amount of time as a routing cycle.

Routing The copy-scan operation takes a value at the first pro-
cessor and distributes it to the other processors. TheseMemory in the Connection Machine is associatedw pesors i t meonnection bacnesisd assciad scans operations can take segment bits that divide the

with processors. Local mengory can be accessed rapidly.e
Memory of processors nearby in the NEWS network processor ordering iito segments. The beginning of each %

segment is nmrked by a processor whose segment bit is
can be accessed by passing it through the processors

on die path betweein the source and the destinati-Sol, and the scan operations start over again at the be-on~~~gnnn the eath setween (see Figure 4).hdsiat,,
At present, NEWS accesses in the machine are made ginning of each segment (see Figure 4).
ii the same direction for all processors. The router The scan operations also work using the NEWS ad-
on the Connection Machine provides parallel reads and dressing scheme, termed grid-scans. These compute the
writes amiong processor memory at arbitrary distances surn, and find the maximum, copy, or number values
and with arbitrary patterns. It uses a packet-switched along rows or columns of the NEWS grid quickly.
message routing scheme to direct messages along the For example grid-scans cen t .... d to find for each
hypercube connections to their destinations. This pow- pixel the suni of a square region with width 2m + I Cen-
erful communication inode cail be used to reconfigure tered at the pixel. This still is computed using the
completely, in one parallel write operation taking one following steps. First, a plus-scan accmnulates partialrouter cycle, a field of information in the machine. The sums for all pixels along the rows. Each pixel then gets

Connection Machine supplies instructions so that iiany the result of the scan from the processor in in front of
processors can read from the same location or write to it and m behind it; the difference of these two values -

trepresents the suni. for each pixel, of its neighborhood

%li am 1ii i efrmle
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4.1. Edge Detection

processor-number = [0 1 2 3 4 5 6 7] -10

A - [5 1 3 4 3 9 2 6] Edge detection is a key first step in correctly identi-

SB (segment bit) - (1 0 1 0 0 0 1 0] fying physical changes. The apparently siml)le problem

Max-Scan(A, SB) = [5 5 3 4 4 9 2 6] of measuring sharp brightness changes in the image has

Copy-Scan(A, SB) = [5 5 3 3 3 3 2 2] proven to be difficult. It is now clear that edge detection

Plus-Scan(A, SB) = [0 5 6 3 7 10 19 2] should be intended not simply as finding "edges" in the

Min-Scan(A, SB) = [MX 5 1 3 3 3 3 2] images, an ill-defined concept in general, but as mia-

suring appropriate derivatives of the brightness data.

This involves the task-dependent use of different two-

dimensional derivatives. In many cases, it is appropri-

along the row. We now execute the same calculation on ate to mark locations corresponding to appropriate crit-

athelumns row.e nowtexect the smreac ulo o tical points of the derivative such as maxima or zeroes.
the colmns, resulting in the sum, for each pixel, of the In some cases, later algorithms based un these binary

elements in its square. The whole process only requires features presence or absence of edges - may be equiv-

a few scans and routing operations, and runs in tine alent, or very similar, to algorithms that directly use the

independent of the size of m. The summation opera- continuous value of the derivatives. A case in point is

tions are generally useful to accumulate local support provided by our stereo and motion algorithms, to be de- , ,
in many of our algorithms, such as stereo and motion. scrihed later. As a consequence, one should not always

make a sharp distinction between edge-based and inten-

Distance Doubling sity based algorithms: the distinction is more blurred
and in some cases, it is almost a matter of implementa-

Another important primitive operation is distance tion.

doubling [Wyllie, 1979; Lim, 1986], which can be used to In our current implementation of the Vision Ma-

compute the effect of any binary, associative operation, chine, we are using two different kinds of edges. The

as in scan, on processors linked in a list or a ring. For ex- first consists of zero-crossings in the Laplacian of the

ample, using max, doubling can find the extremum of a image filtered through an appropriate Gaussian. The
field contained in the processors. Using message-passing second consists of the edges found by Canny's edge de-

on the router, doubling can propagate the extreme value tector. Zero-crossings can be used by our stereo and mo-

to all processors in the ring of N processors IT O(log N) tion algorithms (though we have mainly used Canny's

steps. Each step involves two send operations. Typ- edges at fine resolution). Canny's edges (at a coarser I-.

ically, the value to be maximized is chosen to be the resolution) are input to the MRF integration scheme. S
hypercube-address. At termination, each processor in

the ring knows the label of the maximum processor in Zero- Crossings

the ring, hereafter termed the principal processor. This Because the derivative operation is ill-posed, we

labels all connected processors uniquely and nominates need to filter the resultant data through an appropri- t,

a processor as the representative for the entire set of ate low-pass filter [Torre and Poggio, 1985]. The filter

connected processors. At the same time, the distance of choice (but not the only possibility!) is a Gaussian

from the principal can be computed in each processor. at a suitable spatial scale. An interesting, simple imple-

Figure 4 shows the propagation of values in a ring of mentation of Gaussian convolution relies on the bil()o-

eight processors. Each processor initially, at step 0, has nfial approximation to the Gaussian distribution. This r

the address of the next processor in the ring, and a value algorithm requires only integer addition, shifting. and-

which is to be maximized. At the termination of the ith local communication oin the 9-1) niesh. so it -, ca t;eir- ":':

step, a processor knows the addiesses of processors 2'1+1 plemented on a simple 2-D mesh architecture (such as

away and the maximum of all values within 2 -  pro- the NEWS network on the Connection Maclhine).

cessors away. In the example, the nmaximnuin value has

been propagated to all 8 processors in log 8 = 3 steps. The Laplacian of a Gaussian is often approximnated,

bv the diffrence of Gaussians. The Lapli'ian ofa Gais -

sian (-an also be comumted by convolution with a Ganus-

4. Early Vision Algorithms and their sian followed by convolution with a discrete Laplacian; "

Parallel Implementation we have iuplemented both ois the Connection Machine. S

To( detect zero-crossings, the Comltation at eaic hi p ixel

need only examine the s gn bits of neighb)oring pixels.
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Canny Edge Detection analyzing a histogram of the gradient magnitudes. Most
computational implementations of this step perform aThe Canny edge detector is often used in image un- global analysis of the gradient magnitude distribution,

derstanding. It is based on directional derivatives, so it which is essentially non-local; we have had success with
has improved localization. The Canny edge detector on

the onnctin Mahin cosist ofthefollwin stps: a Connection Machine implementation using local his-the Connection Machine consists of the following steps: tograms. The thresholds used in Canny edge detection
0 Gaussian smoothing depend on the final task for which the edges are used. A

0 Directional derivative conservative strategy can use an arbitrary low threshold *

to eliminate the need for the costly processing required
• Non-maximum suppression to accumulate a histogram. Where a more precise es-

* Thresholding with hysteresis. timate of noise is needed, it may be possible to find a
scheme that use a coarse estimate of the gradient magni- %

Gaussian filtering, as described above, is a local oper- tude distribution, with minimal global communication.
ation. Computing directional derivatives is also local,
using a finite difference approximation referencing only 4.2. Stereo
local neighbors in the image grid.

The Drumheller-Poggio parallel stereo algorithm
Non-maximum Suppression [Drumheller and Poggio, 1986] runs as part of the Vi-

Non-maximum suppression selects as edge candi- sion Machine. Disparity data produced by the algo-
dates those pixels for which the gradient magnitude is rithm comprise one of the inputs to the MRF-based
maximal in the direction of the gradient. This involves integration stage of the Vision Machine. We are ex-
interpolating the gradient magnitude between each of ploring various extensions of the algorithm, as well as
two pairs of adjacent pixels among the eight neighbors the possible use of feedback from the integration stage.
of a pixel, one forward in the gradient direction, one In this section, we will review the algorithm briefly, then
backward. However, it may not be critical to use in- proceed to a discussion of current research.
terpolation, in which case magnitudes of neighboring Tann
values can be dirctly compared.The stereo algorithm runs on the Connection Ma-chine system with good results on natural scenes in
Thresholding with Hysteresis times that are typically on the order of one second. The

Thresholding with hysteresis eliminates weak edges stereo algorithm is presently being extended in the con-

due to noise, using the threshold, while connecting ex- text of the Vision Machine project.

tended curves over small gaps using hysteresis. Two
thresholds arc computed, low and high, based on an 4.2.1. Drumheller-Poggio Stereo Algorithm

estimate of the noise in the image brightness. The non-
maximum suppression step selects those pixels where Stereo matching is an ill-posed problem [see Bert-

the gradient magnitude is maximal in the direction of ero etal., 1987] that cannot be solved without taking
advantage of natural constraints. The continuity con-the gradient. In the thresholding step, all selected pixels straint [see, for i-stance, Marr and Poggio, 1976] assertsSw ith grad ien t m agn itude below low are elim inated . A ll th a th o l2on i t"rm ri y o i ce e s o t

pixelsthat the world consists primarily of piecewise smooth
All pixels with values between low and high are edges if surfaces. If the scene contains no transparent objects,
theylpixelswithnvaluestbetweenl abo. high trdges if then the uniqueness constraint applies: there can bethey can be connected to a pixel above high through a only one match along the left or right lines of sight. If
chain of pixels above low. All others are eliminated, there are no narrow occluding objects the ordering con-

This is a spreading activation operation; it propa- straint [Poggio and Yuille, 1984] holds: any two points
gates information along a set of connected edge pixels, must be imaged in the same relative order in the left
The algorithm iterates, in each step marking as edge and right eyes.
pixels any low pixels adjacent to edge pixels. When T

nopies hng saete teaio erintstkigThe specific a p7 iori assumption on which the algo-- .
no pixelschange State, the iteration terminates taking rithm is based is that the disparity - that is, the depth

0mstsanmo hength of the surface - is locally constant in a small region sur-
the longest chain of low pixels which evenitually become rounding a pixel. It is a restrictive assumption which.
edge pixels. The running time of this operation call t) however, may be a satisfactory local approximation inreducver may Obeg) asn satisfaanor localq appoxmaio i
reduced to O(logm). using di•tance doubling, many cases (it can be extended to more general surface

Noise Estimation assumptions in a straightforward way but at high coi-

Estimating noise in the image can be performed by putational cost). Let EL(x, y) and En(x. y) represent
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the left and the right image of a stereo pair or some two edges are compatible if the sign of the convolution
transformation of it, such as filtered images or a map for each edge is the same.
of the zero-crossings in the two images (more generally, To determine the degree of continuity around each s
they can be maps containing a feature vector at each potential match (x,y.d), Ae compute a local support
location (x, y) in the image). score s(x, y, d) =Pach p(x, y, d), where patch is a small

We look for a discrete disparity d(x, y) at each lo- neighborhood of (x, y, d) within the dth potential match
cation x, y in the image that minimizes plane. In effect, nearby points in patch can "vote" for V

the disparity d. The score s(x, y, d) will be high if the
continuity constraint is satisfied near (x,y,d), i.e., if

IEL(x,y) - ER(X + d(x,Y),Y)lpatch, (1) patch contains many votes. This step corresponds to

where the norm is a summation over a local neighbor- the integral over the patch in Equation (2).

hood centered at each location (x, y); d(x) is assumed Finally, we attempt to select the correct matches N

constant in the neighborhood. Equation (1) implies that by applying the uniqueness and ordering constraints

we should look at each (x, y) for d(x, y) such that (see above). To apply the uniqueness constraint, each

match suppresses all other matches along the left and

right lines of sight with weaker scores. To enforce the .s
/ (EL(x,y)ER(X + d(x,y),y))2 dxdy (2) ordering constraint, if two matches are not imaged in

fI atchi the same relative order in left and right views, we dis-

s maximized. card the match with the smaller support score. In effect,
is meach match suppresses matches with lower scores in its

The algorithm that we have implemented on the forbidden zone [Poggio and Yuille, 1984]. This step cor-
Connection Machine is actually somewhat more com- responds to choosing the disparity value that maximizes S
plicated, since it involves geometric constraints that af- the integral of Equation (2).

fect the way the maximum operation is performed (see
Druniheller and Poggio, 1986). The implementation 4.2.2. Improvements

currently used in the Vision Machine at the AI Lab uses Using this algorithm as a base, we are exploring the
the maps of Canny's edges obtained from each image for following
EL and ER. topics

Detection of Depth Discontinuities" •

In more detail, the algorithm is composed of the De i r
following steps: The Marr-Poggio continuity constraint is I, 'h a .

strength and a weakness of the stereo algorithm Fa- %,
1) Compute features for matching. voring continuous disparity surfaces reduces the Au-

2) Compute potential matches between features. tion space tremendously, but also tends to smooth ( , er
depth discontinuities present in the scene. Consi&r

3) Determine the degree of continuity around each po- what happens near a linear depth discontinuity, say a

tential match. point near the edge of a table viewed from above. The

4) Choose correct matches based on the constraints of square local support neighborhood for the point will be
continuity, uniqueness, and ordering, divided between points on the table and points on thefloor; thus, almost half of the votes will be for the wrong

Potential matches between features are computed disparity.

in the following way. Assuming that the images arein th follwing av.. ssumng tht theimage areOne solution to this problem is feedback from the '"jl*

registered so that the epipolar lines are horizontal, the Onegsltion tthis pe is fak the

stereo matching problem becomes one-dimensional: an integration stage. We can take the depth dis-
edge in the left image can match any of the edges in continuities located by the integration stage (using the

the corresponding horizontal scan line in the right im- results from a first - ass of the stereo algorithm, among

age. Sliding he right image over the left image horizon- other inputs) and use them to restrict the local support Lr
tally, we compute a set of potential match planes, one neighborhoods so that they do not span discontinuities.

for each horizontal disparity. Let p(.r, y, d) denote the In the example mentioned above, the support neighbor- 1
value o e ynhood would be trimmed to avoid crossiag the disconti-

value of the (a'. y) entry of the potential match plane at nuity between the table and the floor, and thus would
disparity d. We set 1{x, y. d) = 1 if there is an edge at
location (ar, y) in the left iniage and a compatible edge not pick up spurious votes from the floor.

at location (x - d, y) in the right image: otherwise, set We can also try to locate discontinuities by ex-
p(x,y,d) = 0. In the case of the DOG edge detector, amining intermediate results of the stereo algorithm.
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Consider a histogram of votes vs. disparity for the ta- Identifying Areas that are Outside of the Matcher's Dis-
ble/floor example. For a support region centered near parity Range
the edge of the table, we expect to see two strong peaks: The stereo algorithm searches a limited disparity

one at the disparity of the floor, and the other at the selected match in therange, seetdmanually. Every potential mthi h
disparity of the table. Therefore a bimodal histogram scene (an edge with a matching edge at some dispar-
is strong evidence for the presence of a discontinuity. ity) is assigned the in-range disparity with the highest

These two ideas can be used in conjunction. Dis- score, even though the correct disparity may be out of

continuity detection within stereo can take advantage of range. How can we tell when an area of the scene is out

the extra information provided by the vote histograms. of range?

By passing better depth data (and perhaps candidate The most effective approach that we have at-
discontinuity locations) to the integration stage, we im- tempted to date is to look for regions with low matching
prove the detection of discontinuities at the higher level, scores. Two patches that are incorrectly matched will,

Improving the Stereo Matcher in general, produce a low matching score.

The original Drumheller-Poggio algorithm matched 4.2.3. Memory-Based Registration and Calibra-
DOG zero-crossings, where the local support score tion

counted the number of zero-crossings in the left image
patch matching edges in the right image patch, at a Registration of the image pair for the stereo algo-

given disparity. We have modified the matcher in a va- rithm is done by presenting to the system a pattern of
riety of ways. dots, roughly on a sparse grid, at the distance around

1) Canny edges. The matcher now uses edges derived which stereo has to operate. The registration is accom-plished using awarping computed by matching the dots
by a parallel implementation of the Canny edge de- a ..,

Stector [ nfrom the left and right images. The dots are sparse, teeter [Canny, 19S3; Little et al., 1987] rather than

DOG zero-crossings, for better localization, enough that matching is unambiguous. The matching 4
. defines a warping vector for each dot; at other points

2) Gradient direction constraint. We allow two Canny the warping is computed by biline ar interpolation of the
edges to match only if the associated brightness two components of warping vectors. The warping nec-
l gradient directions are aligned within a parame- essary for mapping the right image onto the left image r

terized tolerance. This is analogous to the re- is then stored. Prior to stereo-matching, the right im- ,%

striction in the Marr-Poggio-Grimson stereo algo- age is warped according to the pre-stored addresses by

rithm [Grimson,1981], where two zero-crossings can sending each pixel in the right image to the processor

match only if the directions of the DOG gradients specified in the table. ]

are approximately equal. Matching gradient orien-t." The warping table corrects for deformations, in-
tations is a tighter constraint than matching the eluding those due to vertical disparities and rotations,
sign of the DOG convolution. Furthermore, the those due to the image geometry (errors in the align-
DOG signed s numerically unstable for horizontally ment of the cameras, perspective projection, errors in-

on eetroduced by the optics, etc.) We plan to store sev-
3) The scores are now normalized to take into account eral warping tables for each of a few convrgence angles ]

the number of edges in the left and right image of the two cameras (assuming symmetric convergence).
patches eligible to match, so that patches with We conjecture that simple interpolation can yield suf-
high edge densities do not generate artificially high ficiently accurate warping tables for fixation angles in- ,U
scores, We plan to change the matcher so that termediate to the ones stored. Notice that these tables -5.

edges that fail to match would count as negative are independent of the position of the head. Absolute 'U

evidence by reducing the support score, but this depth is riot the concern here (we are not using it in our I
has riot yet been im)lemented. present Vision Machine), but it could easily be recov-

nsIn the near future, we will explore matching bright- ered fron knowledge of the convergence angle. Notice

ness values as well as edges, using a cross-correlation also that the whole registration scheme has the flavor

approach similar to that of Little, Biilthoff and Poggio of a learning process. Convergence angles are inputs

[1987] for motion estimation [Gillett, in preparation]. amd warping tables are the outputs of the modules; the
set of angles, together with the associated warping ta-
bles, represent the set of input-output examples. The

systein cnl"'gemieralize" by iiterpol :ting betweeii warp- -
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ing tables and providing the warping corresponding to a ferencing (taking the logical "exclusive or") the right

vergence angle that does not appear in the set of "exam- and left image map for different values of (x, y) and

pies". Calibration of disparity to depth could be done v, vy. The next stage, corresponding exactly to the in- S

in a similar way. tegral operation over the patch, is for each processor to

summate the total (2) in an (x, y) neighborhood at the

same disparity. Note that this summation operation is
4.3 Motion efficiently implemented on the Connection Machine us-

ing scan computations. Each processor thus collects a
The motion algorithm computes the optical flow vote indicating support that a patch of surface exists

field, a vector field which approximates the projected at that displacement. The algorithm iterates over all
motion field. The procedure produces sparse or dense displacements in the range (±6, ±6), recording the val-

output, depending on whether it uses edge features or ues of the integral (2) for each displacement. The last

intensities. The algorithm assumes that image displace- stage is to choose v(x, y) among the displacements in
ments are small, within a range (±6, ±6). It is also the allowed range that maximizes the integral. This is
assumed that the optical flow is locally constant in a done by an operation of "non-maximum suppression" A
small region surrounding a point. This assumption is across velocities out of the finite allowed set: at the
strictly only true for translational motion of 3-D pla- given (x, y), the processor is found that has the max-
nar surface patches parallel to the image plane. It is a imum vote. The corresponding v(x, y) is the velocity
restrictive assumption which, however, may be a satis. of the surface patch found by the algorithm. The ac-
factory local approximation in many cases. Let Et(x, y) tual implementation of this scheme can be simplified
and Et+At(x, y) represent transformations of two dis- so that the "non-maximum suppression" occurs dur-

crete images separated by time interval At, such as fil- ing iteration over displacements, so that no actual table
tered images or a map of the brightness changes in the of summed differences over displacements need be con-
two images (more generally, they can be maps contain- structed. In practice, the algorithm has been shown to 2
ing a feature vector at each location (x, y) in the image) be effective both for synthetic and natural images us- • -

[Kass, 1986; Nishihara, 1984]. ing different types of features or measurements on the

We look for a discrete motion displacement , = brightness data, including edges (both zero-crossings of

(vVy) at each location x, y in the image that mini- the Laplacian of Gaussian and Canny's method), which

mizes generate sparse results along brightness edges, or bright-

ness data directly, or the Laplacian of Gaussian or its

sign, which generate dense results. Because the opti-
IlEt(x, y) - Et+at(x + V1 At, y + vyAt)Il patch, =min (3) cal flow is computed from quantities integrated over the

where the norm is a summation over a local neighbor- individual patches, the results are robust against the

effects of uncorrelated noise.
hood centered at each location (x, y); v(r, y) is assumed
constant in the neighborhood. Equation (3) implies that The comparison stage employs patchwise cross- A
we should look at each (x, y) for v = (v1 , vy) such that correlation, which exploits local constancy of the opti-

cal flow (the velocity field is guaranteed to be constant
for translations parallel to the image plane of a planar

(Et(x,y)-Et+At(x+evAt,y+vyAt)) 2ddy (4) surface patch; it is a cubic polynomial for arbitrary mo-
tion of a planar surface [see Waxman, 1986; Little et.al.,

is minimized. Alternatively, one can maximize the neg- 1987]. Experimentally, we have used zero-crossings, the
ative of the integrated result. Equation (4) represents Laplacian of Gaussian filtered image, its sign, and the
the sum of the pointwise squared differences between a smoothed brightness values, with similar results. It is
patch in the first image centered around the location interesting that methods superficially so different (edge-
(x, y) and a patch in the second image centered around based and intensity- based) give such similar results. As
the location (x + vAt, y + vyAt). we mentioned earlier, this is not surprising. There are a'-

theoretical arguments that support, for instance, the

This algorithm can be translated easily into the equivalence of cross-correlating the sign bit of the Lapla-
following description. Consider a network of proces- cian filtered image and the Laplacian filtered image it- %
sors representing the result of the integrand in Equa- self. The argument is based on the following theorem
tion (4). Assume for simplicity that this result is ei- [see little, Biilthoff and Poggio, in preparation], which
ther 0 or 1 (this is the case if E, and E,+A are binary is a slight reformulation of a well-known theorem.

feature maps). The processors hold the result of dir -
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Theorem

If f(x, y) and g(x, y) are zero mean jointly normal H(, y) - r

processes, their cross-correlation is determined fully by It + Ig krpr + kIp9 (6)

the correlation of the sign of f and of the sign of g ( and which changes only when pr or pg or both change. Thus

determines it). In particular H, which is piecewise constant, has discontinuities that

mark changes in the surface albedo, independently of

2-arcsn(Rf,,) changes in the effective illumination.

The quantity H(x, y) is defined almost everywhere,

where sign f and 4 = sign g but is typically noisy. To counter the effect of noise, we

Thus, cross-correlation of the sign bit is exactly exploit the prior inforx;.atiun that H should be piece-

equivalent to cross-correlation of the signal itself (for wise constant with discontinuities that are themselves %

Gaussian processes). Notice that from the point of view continuous, non-intersecting lines. As we will discuss

of information, the sign bit of the signal is completely later, this restoration step is achieved by using a MRF

equivalent to the zero-crossing of the signal. Nishihara model. This algorithm works only under the restrictive

first used patchwise cross-correlation of the sign bit of assumption that specular reflections can be neglected.

DOG filtered images [Nishihara, 1984], and has imple- Hurlbert [1988] discusses in more detail the scheme out-

mented it more recently on real-time hardware [Nishi- lined here and how it can be extended to more general

hara et.al., 1988]. conditions.

The existence of discontinuities can be detected in 4.5. Texture

optical flow, as in stereo, both during computation and

by processing the resulting flow field. The latter field The texture algorithm is a greatly simplified par-

is input to the MRF integration stage. During compu- allel version of the texture algorithm developed by -,

tation, discontinuities in optical flow arising from oc- Voorhees and Poggio [1987]. Texture is a scalar mena-

clusions are indicated by low normalized scores for the sure computed by summation of texton densities over

chosen displacement. small regions surrounding every point. Discontinuities
in this measure can correspond to occlusion boundaries,

4.4. Color or orientation discontinuities, which cause foreshorten-
ing. Textons are computed in the image by simple ap-

The color algorithm that we have implemented is proximation to the methods presented in Voorhees and

a very preliminary version of a module that should find Poggio [1987]. For this example, the textons are re- N,

the boundaries in the surface spectral reflectance func- stricted to blob-like regions, without regard to orienta-

tion, that is, discontinuities in the surface color. The al- tion selection.
gorithm relies on the idea of effective illumination and To compute textons, the image is first filtered by a

on the single source assunption, both introduced by Laplacian of Gaussian filter at several different scales. 'r

Hurlbert and Poggio [see Poggio et.al., 1985]. The smallest scale selects the textural elements. The

The single source assumption states that the illu- Laplacian of Gaussian image is then thresholded at a

mination may be separated into two components, one non-zero value to find the regions which comprise the

dependent only on wavelength and one dependent only blobs identified by the textons. The result is a binary

on spatial coordinates, and generally holds for illumina- image with non-zero values only in the areas of the

tion from a single light source. It allows us to write the blobs. A simple summation counts the density of blobs,

image irradiance equation for a Lambertian world as the portion of the summation region covered by blobs,

in a small area surrounding each point. This operation

P = kVE(x,y)p'(x,y) (5) effectively measures the density of blobs at the small
scale, while also counting the presence of blobs caused

where I is the image irradiance in the vth spectral by large occlusion edges at the boundaries of textured

channel (v = red, green, blue), p(r,y) is the surface regions. Contrast boundaries appear as blobs in the

spectral reflectance (or albedo) and the effective illu- Laplacian of Gaussian image. To remove their effect,

mination E(x, y) absorbs the spatial variations of the we use the Laplacian of Gaussian image at a slightly

illumination and the shading due to the 3D shape of coarser scale. Blobs caused by the texture at the fine

surfaces (k' is a constant for each channel and depends scale do not appear at this coarser scale, while the con-

only on the luminant). A simple segmentation algo- trast boundaries, as well as all other blobs at coarser

rithm is then obtained by considering the equation scales, remain. This coarse blob image filters the fine
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blobs - blobs at the coarser scale are removed from the boundaries of an object or an object part. The idea is
fine scale image. Then, summation, whether with a sim- thus to couple different cues through their discontinu-
ple scan operation, or Gaussian filtering, can determine ities and to use information from several cues simulta-
the blob density at the fine scale only. This is one exam- neously to help refine the initial estimation of disconti-
ple where multiple spatial scales are used in the present nuities, which are typically noisy and sparse.
implementation of the Vision Machine. How can this be done? We have chosen to use the

machinery of Markov Random Fields (MRFs), initially
5. The Integration Stage and MRF suggested for image processing by Geman and Geman

[1984]. In the following we will give a brief, informal
Whereas it is reasonable that combining the evi- outline of the technique and of our integration scheme.

dence provided by multiple cues - for example, edge More detailed information about MRFs can be found in
detection, stereo and color - should provide a more re- Geman and Geman [1984] and Marroquin etal. [1987]. S7__5
liable map of the surfaces than any single cue alone, Gamble and Poggio [1987] describe an earlier version of.,

itaml isd noti obvious howrib thi integatio canio beacm-f our integration scheme and its implementation, outlined
plished. The various physical processes that contribute in the next section.
to image formation - surface depth, surface orientation,
albedo (Lambertian and specular component), illumina- 5.1. MRF Models
tion - are coupled to the image data, and therefore to
each other, through the imaging equation. The cou- Consider the prototypical problem of approximat-
pling is, however, difficult to exploit in a robust way, ing a surface given sparse and noisy data (depth data),
since it depends critically on the reflectance and imag- on a regular 2D lattice of sites. We first define the ]
ing models. We argue that the coupling of the image prior probability of the class of surfaces we are interested
data to the surface and illumination properties is of a in. The probability of a certain depth at any given site
more qualitative and robust sort at locations in which in the lattice depends only upon neighboring sites (the V
image brightness changes sharply and surface proper- Markov property). Because of the Clifford-Hammersley
ties are discontinuous, in short, at edges. The intuitive theorem, the prior probability is guaranteed to have the
reason for this is that at discontinuities, the coupling Gibbs form ye
between different physical processes and the image data Gbsom
is robust and qualitative. For instance, a depth dis-
continuity usually originates a brightness edge in the P(f) = 1 (7)
image, and a motion boundary often corresponds to a
depth discontinuity (and an brightness edge) in the im- where Z is a normalization constant, T is called temper-
age. This view suggests the following integration scheme ature, and U(f) = Ec Uc(f) is an energy function that
for restoring the data provided by early modules. The can be computed as the sum of local contributions from
results provided by stereo, motion and other visual cues each neighborhood. The sum of the potentials, Uc(X),
are typically noisy and sparse. We can improve them is over the neighborhood's cliques. A clique is either a
by exploiting the fact that they should be smooth, or single lattice site or a set of lattice sites such that any
even piecewise constant (as in the case of the albedo), two sites belonging to it are neighbors of one another. -
between discontinuities. We can exploit a priori infor- Thus U(f) can be considered as the sum over the possi-
mation about generic properties of the discontinuities ble configurations of each neighborhood [see Marroquin
themselves: for instance, that they usually are continu- et.al., 1987]. As a simple example, when the surfaces *-

ous and non intersecting, are expected to be smooth, the prior probability can be

The idea is then to detect discontinuities in each given in terms of
cue, say depth, simultaneously with the approximation
of the depth data. The detection of discontinuities is U (f) =(f. - f) (8) ]
helped by information on the presence and type of dis- ,.
continuities in the surfaces and surface properties (see where i and j are neighboring sites (belonging to the
Figure 1), which are coupled to the brightness edges in same clique). ,"I
the image. If a model of the observation process is available -

Notice that reliable detection of discontinuities is (i.e., a model of the noise), then one can write the con-
critical for a vision system, since discontinuities are of- ditional probability P(g/f) of the sparse observation g
ten the most important locations in a scene: depth dis- for any given surface f. Bayes Theorem then allows one
continuities, for example, normally corrcspond to the to write the posterior distribution
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for instance, the surface corresponding to the maximum
of P(f/g) can be found. This corresponds to finding the

(a) global minimum of U(Q/g) (simulated annealing is one
=0 of the possible techniques). Other criteria can be used:
CP C 4 /.Marroquin [1985] has shown that the average surface f

under the posterior distribution is often a better esti-
mate which can be obtained more efficiently simply by
finding the average value of f at each lattice site.

One of the main attractions of MRFs is that the
( 010101o 1o prior probability distribution can be made to embed( 1$ more sophisticated assumptions about the world. Ge-

man and Geman [1984] introduced the idea of another
process, the line process, located on the dual lattice (see

O 010O 01 1 Figure 5), and representing explicitly the presence or ab-
o0o 10101 sence of discontinuities that break the smoothness as-

sumption (Equation (2)). The associated prior energy
MRF Lattice then becomes

---0 Uc(f) = (f, - f) 2 (1 - 1?) + 6Vc(1') (11)0 0I lI 1I0 0 0 
i (1

0 where I is a binary line element between site i, j. Vc

Depth Proceaa is a term that reflects the fact that certain configura-
Neighborhood Line Proceg tions of the line process are more likely than others to

Vertical Nelghborhood occur. In our world, depth discontinuities are usually
themselves continuous, non-intersecting, and rarely iso-
lated joints. These properties of physical discontinu-

Figure 5: The MRF lattice ities can be enforced locally by defining an appropriate
_set of energy values Vc(l) for different configurations of

the line process in the neighborhood of the site (notice
that the assignment of zero energy values to the non-

central cliques mentioned in Gamble and Poggio [1987]
P(f/g) = Ye14-  (9) is wrong, as pointed out to us by Tail Symchony).

In the simple earlier example, we have (for Gaus- 5.2. Organization of Integration
sian noise)

It is possible to extend the energy function of Equa-
tion (5) to accommodate the interaction of more pro-

U(f/g) = Ea-i(fi - g.)' + (fi - fMf2  (10) cesses and of their discontinuities. In particular, we
c have extended the energy function to couple several of

1 l e a a e cthe early vision modules (depth, motion, texture andwhere -y = 1 only where data are available. More com- color) to brightness edges in the image. This is a central* plicated cases can be handled in a similar manner. point in our integration scheme: brightness edges guide

The posterior distribution cannot be solved ana- the computation of discontinuities in the physical prop-
lytically, but sample distributions with the probabil- erties of the surface, thereby coupling surface depth,
ity distribution of Equation (3) can be obtained using surface orientation, motion, texture and color, each to
Monte Carlo techniques such as the Metropolis algo- the image brightness data and to each other. The reason
rithm. These algorithms sample the space of possi- for the role of brightness edges is that changes in surface
ble surfaces according to the probability distribution properties usually produce large brightness gradients in
P(f/g) that is determined by the prior knowledge of the image. It is exactly for this reason that edge de-
the allowed class of surfaces, the model of noise, and the tection is so important in both artificial and biological
observed data. In our implementation, a highly parallel vision.
computer generates a sequence of surfaces from which,
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The coupling to brightness edges may be done by
replacing the term Vc(lij) in the last equation with the 6. Illustrative Results
term

Figures 7 and 8 show the results of the Vision Ma-
chine applied to the scene in Figure 6 and some of the

V(l e) = g(e', Vc(4')) (12) intermediate steps. Figure 7 show the brightness edges

with e representing a measure of the presence of an computed by the Canny algorithm at two different spa-wih & tial scales (oa = 2.5 and o, = 4). We show neither the

brightness edge between site i,j. The term g has the scles a n 2.5 an a i4 Weh the testereo pair nor the motion sequence in which the teddy
effect of modifying the probability of the line process
configuration depending on the brightness edge data bon an
(V(l, e) = -log p(l/e)). This term facilitates forma- to the next. The results given by the stereo, motion,

texture and color algorithms, after an initial smooth-
tion of discontinuities (that is, 1) at the locations of ing to make them dense [see Gamble and Poggio, 1987],
brightness edges. Ideally, the brightness edges (and the ao
neighboring image properties) activate, with different are shown in the first column on the left of Figure 8

neigborng mag proertes)actvate wih dffeent(from top to bottom). They represent the input to the
probabilities, the different surface discontinuities (see Mfmachinery the dt ts

Figue 1 whih i tur ar copledto he otpu ofMRF machinery that integrates each of those data sets
Figure 1) which in turn are coupled to the output of with the brightness edges. The color algorithm uses the

stereo, motion, color, texture, and possibly other early edges at the coarser resolution, since we want to avoid

detecting texture marks on the surface; the other cues
We have been using the MRF machinery with prior are integrated with the Canny edges at a smaller scale

energies like that given in Equations (11) and (12) (see (a = 2.5). The central column of Figure 8 shows the

also Figure 1) to integrate edge brightness data with reconstructed depth, color (the quantity H defined ear-

stereo, motion and texture information on the MIT Vi- lier), texture and motion flow; the left column show the

sion Machine System. discontinuities found by the MRF machinery in each of

We should emphasize that our present implemen- the cues. Processing of the stereo output finds depth

tation represents a subset of the possible interactions discontinuities in the scene (mainly the outlines of the

shown in Figure 1, itself only a simplified version of the teddy, plus a fold of a wet suit protruding outward).
organization of the likely integration process. The sys- Motion discontinuities are found by the MRF machinery

organzatio ofl them likelyes integatio proess Theo sys-aie
tem will be improved in an incremental fashion, includ- with help from brightness edges. The color boundaries

ing pathways not shown in Figure 1, such as feed-backs show regions of constant surface color, independently of 4-.

from the results of integration into the matching stage its shading: notice, for instance, that brightness edges
inside the teddy bear, due to shading, do not appear as

of the stereo andmotionalgorithms, color edges (the color images were taken from a different

5.3. Algorithms: Deterministic and Stochastic camera). The texture boundaries correspond quite well
to different textured surfaces. V

A few disclaimers are in order here. We have cho-

sen to use MRF models because of their generality and Figure 9 shows that the union of the discontinu-

theoretical attractiveness. This does not imply that ities in depth and motion for the scene of Figure 6 gives

stochastic algorithms must be used. For instance, in a rather good "cartoon" of the original scene. At the

the cases in which the MRF model reduces to standard same time, our integration algorithm achieves a prelim-

regularization [Marroquin et.al., 1987] and the data are inary classification of the brightness edges in the image,

given on a regular grid, the MRF formulation leads not in terms of their physical origin. A more complete clas-

only to a purely deterministic algorithm, but also to a sification will be achieved by the full scheme of Figure

convolution filter. 1: the lattices at the top classify the different types of
discontinuities in the scene. The set of such discontinu- "

We expect that during our research we will define ities in the various physical processes should represent
deterministic algorithms that are either equivalent to the a good set of data for later recognilion stages. P.

stochastic Monte Carlo algorithms. More specifically,
we expect that the probabilistic formulation of MRF 7. The Future
is in a sense too general, and therefore too inefficient.

Remember that MRF models are quite general (for in- The Vision Machine is evolving rapidly. We plan
stance, regularization can be regarded from a proba- to add other early vision algorithms (such as shape-,.
bihistic point of view as an instance of MRF). from-shading) and to develop further the ones already
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Figure 6: Grey-level image of a natural scene processed by I
the Vision Machine

Is

Figure 7: Canny edges of the image in Figure 6

implemented (especially color and texture). Most of Notice that in the full system we may have several vi-

the future effort will be directed towards a more sat- sual routines [see Poggio et.al., these Proceedings) op-

isfactocy integration: we will define and implement a erating also on the maps of physical discontinuities and

scheme of the type shown in Figure 1. Finding the cor- performing task-dependent grouping operations before

rect values of the parameter is critical for the practical recognition.
success of the MRF technique; thus we will attempt to

find useful solutions to the parameter estimation prob-

lem, an issue strictly related to learning from examples. 7.2. Learning and Parameter Estimation

An important step in the very near future will be the

implementation of recognition algorithms operating on Using the MRF model involves an energy func-

the output of the integration stage. tion which has several free parameters, in addition to

the many possible neighborhood systems. The values -t
7.1. Towards Recognition of these parameters determine a distribution over the

The output of the integration stage provides a set of configuration-space to which the system converges, and %

edges labeled in terms of physical discontinuities of the the speed of convergence. Thus rigorous methods for

surface properties. They should represent a good input estimating these parameters are essential for the practi-

to a model-based recognition algorithm like the ones de- cal success of the method and for meaningful results. In

scribed by Dan Huttenlocher nd by Todd Cass in theso some cases, parameters can be learned from the data: I'

Proceedings. In particular, we are interfacing the Vision e.g., texture parameters [Geman and Graffigne, 1987. ,

Machine as implemented so far with the Cass algorithm. or neighborhood parameters (for which a cellular au-

Initially, we will use only discontinuities for recognition; tomaton model may be the most convenient for t he pur-

later we will use also the information provided by the pose of learning). There are general statistical methods

MRFs on the surface properties between discontinuities. which can be used for parameter estimation:
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still reasonable time of convergence to equilibrium

(e.g., away from "phase-transition").

An alternative asymptotic approach can be used

with smoothing (regularization) terms: instead of esti-

mating the smoothing parameter, let it tend to 0 as the

temperature tends to 0, to reduce the smoothing close

to the final configuration [see Geman and Geman, 1987].

In summary, we plan to explore three distinct

stages for parameter estimation in the integration stage
of the Vision Machine:

Modeling (from the physics of surfaces, of the imag-
Figure 9: Union of depth and motion discontinuities ing process and of the class of scenes to be analyzed

and the tasks to be performed) and the form of
the prior and of some conditional probabilities in-

* A maximum likelihood estimate - one can use the volved (e.g., the type of physical edges from prop-

indirect iterative EM algorithm [Dempster et.al., erties of the measurements, such as characteristics

1977], which is most useful for maximum likeli- of the brightness data). Range of allowed param-

hood estimation from incomplete data [see Mar- eter values may also be established at this stage

roquin, 1987 for a special case]. This algorithm in- (e.g., minimum and maximum brightness value in a

volves the iterative maximization (over the param- scene, depth differences, positivity of certain mea- 9'

eter space) of the expected value of the likelihood surements, distribution of expected velocities, re-

function given that the parameters take the values fiectance properties, characteristics of the illuni- V.

of their estimation in the previous iteration. Alter- nant, etc.). %6

natively, a search constrained by some statistics for * Estimating of parameter values from set of exam-
a minimum of an appropriate merit function may pies in which data ard desired solution are given.'2 ~ ~~~be employed [see Marroquin, 1987]. pe nwihdt n eie ouinaegvn
b p [ M u 9This is a learning stage. We may have to use clays

* A smoothing (regularization) parameter can be es- of CM time and, at least initially, synthetic images

timated using the methods of cross-validation or to do this.

unbiased risk, to minimize the mean square error.
In cross-validation, an estimate is obtained omit- * Tuning of some of the parameters directly from the
ting one data point. The goal is to minimize the data (by using EM algorithm, cross-validation, Be-

distance between the predicted data point (from sag's work, or various types of heuristics).

t, the estimate above with the point omitted) and the The dream is that at some point in the future the r..

actual value, for all points. Vision Machine will run all the time, day and night,

I c o k n i s olooking about and learning on its own to see better and r~~~In tile case of Markov Random Fields, some more

specific approaches are appropriate for paranter esti- better.

) mation:,'mntin:7.3. Fast Vision: The Role of Time Smoothness

1) Besag [19741 suggested conditional maximum like- "V5 "

lihood estimation using coding methods, maxi- The present version of the Vision Machine pro- %V

mum likelihood estimation with unilateral approx- cesses only isolated frames. Even our motion algorithm

inimtions on the rectangular lattice, or "maximum takes as input simply a sequence of two images. The

pseudolikelihood" a nethod to estimate param- reason for this is. of course, limitations in raw speed.

eters for homogeneous random fields [see Geman Ve cannot perform all of the processing we do at, video %,

' and Grafgne. 1987]. rate (say, 30 frames per second), though this goal is cer-
tainly within present technological capabilities. If we

2) For the MPM estimator, where a fixed temperature could process frames at video rate, we could exploit con-

is yet another parameter to be estimated, one can straints in the time dimension similar to the ones we are .,

try to use the physics behind the model to find a already exploiting in the space domain. Surfaces and

temperature with as little disorder as possible and even the brightness array itself do not usually change

too much from frame to frame. This is a constraint of
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smoothness in time, which is valid almost everywhere, connected parallel networks, VLSI is limited to 2 1 di- 4
but not across discontinuities in time. Thus one may mensions, making highly parallel networks much more
use the same MRF technique, applied to the output of difficult and costly to implement. However, the electri-
stereo, motion, color, and texture, and enforcing conti- cal components of silicon integrated circuits are approx-
nuity in time (if there are no discontinuities), that is, imately four orders of magnitude faster than the elec-
exploiting the redundancy in the sequence of frames. trochemical components of biology. This suggests that

We believe that the surface reconstructed from a pipelined processing or other methods of time-sharing

stereo pair usually does not need to be recomputed com- computing power may be able to compensate for the

pletely when the next stereo pair is taken a fraction of a lower degree of connectivity of silicon VLSI. Clearly, the

second later. Of course, the role of the MRFs may be ac- architecture of a VLSI vision system may not resemble

complished in this case by some more specific and more any biological vision systems. '-..

efficient deterministic method such as, for instance, a Signal Representation N?
form of Kalman filtering. Notice that space-time MRFs Within the integrated circuit, the image data may
applied to the brightness arrays would yield spatiotem- b be represented as a digital word or an analog value. 

poral interpolation and approximation of a kind already While the advantages of digital computation are its ac-

considered [Fahle and Poggio, 1980; Poggio, Nielsen and curacy and speed, digital circuits do not have as high
Nishihara, 1982; Bliss, 1985]. functionality per device as analog circuits. Therefore,

analog circuits should allow much denser computing
7.4. A VLSI Vision Machine? networks. This is particularly important for the integra-

Our Vision Machine is mostly specialized software tion of computational circuitry and photoseinsors, which S
running on a general purpose computer, the Connection will help to alleviate the I/O bottleneck typically ex-

Machine. This is a good system for the present stage of perienced whenever image data are serially transferred ,

experimentation and development. Later, once we have between Vision Machine components. However, analog

perfected and tested the algorithms and the overall sys- circuits are limited in accuracy and are difficult to char- I'?
tem, it will make sense to compile the software in silicon acterize and design. .,,

in order to produce a faster, cheaper, and smaller Vi- The primary motivation for a VLSI implementation
sion Machine. We are presently planning to use VLSI of our Vision Machine is to increase the computational
technologies to develop some initial chips as a first step speed and reduce the physical size of the components
toward this goal. In this section, we will outline some with the eventual goal of real-time, mobile vision sys- .,

thoughts about VLSI implementation of the Vision Ma tems. While the main computational engine of our Vi- -.
chine. sion Machine is the Connection Machine, which is a very 's" .

powerful and flexible SIMD computer, specific VLSI im-
plementations will attempt to tradeoff computational

We realize that our specialized software vision algo- flexibility for faster performance and higher degree of
rithms are not, in general, optimized for hardware im- integration. A VLSI implementation of our Vision Ma-

plementation So, rather than directly "hardwiring al- chine can offer significant improvements in performance
gorithms" into standard cumpu'ing circuitry, we will be that would be difficult or impossible to attain by other
investigating "algorithmic hardware" designs that uti- methods. Presently, we are specifically investigating the 0
lize the local, symmetric nature of early vision problems. integration of charge coupled devices for photosensing
This will be an iterative process, as the algorithm influ- and simple parallel computations, such as binomial con-
ences the hardware design and as hardware constraints volution and patchwise correlation.
modify the algorithm. '',

Degree of Parallelism Legends

Typical vision tasks require tremendous amounts Figure 1: A diagram of the overall organization of the '

of computing power and are usually parallel in nature. integration stage [see Gamble and Poggio, 1987 for
As an example, biology uses highly parallel networks a complementary diagram]. The output of each of
of relatively slow components to achieve sophisticated the early visual cues (or algorithms) stereo, nxo- 2'.'
vision systems. However, when implementing our al- tion, texture and color - are coupled to their own
gorithms into silicon integrated circuits, it is not clear line process (the crosses), i.e.. their discontinuities.
what level of parallelism is necessary. While biology is They are also coupled to the discontinuities in the
able to use three dimensions to construct highly inter- surface properties - occluding edges (both extrernal C?
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edges and blades), orientation discontinuities, spec-''
ularedgs, extue mrks(incudig abedodison-Besag, J. "Spatial Interaction and the Statistical Anal-

tinuities), shadow edges. The image data - mainly yi fLtiesses"J o.Sa.Sc,84
its intensity edges - are input to the lattices that 7-3 92

represent the discontinuities in the physical proper- Blake, A. "On the Geometric Information Obtainable
ties of the scene. Our present implementation does from Simultaneous Observation of Stereo Contour
not distinguish the different types of physical dis- and Shading," Technical Report CSR-205-86.
continuities: intensity edges are directly coupled to Dept. of Computer Science, University of Edin-
the line processes of each of the cues. The inten- burgh, 1986.
sity edges can be completed and extended by the Blelloch, G.E. "Scans as Primitive Parallel Operations,"
equivalent of a higher order MRF that reflects con- Proc. Intl. Conf. on Parallel Processing. 355-362,
straints of colinearity anid continuation, and even197

1987..

hypotheses from the recognition stage, which uses
the set of discontinuities at the top as its main in- Bliss, J. "Velocity Tuned Spatio-Temporal Interpolation
pudt. and Approximation in ision," Masters Thesis.

Dept. of Electrical Engineering and Computer 

Figure 2: The Eve-Head System. See text. Science, Massachusetts Institute of Technology,
Cambridge, MA, 1985.

Figure 3: See text. Brooks, R. "A Robust Layered Control System for a

Mobile Robot," IEEE Journal of Robotics and Au-

Figue 4:See ext.tomation, RA-2, 14-23, 1987.
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Kalman Filter-based Algorithms for
Estimating Depth from Image Sequences'

Larry Matthies, Richard Szeliski, and Takeo Kanade
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract vides a mechanism for incrementally reducing uncertainty over
time. To date, applications of this framework have largely been

Using known camera motion to estimate depth from image se- restricted to estimating the positions of a sparse set of trackable
quences is an important problem in robot vision. Many applications features, such as points or line segments. While this is ade-
of depth from motion, including navigation and manipulation, require quate for many robotics applications, it requires reliable fea-
algorithms that can estimate depth in an on-line, incremental fashion.
This requires a representation that records the uncertainty in depth Another line of work has addressed the problem of extracting
estimates and a mechanism that integrates new measurements with
existing depth estimates to reduce the uncertainty over time. Kalman dense depth or displacement estimates from image sequences.
filtering provides this mechanism. Previous applications of Kalman However, these approaches either have been restricted to two
filtering to depth from motion have been limited to estimating depth frame analysis [Anandan85] or have used batch processing of
at the location of a sparse set of features. In this paper, we intro- the image sequence, for example via spatio-temporal filtering
duce a new, pixel-based (iconic) algorithm that estimates depth and [Heeger871.
depth uncertainty at each pixel and incrementally refines these esti-
mates over time. We describe the algorithm for translations parallel In this paper we introduce a new, pixel-based (iconic) ap-
to the image plane and contrast its formulation and performance to
that of a feature-based Kalman filtering algorithm. We compare the proach to incremental depth estimation and compare it math-
performance of the two approaches by analyzing their theoretical con- ematically and experimentally to a feature-based approach we
vergence rates, by conducting quantitative experiments with images developed previously [Matthies87b). The new approach repre-
of a flat poster, and by conducting qualitative experiments with im- sents depth and depth variance at every pixel and uses Kalman
ages of a realistic outdoor scene model. The results show that the filtering to extrapolate and update the pixel-based depth rep-
new method is an effective way to extract depth from lateral camera resentation. The algorithm uses correlation to measure optical
translations and suggest that it will play an important role in low-level flow and to estimate the variance in the flow, then uses the
vision. known camera motion to convert the flow field into a depth

map. It then uses the Kalman filter to generate an updated
depth map from a weighted combination of the new mea-

l Introduction surements and the prior depth estimates. Regularization is
Using known camera motion to estimate depth from image employed to smooth the depth map and to fill in undercon-
sequences is important in many applications of computer vision strained areas. The resulting algorithm is parallel, uniform,
to robot navigation and manipulation. In these applications, and can take advantage of mesh-connected or multi-resolution
depth from motion can be used by itself, as part of a multi- (pyramidal) processing architectures.
modal sensing strategy, or as a way to guide stereo matching.
Many applications require a depth estimation algorithm that The remainder of this paper is structured as follows. In
operates in an on-line, incremental fashion. Such algorithms the next section, we give a brief review of Kalman filtering and
require a depth representation that includes not only the current introduce our overall approach to Kalman filtering of depth.
depth estimate, but also an estimate of the uncertainty in the We then describe our new, pixel-based depth from motion al-
current depth estimate. gorithm and the feature-based algorithm to which it will be

Previous work [Baker871 !Broida86j [Faugeras86] [Hal- compared. We then analyze the theoretical accuracy of both
lam831 IMatthies87b] [Matthies87cl jRives861 has identified methods, compare them both to the theoretical accuracy of
Kalman filtering as a viable framework for this problem, be- stereo matching, and verity this analysis experimentally using
cause it incorporates representations of uncertainty and pro- images of a flat scene. We also show the performance of both

methods on images of realistic outdoor scene models. In the fi-
nal section, we discuss the promise and the problems involved

'This research was sponsored in part by DARPA, monitored by the Air in extending the new method to arbitrary motion. We also con-
Force Avionics Lab under contract F33615-87-C-1499 and in part by a post- cude that the ideas and results presented apply directly to the
graduate fellowship from the FMC Corporation. The views and conclusions
contained in this document are those of the authors and should not be inter- much broader problem of integrating depth information from
preted as representing the official policies, either expressed or implied, of the multiple sources.
funding agencies. 1 l9 eorsP
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Models d,
system model u, = u,_ uI+ ?It, rh - N(O, Q1) -,

measurement model dt = Hu, + ,, & - N(O, R,) -

prior model Euo] = fio, Cov[uol = Po

(other assumptions) E[h~f] = 0
Prediction phase
state estimate extrapolation F4- =-_V
state covariance extrapolation PT - + Q-

Update phase
state estimate update a+ = i- +K,[d, - Hul],J Figure 1: Kalman filter block diagram

state covariance update 1 = [I - KH1IP1-
Kalman gain matrix K, = P,-HT[HP-HT, + R,]-

Table 1: Kalman filter equations A block diagram for the Kalman filter is given in Figure 1.

Kalman filtering is usually applied to systems with fairly

2 Estimation framework small numbers of state variables. In the domain of motion
sequence analysis, it has been used to track sparse features

The depth from motion algorithms described in this paper use [Matthies87c], but has not previously been used in conjunction

a sequence of images taken with small inter-frame displace- with dense fields such as iconic depth maps. We will briefly

ments [Bolles87]. The advantage of using such a sequence describe how this estimation framework is instantiated in our

is that the correspondence problem between two successive depth from motion algorithm. Section 3 describes the details

images is reduced. The disadvantage is that the individual of the implementation for lateral camera motion; extensions to
depth measurements are less precise because of the very small general motion are considered in [Matthiesg7d].
baselines involved. To overcome this latter problem, informa- The first step in designing a Kalman filter is to specify a
tion from each pair of frames must be integrated over time. representation for the state vector. In our case, this is a repre-
For many robotics applications it is desirable to process these sentation of the stat every pixel (x, y) in the current image.

images using a real-time rather than batch process, with an We choose to represent the inverse depth u(x,y) = l/Z(x,y),

updated depth estimate being generated.after each new image which we call "disparity", plus the variance in the disparity,

is acquired. The incremental algorithm also has the advantage or0(x, y). There are several reasons for representing disparity

of requiring less storage, since only the current estimate and instead of the actual depth Z(x,y). For example, disparity can

its uncertainty model are required. be linearly related to optical flow measurements, it is better

A powerful technique for doing real-time estimation of conditioned for distant objects, and, for lateral camera motion,
such dynamic systems is the Kalman filter. This formulation the scaled disparity and variance can be used directly to set

allows for the integration of information over time, and is ro- search limits on correspondence in the subsequent image.

bust with respect to both system and sensor noise. The filter

is based on three separate probabilistic models, as shown in The system model uses the current depth map and an esti-

Table 1. The first model, the system model, describes the evo- mate of the camera motion to predict a depth map for the next

lution over time of the current state vector u(. The transition image in the sequence. This is implemented by using the pre-

between states is characterized by the known transition matrix dicted optical flow to warp the depth map, then resampling the

0,i and the addition of Gaussian noise with a covariance Q,. warped map to compute the predicted disparity at each pixel.

The second model, the measurement (or sensor) model, relates The measurement model simply produces a measurement of 0
the measurement vector d, to the current state through a mea- the disparity at every pixel, so that H, = I. The disparity

surement matrix H, and the addition of Gaussian noise with measurement in turn is based on an optical flow measurement

a covariance R,. The third model, the prior model, describes obtained by a correlation-based flow estimator.. Estimates of

the knowledge about the system state tio and its covariance Po the variance o(x, y) of disparity measurements are computed

before the first measurement is taken. The sensor and process from the variance of the optical flow. These variance estimates

noise are assumed to be uncorrelated. are essential, because they characterize the difference between

The Kalman filter algorithm operates in two phases: ex- reliable measurements, such as those obtained in highly tex-

trapolation (prediction) and update (correction). The previous tured areas or near strong edges, and unreliable measurements,

state estimate i-_1 is used to predict the current state 14T. At such those obtained in areas of uniform intensity.

the same time, the previous state covariance P _ is extrap- Finally, the prior model embeds prior knowledge about
olated to the predicted state covariance P-. This predicted the scene. In particular, smoothness constraints, which require
covariance is used to compute the new Kalman gain matrix K, nearby points to have similar disparity, can be modeled by off-

and the updated covariance matrix P'. Finally, the measure- diagonal elements in the prior covariance matrix PO. This is

ment residual d, - H4,C- is weighted by the gain matrix K, and equivalent to modeling the disparity map as a Markov Random

added to the predicted state u- to yield the updated state u'. Field tSzeliski87a].
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Figure 2: Iconic depth estimation block diagram
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3 Iconic depth estimation so a single-resolution algorithm is used2. The resulting error
surface e(d;x, y) is approximately parabolic around the min-

Our implementation of this framework consists of four main imum. The flow value with the lowest error is taken as the
stages (see Figure 2). The first stage uses correlation to pro- estimator output d(x, y) and the second derivative of the error
duce a measurement of the disparity at each pixel and an surface is used to compute its variance.
estimate of its associated variance. The second stage inte- The implementation of the SSD algorithm is particularly
grates this information with the disparity map predicted from simple and efficient for flow parallel to the image raster. Each
the previous time step. The third stage uses regularization- scanline of the two image frames is first magnified by a fac-

*based smoothing to reduce measurement noise and to fill in tor of 4 by cubic interpolation. The images are then shifted
areas of unknown disparity. The last stage uses known cam- using sub-pixel displacements d and the SSD measure ek is
era motion to predict the disparity field that will be seen in computed using a 5 x 5-pixel square window. The minimum
the next frame and re-samples the field to keep it pixel based. error (di, et) is found and a parabola
Here we deal only with camera translation parallel to the im-
age plane; in this case, estimating disparity is equivalent to e(d) = ad2 + bd + c
estimating optical flow. Extensions to arbitrary camera motion is fit to this point and its two neighbors (d 1_,ej_) and
are described in [Matthies87d]. (di+, e&+1). The minimum of this parabola establishes the flow

estimate (to sub-sub-pixel precision). Appendix A shows that3.1 Measurement (correlation) the variance of the flow measurement is

The problem of extracting optical flow from a sequence of Var(d = 2a2/a,
intensity images has been extensively studied in computer vi-
sion. Early approaches used the ratio of the spatial and tempo- where a' is the variance of the image noise process. (see
ral image derivatives [Horn8l], while more recent approaches [Matthies87d] for a derivation). The appendix also shows
have used correlation between images [Anandan85] or spatio- that adjacent flow estimates are correlated over both space and
temporal filtering [Heeger87]. The approach used in this paper time; the significance of this fact will be considered in Section

* is a simple version of correlation-based matching. This tech- 5.1.
nique, which has been called the Sum of Squared Differences The raw flow and variance estimates are scaled to units
(SSD) method [Anandan85], integrates the squared intensity of inverse depth using knowledge of the camera motion and
difference between two shifted images over a small area. For the calibration parameters of a pin-hole camera model. This
the case of lateral motion, this error measure is facilitates the integration of information when the camera mo-

tion is not linear, e.g. for widening baseline stereo [Xu85] or
e(d;x,y) = w(A, Y7)[(x-d+A,y+r)-f1_(x+A,y+17)]2 dAdj, for orthogonal camera motions (Section 5.2). For arbitrary

camera motion, the uncertainty in two-dimensional flow can
where , and f-1 are the two intensity images and w(A, 77) is be described by covariance matrices obtained from an error
a weighting function. This measure is computed at each pixel analysis similar to the one above [Anandan85]. Estimates of
for a number of possible disparity values d. In Anandan's al-
gorithm, a coarse-to-fine technique is used to limit the range 21t may be necessary to use a larger search range at first, but once the
of possible flow values. In our images, the possible range of estimator has "latched on" to a good disparity map, the predicted disparity
values is small (since we are using small-motion sequences), and disparity variance can be used to further limit the search.
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the disparity and disparity variance can be obtained from such
flow measurements via the equations of motion [Matthies87d]. Xt+li--

3.2 Update (integration) 
x+

The next stage in the iconic depth estimator is the integration
of the new disparity measurements with the predicted disparity
map (this step is omitted for the first pair of images). For now,
we will assume that each value in the measured or predicted x1
disparity map is not correlated with its neighbors, so that the
map updating can be done at each pixel independently. The
extension of this model to account for the correlated nature of
disparity maps is discussed later.

To update a pixel value, we first compute the variance of
the updated disparity estimate

P- (( - t +(4 2)-'- P +Ud
P1 +oa2

and the Kalman filter gain K

K = + 
Figure 3: Illustration of disparity prediction stage

We then update the disparity value by using the Kalman filter about the smoothness of the disparity map. As shown in

update equation [Szeliski87a], a regularization-based smoother is equivalent to
a prior model with a correlation function defined by the degree

u11+ = u, + K(d - u) of the stabilizing spline (e.g. membrane or thin plate). The re-
where u- and u" are the predicted and updated disparity es- sulting prior covariance matrix contains off-diagonal elements
timates and d is the new disparity measurement. This update modeling the covariance of neighboring pixels. An optimal

equation can also be written as implementation of the Kalman filter would require carrying
this entire covariance matrix, with non-zero correlations be-

= p" + tween the depths at neighboring pixels, through the update and
Pt a2 prediction stages. This would significantly complicate our al-

The latter form shows that the updated disparity estimate is gorithm. Our choice to explicitly model only the variance at

a linear combination of the predicted and measured values, each pixel, with covariance information implicitly modeled in

inversely weighted by their respective variances, a fixed regularization stage, has worked well in practice. I

3.3 Smoothing (regularization) 3.4 Prediction (warping and resampling)
The raw depth or disparity values obtained from optical flow The prediction stage of the Kalman filter must predict both '
measurements can be very noisy, especially in areas of uniform the depth and the depth uncertainty for each pixel in the next
intensity. We employ smoothness constraints to reduce the image. We will describe the disparity extrapolation first, then
noise and to "fill in" underconstrained areas. The earliest ex- consider the uncertainty extrapolation.
ample of this approach is that of Horn and Schunck [Horn81], Lateral camera translation shifts each point x, = (x, y) in
who smoothed optical flow fields by jointly minimizing the er- the current image to the point x,+, in the next image. This shift
ror in the flow equation and the departure of the flow field from can be viewed as warping the disparity map (Figure 3). The
smoothness. More recently, this approach has been formalized shift is computed by using the perspective projection equations
using the theory of regularization [Terzopoulos86a] and ex- X
tended to use two-dimensional confidence measures equivalent x1 = , y1 = , U=
to local covariance estimates [Anandan85],[Nagel861.

For our application, smoothing is done on the disparity and the known lateral translation T. to obtain

field, using the inverse variance of the disparity estimate as x1+ = x1 - TX,, Y1+1 = Y,. ut+ = U1.
the confidence in each measurement. The smoother we use
is the generalized piecewise continuous spline under tension In general this prediction process will yield estimates of
[Terzopoulos86b], which uses finite element relaxation to com- disparity in between pixels in the new image (Figure 3), so
pute the smoothed field. The algorithm is implemented with a we need to resample to obtain predicted disparity at pixel lo-
three-level coarse-to-fine strategy to speed convergence and is cations. For a given pixel x' in the new image, we find the
amenable to implementation on a parallel computer. square of extrapolated pixels that overlap x' and compute the

The smoothing stage can be viewed as the part of the disparity at x' by bi-linear interpolation of the extrapolated
Kalman filtering algorithm that incorporates prior knowledge disparities. Note that it may be possible to detect occlusions
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by recording where the extrapolated squares turn away from lines in "space-time" (epipolar plane) images formed by con-
the camera. Detecting "disocclusions", where newly visible catenating scanlines from an entire image sequence. However,
areas become exposed, is not possible if the disparity field is sequential estimation techniques like Kalman filtering are a
assumed to be continuous, but is possible if disparity discon- more practical approach to this problem because they allow
tinuities have been detected. images to be processed on-line by incrementally refining the

Uncertainty will increase in the prediction phase due to depth model [Baker87] [Matthies87b].
errors from many sources, including uncertainty in the motion Taking x0 and d as the state variables defining the location
parameters, errors in calibration, and inaccurate models of the of the feature, instead of the 3-D coordinates X and Z, keeps
camera optics. A simple approach to modeling these errors is the entire estimation problem linear. This is advantageous be-
to lump them together by inflating the current variance esti- cause it avoids the approximations needed for error estimation
mates by a small multiplicative factor in the prediction stage, with non-linear equations. For point features, if the position of

the feature in each image is given by the sequence of measure-
= (1 + e)p. (1) ments i -- [-, 1 , . , knowledge of the camera position for

each image allows the feature location to be determined by
In the Kalman filtering literature this is known as exponen-
tial age-weighting of measurements [Maybeck79], because it fitting a line to the measurement vector i:

decreases the weight given to previous measurements by an i=H[ (2)
exponential function of time. This is the approach used in our IdI
implementation. We first inflate the variance in the current dis- where H is a (2 x n + 1) matrix whose first column contains all
parity map using equation (1), then warp and interpolate the l's and whose second column is defined by the camera position
variance map in the same way as the disparity map. A more for each frame, relative to the initial camera position. This fit
exact approach is to attempt to model the individual sources can be computed sequentially by accumulating the terms of the
of error and to propagate their effects through the prediction normal equation solution for xo and d. The covariance matrix
equations (see [Matthies87d], Appendix C). Z of xo and d can be determined from the covariance matrix

of the measurement vector i.
4 Feature based depth estimation The approach outlined above uses the position of the fea-

ture in the first frame x0 as one of the two state variables. WeThe dense, iconic depth estim ation algorithm described in the c n rf r uaeti n t r s o h ur n r m y t k n
previous section can be compared with existing depth estima- can reformulate this in terms of the current frame by taking
tion methods based on sparse feature tracking. Such methods xt and d to be the state variables. Assuming that the camera

[Ayache87] [Broida86] [Hallam83] [Matthies87b] typically de- motion is exact and that measured feature positions have nor-
fine the state vector to be the parameters of the 3-D object mally distributed uncertainty with variance o,2, the initial statebing trake, whchr is usuay poinmeters o staightDli g vector and covariance matrix are expressed in terms of imagebeing tracked, which is usually a point or straight line seg- codntsa
ment. The 3-D motion of the object between frames defines coordinates as
the system model of the filter and the perspective projection X1 =1

of the object onto each image defines the measurement model. d t -
This implies that the measurement equations (the perspective d = T,
projection) are non-linear functions of the state variables (e.g. 2 r I/TI
the 3-D position vector); this requires linearization in the up- P = a
date equations and implies that the error distribution of the IT, 2/Tr

3-D coordinates will not be Gaussian. In the case of arbitrary where T1 is the camera translation between the first and second

camera motion, a further complication is that it is difficult to frame. The covariance matrix comes from applying standard

reliably track features between frames. In this section, we linear error propagation methods to the equations for x, and d
will describe an approach to feature-based Kalman filtering [Maybeck79].

for lateral motion that tracks edgels along each scanline and After initialization, if T, is the translation between frames

avoids the problems associated with non-linear measurement r- 1 and t, the motion equations that transform the state vector

equations. Extensions to arbitrary motion can be based on the and covariance matrix to the current frame are

method presented here. ur=, ij[ x7[ T' xu- 1 (3)=dt 0 1 _ Od t 3

4.1 Kalman filter formulation for lateral motion p7 = O, _"r. (4)

For lateral camera motion, the position of a feature on a scan- The superscript minuses indicate that these estimates do not
line is a linear function of the distance moved by the camera, incorporate the measured edge position at time t. The newly
since measured edge position X, is incorporated by computing the

Ax = Td # x, = xo + tTxd updated covariance matrix P', a gain matrix K, and the updated

where xO is the position of the feature in the first frame and d parameter vector I:
is the inverse depth of the feature. The epipolar plane image P(+ '('

1  +S) where S = 00
method [Bolles871 exploits these characteristics by extracting a {S0 1
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K = - t [ In a discrete implementation, E1(F.(x0))2 ] is the sum of the
squares of the coefficients in the convolution mask. P,(xo) is

u," = u- + Kit, -x, 1. the slope of the zero crossing and is approximated by fitting 0
a local curve to the filtered image. 'Me zero crossing of this

Since these equations are linear, we can see how uncer- curve t the ilte imge The ero cosit his
tainty decreases as the number of measurements increases by curve gives the estimate of the sub-pixel edge position.

computing the sequence of covariance matrices P,, given only For two-dimensional images, an analogous edge operator
the measurement uncertainty a2 and the sequence of camera is a directional derivative filter with a derivative of Gaussian

motions T. This is addressed in Section 5.1. profile in one direction and a Gaussian profile in the orthogonal
Note that the equations above can be generalized to arbi- direction. Assuming that the operator is oriented to take thetrary, uncertain camera motion using either the x, y, d image- derivative in the direction of the gradient, the analysis above

based parameterization of point locations or an X, Y, Z three- will give the variance of the edge position in the direction of
dimensional parameterization. The resulting ran tree the gradient (see [Nalwa86] for an alternate approach). How-
dewibenonliarr . Tever, for edge tracking along scanlines, we require the variance

of the edge position in the scanline direction, not the gradient

4.2 Feature extraction and matching direction. This is straightforward to compute for the differ-
ence of Gaussian (DOG) edge operator, the required variance

To implement the feature-based depth estimator, we must estimate comes directly from equations (5) - (8), replacing F
specificy how to extract feature positions, how to estimate the with the DOG and P with the partial derivative 98x. Details
noise level in those positions, and how to track features from of the discrete implementation in this case are similar to those
frame to frame. For lateral motion, with image flow parallel described above. Experimentally, the cameras and digitizing
to the scanlines, tracking edgels on each scanline is a natural hardware we use provide 8-bit images with intensity variance .4%
implementation. Therefore, in this section we will describe o, . 4.
how we extract edges to sub-pixel precision, how we estimate It is worth emphasizing that estimating the variance of -
the variance of the edge positions, and how we track edges edge positions is more than a mathematical nicety; it is valu-
from frame to frame. able in practice. The uncertainty in the position of an edge

For one-dimensional signals, estimating the v-x-ance of is affected by the contrast of the edge, the amount of noise
edge positions has been addressed in [Canny86]. We will re- in the image, and, in matching applications such as this one,
view this analysis before considering the general case. In one by the edge orientation. For example, in tracking edges under
dimension, edge extraction amounts to finding the zero cross- lateral motion, edges that are close to horizontal provide much
ings in the second derivative of the Gaussian-smoothed signal, less precise depth estimates than edges that are vertical. Esti-
which is equivalent to finding zero-crossings after convolving mating variance quantifies these differences in precision. Such
the image with a second derivative of Gaussian operator, quantification is important in predictive tracking, fitting surface

models, and applications of depth from motion to constraining
F(x) = *(x). stereo. These remarks of course apply to image features in

dX2  
general, not just to edges.

We assume that the image I is corrupted by white noise with Tracking features from frame to frame is very simple if
variance o. Splitting the response of the operator into that due either the camera motion is very small or the feature depth is
to the signal, F,, and that due to noise, F., edges are marked already known quite accurately. In the former case, a search P
where window is defined that limits the feature displacement to a

F3 (x) + F(x) = 0. (5) small number of pixels from the position in the previous im-
age. For the experiments described in Section 5, tracking was a,

An expression for the edge variance is obtained by taking a implemented this way, with a window width of two pixels.
first-order Taylor expansion of the deterministic part of the Alternatively, when the depth of a feature is already known
response in the vicinity of the zero crossing, then taking mean fairly accurately, the position of the feature in a new image
square values. Thus, if the zero crossing occurs at x0 in the can be predicted from equation (3) to be
noise free signal and xo + bx in the noisy signal, we have

F(xo+ x) z Fs(xo)+F'(xo)bx+F,,(xo+6x) 0, (6) x- =x,_ +Td4_,

the variance of the prediction can be determined from equa-
so that tion (4), and a search window can be defined as a confidenceIx=-(F,,(xo + -6x) + F,(xo)) ...

6X . (7) interval estimated from this variance. This allows tight search
windows to be defined for existing features even when the cam- 71

The presence of a zero crossing implies that F,(xo) = 0 and era motion is not small. A simplified version of this procedure
the assumption of zero mean noise implies that E[F,(xo)l = 0. is used in our implementation to ensure that candidate edge
Therefore, the variance of the edge position is matches are consistent with the existing depth model. The

'EI(F"(X))
2 1 predefined search window is scanned for possible matches, S

E[ x2  
=a' (8) and these are accepted only if they lie within some distanceof the predicted edge location. Additional acceptance criteria
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require the candidate match to have properties similar to those However, the flow measurements are not actually independent.
of the feature in the previous image; for edges, these properties Because noise is present in every image, flow measurements
are edge orientation and edge strength (gradient magnitude or between frames i - 1 and i will be correlated with measure-
zero-crossing slope). Given knowledge of the noise level in ments for frames i and i + 1. Appendix A shows that a se-

the image, this comparison function can be defined probabilis- quence of correlation-based flow measurements that track the
tically as well, but we have not pursued this direction, same point in the image sequence will have the following co-

Finally, if the noise level in the image is unknown it can variance matrix:
be estimated from the residuals of the observations after x 2 -1
and d have been determined. Such methods are discussed in -1 2 -1
[Mikhail76] for batch oriented techniques analogous to equa-
tion (2) and in [Maybeck82] for Kalman filtering. = 2 d'

a%
5 Evaluation 2 -1

In this section, we compare the performance of the iconic and -1 2

feature-based depth estimation algorithms in three ways. First,
we perform a mathematical analysis of the reduction in depth where a2 is the level of noise in the image and a reflects
variance as a function of time. Second, we use a sequence the local slope of the intensity surface. With this covariance
of images of a flat scene to determine the quantitative perfor- matrix, averaging the flow measurements actually yields the
mance of the two approaches and to check the validity of our following variance for the estimated flow:
analysis. Third, we test our algorithms on images of realistic 12a2
scenes with complicated variations in depth. a2t) = HP,H = t (11)

5.1 Mathematical analysis This is interesting and rather surprising. Comparing equations

We wish to compare the theoretical variance of the depth es- (10) and (11), the correlation structure that exists in the mea-

timates obtained by the iconic method of Section 3 to those surements means that the algorithm converges faster than we
obtained by the feature-based method of Section 4. We will first expected."

also compare the accuracy of both methods to the accuracy With correlated measurements, averaging the flow mea-
of stereo matching with the first and last frames of the image surements in fact is a sub-optimal estimator for d. The optimal

sequence. To do this, we will derive expressions for the depth estimator is obtained by substituting the expressions for H and
variance as a function of the number of frames processed, Pm into the batch solution equations [Maybeck79],'.-
assuming a constant noise level in the images and constant
camera motion between frames. For clarity, we will assume
this motion is T = 1. and I

Iconic approach d HpI)t (13)

For the iconic method, we will ignore process noise in This estimator does not give equal weight to all flow measure-
the system model and assume that the variance of successive ments; instead, measurements near the center of the sequence
flow measurements is constant. For lateral motion, the equa- receive more weight than those near the end. The variance of

tions developed in Section 2 can be simplified to show that the depth estimate is ._ _

the Kalman filter simply computes the average flow [Gelb74]. 12a2
Therefore, a sequence of flow measurements Axj, Ax2 . (t) =4s
Axt is equivalent to the following batch measurement equa-

tion The optimal convergence is cubic, whereas the convergence
Ax [ 1 of the averaging method we implemented is quadratic. Devel-
X2 1oping an incremental version of the optimal estimator requires .-

Ax = d = Hd. extending our Kalman filter formulation to model the corre-
lated nature of the measurements. This extension is currently
being investigated. T

Estimating d by averaging the flow measurements implies that Feature-based approach

d = 1--HTAx -- ' i"  (9) For the feature based approach, the desired variance esti- %
t t mates come from computing the sequence of covariance matri-

if the flow measurements were independent with variance ces P,, as mentioned at the end of Section 4.1. A closed form
2a2/a, where a. is the noise level in the image (Appendix expression for this matrix is easier to obtain from the batch .,s
A), the resulting variance of the disparity estimate would be method suggested by equation (2) than from the Kalman filter S

formulation and yields an equivalent result. Taking the con-
(10) stant camera translation to be T. = I for simplicity, equation %

ta %
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(2) expands to In this case using the intermediate frames helps, since

10 1 0 F(t) I
11 1 r 1 . O vs(t) O(vif)

Thus, extracting depth from a small-motion image se-
quence has several advantages over stereo matching between
the first and last frames. The ease of matching is increased, re-

1, t ducing the number of correspondence errors. Occlusion is less

Recall that ,i are the edge positions in each frame, xo is the of a problem, since it can be predicted from early measure-

best fit edge position in the first frame, and d is the best fit ments. Finally, better accuracy is available by using the feature

displacement or flow between frames. Since we assume that based method or the optimal version of the iconic method.

the measured edge positions 2i are independent with equal 52ainea, wefn ht5.2 Quantitative experiments: flat scenes.¢
variance o,, we find that

-The goals of our quantitative evaluation were to examine the
= a2 ra =_a, i 1 (15) actual convergence rates of the depth estimators, to assess the

Ory Ord E".0 Z i-.O validity of the noise models, and to compare the performance

The summations can be expressed in closed form, leading to of the iconic and feature-based algorithms. To obtain ground

the conclusion that truth depth data, we used the facilities of the Calibrated Imag-
2  ing Lab at CMU to digitize a sequence of images of a flat-

or 2(t) t 12a, (16) mounted poster. We used a Sony XC-37 CCD camera with a
t(t + 1)(t + 2) 16mm lens, which gave a field of view of 36 degrees. The

The variance of the displacement or flow estimate d thus de- poster was set about 20 inches (51 cm) from the camera. The
creases as the cube of the number of images. This expression camera motion between frames was 0.04 inches (1 mm), which •
is identical in structure to the optimal estimate for the iconic gave an actual flow of approximately two pixels per frame in
approach, the only difference being the replacement of the 480x512 images. For convenience, our experiments were run
variance of the SSD minimum by the variance of the edge po- on images reduced to 240x256 by Gaussian convolution and '
sition. Thus, if our estimators incorporate appropriate models subsampling. The image sequence we will discuss here was %
of measurement noise, the iconic and feature-based methods taken with vertical camera motion. This proved to give some-
theoretically achieve the same rate of convergence. This is what better results than horizontal motion; we attribute this
surprising, given that the basic Kalman filter for the iconic to jitter in the scanline clock, which induces more noise in -_
method maintains only one state parameter (d) for each pixel, horizontal flow than in vertical flow. %Y.
whereas the feature-based method maintains two per feature Figure 4 shows the poster and the edges extracted from
(xo and d). We suspect that an incremental version of the op- it. For both the iconic and the feature-based algorithms, a -

timal iconic estimator will require the same amount of state as ground truth value for the depth was determined by fitting a
the feature-based method. plane to the measured values. The level of measurement noise -

was then estimated by computing the RMS deviation of the •

Comparison with stereo measurements from the plane fit. Optical aberrations made the

To compare these methods to stereo matching on the first flow measurements consistently smaller near the periphery of
and last frames of the image sequence, we must scale the stereo the image than the center, so the RMS calculation was per-
disparity and its uncertainty to be commensurate with the flow formed over only the center quarter of the image. Note that U
between frames. This implies dividing the stereo disparity by all experiments described in this section did not use regular-
t and its uncertainty by 2. For the iconic method, we assume ization to smooth the depth estimates, so the results show only

that the uncertainty in a stereo measurement will be the same the effect of the Kalman filtering algorithm. a
as that for an individual flow measurement. Thus, the scaled To examine the convergence of the Kalman filter, the
uncertainty is RMS depth error was computed for the iconic and the feature-

(7 2 . based algorithms after processing each image in the sequence. r..
t2a We computed two sets of statistics, one for "sparse" depth and

This is the same as is achieved by our incremental algorithm one for "dense" depth. The sparse statistic computes the RMS- -- "

that processes all of the intermediate frames. Therefore, pro- error for only those pixels where both algorithms gave depth
cessing the intermediate frames as we do (that is, ignoring the estimates (that is, where edges were found), whereas the dense
temporal correlation of the measurements) may improve the statistic computes the RMS error of the iconic algorithm over
reliability of the matching, but in this case it does not improve the full image. Figure 5 plots the relative RMS errors as a func- %

precision. tion of the number of images processed. Comparing the sparse
For the feature-based approach, the uncertainty in stereo error curves, the convergence rate of the iconic algorithm is

disparity is twice the uncertainty a2 in the feature position; the slower than the feature-based algorithm, as expected. The rel-

scaled uncertainty is therefore ative heights u' 'he two curves will depend on the relative -

2al2 sizes and shapes of the correlation window and the edge oper-
s(t= --. ator. In this particular experiment, both methods converged to
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an error level of approximately 0.5% percent after processing Figure 6d. This object corresponds to an antenna on the top
eleven images. Since the poster was 20 inches from the cam- of a foreground building (Figure 6a). In general, motion in
era, this equates to a depth error of 0.1 inches. Note that the orthogonal directions will yield more information than motion :
overall baseline between the first and the eleventh image was in aiy single direction.
only 0.44 inches. Figure 7 shows intensity-coded depth maps and 3-D per-

To compare the theoretical convergence rates derived ear- spective reconstructions obtained with both the iconic and
iier to the experimental rates, the theoretical curves were scaled feature-based methods. These results were produced by com-
to coincide with the experimental error after processing the bining disparity estimates from both horizontal and vertical SI_
first two frames. These scaled curves are also shown in Figure camera motion. The depth map for the feature-based approach
5. For the iconic method, the theoretical rate plotted is the was produced from the sparse depth estimates by regulariza-
quadratic convergence predicted by the correlated flow mea- tion. It is difficult to make quantitative statements about the
surement model. The agreement between theory and practice performance of either method from this data, but qualitatively
is quite good for the first three frames. Thereafter, the experi- it is clear that both recover the structure of the scene quite
mental RMS error decreases more slowly; this is probably due well.
to the effects of unmodeled sources of noise. For the feature- The iconic algorithm was also used to extract occluding
based method, the experimental error initially decreases faster boundaries from the depth map of Figure 6c (iconic method A
than predicted because the implementation required new edge with vertical camera motion). We first computed an intrinsic
matches to be consistent with the prior depth estimate. When "grazing angle" image [Matthies87d] giving the angle between
this requirement was dropped, the results agreed very closely the view vector through each pixel and the normal vector of
with the expected convergence rate. the local 3-D surface. Edge detection and thresholding were

Note that the comparison between theoretical and exper- applied to this image to find pixels where the view vector and
imental results also allows us to estimate the precision of the the surface normal were nearly perpendicular. The resulting
sub-pixel edge extractor. The variance of a disparity estimate boundaries are shown along with the depth map in Figure 8
is twice the variance of the edge positions. Since the frame- The method found most of the prominent building outlines and
to-frame displacement in this image sequence was one pixel the outline of the bridge in the upper left. ",
and the relative RIMS error was 12% for the first disparity esti-
mate, the RMS error in edge localization was 0.12/v2 ; 0.09 6 Conclusions
pixels. This paper has presented a new algorithm for extracting depth

Finally, Figure 5 also compares the RMS error for the from known motion. The algorithm processes an image se- -
sparse and dense depth estimates from the iconic method. The quence taken with small inter-frame displacements and pro-
dense flow field is considerably noisier than the flow estimates duces an on-line estimate of depth that is refined over time. I'.
that coincide with edges, though still just over two percent er- The algorithm produces a dense, iconic depth map a.,; . ,uit-
ror by the end of eleven frames. Thus, the iconic method does able for implementation on parallel architectures.
provide valuable depth information at pixels not containing The on-line depth estimator is based on Kalman filter-
sharp edges. ing. A correlation-based flow algorithm measures both the

local displacement at each pixel and the confidence (or vari-
5.3 Qualitative experiments: real scenes ance) of the displacement. These two "measurement images"
We have tested the iconic and feature-based algorithms on are integrated with predicted depth and variance maps using
complicated, realistic scenes obtained from the Calibrated a weighted least squares technique derived from the Kalman %
Imaging Laboratory. Two sequences of ten images were taken filter. Regularization-based smoothing is used to reduce the 1,
with camera motion of 0.05 inches (1.27mm) between frames; noise in the flow estimates and to fill in areas of unknown , " '

one sequence moved the camera vertically, the other horizon- disparity. The current maps are extrapolated to the next frame S
tally. The overall range of motion was therefore 0.5 inches by image warping, using the knowledge of the camera motion,
(1.27 cm); this compares with distances to objects in the scene and are resampled to keep the maps iconic.
of 20 to 40 inches (51 to 102 cm). The algorithm has been implemented, evaluated math-

Figures 6a-d shows one of the images, the edges extracted ematically and experimentally, and compared with a feature-
from it with an oriented Canny operator (Canny86], and depth based algorithm that uses Kalman filtering to estimate the depth
maps produced by applying the iconic algorithm to the hor- of edges. The mathematical analysis shows that the iconic ap-
izontal and vertical image sequences, respectively. Lighter proach will have a slower convergence rate because it only
areas in the depth maps are nearer. The main structure of keeps one element of state per pixel (the disparity), while the
the scene is recovered quite well in both cases, though the re- feature-based approach keeps both the disparity and the sub-
suits with the horizontal sequence are considerably more noisy. pixel position of the feature. However, an optimal implementa-
This is most likely due to scanline jitter, as mentioned earlier. tion of the iconic method (which takes into account temporal
Edges oriented parallel to the direction of flow cause some correlations in the measurements) has the potential to equal
scene structure to be observable in one sequence but not the the convergence rate and accuracy of the symbolic method. -
other. This is most noticeable near the center of the scene, Experiments with images of a flat poster have confirmed this
where a thin vertical object appears in Figure 6c but not in analysis and given quantitative measures of the performance
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of both algorithms. Finally, experiments with images of a real- integrating information from multiple visual sources and for
istic outdoor scene model have shown that the new algorithm tracking such information in a dynamic environment.performs well on images with large variations in depth and
that occluding boundaries can be extracted from the resulting References
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where For a slowly varying gradient f(x), this correlation is pro-
a ] w(A)If(x + A)]2 dA, portional to the autocorrelation of the weighting function,

b(x) = Jw(A)r(x + A)n1(x + A) dA, R(Ax) Jw(A)w(A + Ax)dA.

c(x) = /w(A)[n,(x + A) noX + A)12 dA. For the simple case of w(x) = 1 on [-ss], we obtain

Ra(x,x+ Ax)=-_(l_ L for lxl<2s.
The four coefficients a(x), bo(x), b1 (x) and c(x) define the a(x) 2

shape of the error surface e(d;x). The first coefficient, a(x), is The correlation between two successive measurements in
related to the average "roughness" or "slope" of the intensity time is easier to compute. Since
surface; as shown below, this determines the confidence given
to the disparity estimate. The second and third coefficients, f2(x + 2d) = f(x) + n2(x),
bo(x) and bl(x), are independent zero mean Gaussian random we can show that the flow estimate obtained from the second
variables that determine the error in the flow estimator. The pair of frames is
fourth coefficient, c(x), is a chi-squared distributed random
variable with mean (2a.2 f w(A) dA) that defines the computed (x) = d + b (x) - b2(x)
error at a = d. a(x)

To estimate the disparity at point x given the error surface The covariance between a (x) and a&) is
e(d;x), we find the a such that

e(d, x) = min e(d;x) 4o~txd() (t~)-dd()-d~a a(x)

From the quadratic4 equation in 17, we can compute d(x) as and the am of the sequence of measurements d"

d(x) = d + bo(x) - bi(x) is eN
a(x) 2 -1

To calculate the variance in this estimate, we must first calcu- - 1 2 -1
late the variance in bi(x), (72 --

Var(b (x))= 2 f w2(A)[ (x + A)]2 dA. Pm= a

If we set w(x) = 1 on some finite interval and zero elsewhere, 2 -1
this variance reduces to oia(x) and we obtain -1 2 Jd

2=2a This structure is used in Section 5.1 to estimate the theoretical
Var() a(x)" accuracy and convergence rate of the iconic depth from motion

In addition to calculating the disparity estimate variance, algorithm.
we can compute its covariance with other estimates either in
the same frame or in a subsequent frame. As described in
Section 5.1, knowing the correlation between adjacent or suc-
cessive measurements is important in obtaining good overall
uncertainty estimates.

To determine the correlation between two adjacent dis-
parity estimates, d(x) and d(x + Ax), we must first determine
the correlation between b1(x) and bi(x + Ax),

(bi(x)b(x +,Ax)) =

w(A)w(q)f (x + A)f (x + Ax + r7)

(ni(x + A)ni(x + A + 7)) dA dj

- JJ w(A)(,7Jr f(x+ A)J(x+6x+,I)

6(A - Ax - 7)a dA d,7

S21 w(A)w(A - Ax)[(x + A)]2 dA.

4The me equation (when higher order Taylor series terms are included) is
a polynomial series in (dd) with random coefficients of decreasing variance. Ilk

This explains the "rough" nature of the e(a; x) observed in practice.
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MULTIMODAL RECONSTRUCTION AND SEGMENTATION WITH "

MARKOV RANDOM FIELDS AND HCF OPTIMIZATION

P.B. Chou and C.M. Brown

Computer Science Department
University of Rochester d

Rochester, New York 14627

Abstract reliably combined using HCF. The probabilistic approach is flexi-

Segmentation of a visual input into regions corresponding ble -- it suggests a general framework for integrating various
to three-dimensional objects is an important step in many image visual cues such as motion, texture, and albedo, and detection of .
analysis algorithms. Reconstruction of physical properties (such features such as edges and corners with a priori knowledge to
as depth or surface orientation) is similarly important. Fusing obtain robust multi-modal reconstruction and segmentation.
multiple sources of visual data seems a practical way to improve .r
robustness, as does guiding interpretation with prior domain 1.1. Related Research
knowledge. Coupled Markov random fields provide a unifying Much work on visual reconstruction, although it may have '
mechanism to accomplish all these goals simultaneously. The common goals and computations, can be described from two
Highest Confidence First algorithm is an optimization heuristic different viewpoints, according to the underlying surface models. '
that yields good results in finding high-probability reconstruc- In both cases a form of energy minimization is performed to ..
tion and discontinuity values. Its use in this context involves obtain the final state of the system, which results in assigning "
making precise the relation between intensity and depth discon- continuous-valued labels such as depth values, and discrete
tinuties. In synthetic data, the contribution of intensity infor- labels such as "discontinuity" or "no discontinuity" to elements
tuition to depth reconstruction and segmentation is significant. in the system. A common characteristic of the approaches to

visual reconstruction is the use of cooperative networks as the
1. Introduction model of computation for energy minimization. In a cooperative

The reconstruction of three-dimensional scene parameters network, each computation unit (site) performs simple opera-. ]
(intrinsic images) from visual information is often accomplished tions. The connections between the sites usually reflect direct
using a smoothness assumption to regularize the computation. dependencies between them. Collectively, the outputs (labels) of ?

Smoothing is not wanted across object boundaries, and reliable thsieaasabeytmsteorspntoheolinsf
reconstruction can not be achieved without the detection of the the underlying problem.

discontinuities [Stuth, Ballard, and Brown 1983]. Thus the The mechanical viewpoint models smooth surfaces with .
cooperation of reconstruction and discontinuity detection has membranes and thin plates [Grimson 1984] [Terzopoulos 1986];" .
been of interest for some time: The challenge is to develop a Terzopoulos employs a mechanical spring/surface model to
unified treatment for reconstruction and segmentation. Much integrate depth, orientation, and discontinuity constraints. The ]
recent work on cooperative reconstruction has two important depth and orientation measurements act as springs constraining
characteristics: It uses global measures and is thus robust the configurations of plates and membranes; the spring constants -e
against local noise, and it explicitly incorporates prior represent the confidence associated with the corresponding meas-"#_(
knowledge to solve the ill-posed reconstruction problem (Blake urements. The depth and orientation discontinuities, if detected
and Zisserman 19871 [Marroquin, Mitter, and Poggio 19851 prior to the integration, indicate the locations where the- -
[Torre and Poggio 1986] [Geman and Geman 1984] (Chou and assumed properties are violated. Discontinuities can also be J .,
Brown 1987]. detected as locations of abnormally high strain in the modeled ' ° "

Integrating disparate sources of information has been surface. The most successful computational approach in this for-. •

recognized as one of the keys to the success of general purpose mulation has been a coarse-to-fine resolution computation [Ter--'-,
vision systems. It has been proposed that integration occurs zopoulos 19831 .
naturally during the reconstruction of the visible surfaces The probabilistic viewpoint encodes a priori beliefs abouti$'
[Marr 1982], and is best performed at the locations of discon- the world in terms of probabilistic distributions - MRF/Gibbs dis-
tinuities (Gamble and Poggio 1987]. For example, one problem tributions in particular [Geman and Geman 1984] [Marroquin, ,'
may be to reconstruct a depth map and to detect its discontinui- Mitter, and Poggio 1985]. Good overviews of this approach are
ties simultaneously from a (sparse) set of corrupted depth obser- given in [Marroquin 1985)] The details of MRFs and their rela-_
vations, possibly with the aid of other sources of information. tion to probabilities and energy models will not be rehearsed
This paper reports our recent work in incorporating intensity here. Qualitatively, they capture the locality of interaction that e
discontinuity observations to reconstruct and segment such a seems relevant for low-level vision. The Hammersley-Clifford " J'
depth map. We use Markov Random Fields (MRF's) to model the theorem relates the configuration of the MRF to the well-known sNs-
probabilistic relations between image events. Probabilistic Gibbs energy distribution, and provides a computational method ' I
models of depth measurements and intensity discontinuities for calculating stable states of the field using only local informa- '
enable a Bayesian approach to combine them consistently with a tion for each site. MRFs can incorporate a priori knowledge, and
priori knowledge, We use the Highest Confidence First (HCF) depending on the loss energy function used, they can maximize,
method [Chou, Brown, and Raman 1987] to approximate the given the input information, the A Posteriori probability (MAP -
Maximum A Posteriori estimates. Preliminary experiments show estimation) or the A Posteriori Marginal probability (MPM esti- - ]
that sparse (50% density) depth data and intensity can be mation). Computing the minimal energy (maximum probability) t

214

-- V -% - % - -



state of an MRF is a difficult problem in optimization, to which how likely the observation is, given a state of the scene.
many techniques have been applied, including simple deter- Early Depth Measurements: The measurements are considered
ministic gradient-space approaches and sophisticated simulated sparse and independently measured. Denote by S the set of sites
annealing techniques. The Highest Confidence First technique in S at which depth measurements are available and g the set of
[Chou and Brown 1987] is a deterministic gradient descent these measurements. We assume I?

method in an augmented space of site labels. There is an extra
"uncommitted" label, and a scheduling algorithm that labels P(F =g IF = f) = f P,(g, I f,) 2.1)
confident sites early. The results are good, and the time needed ,ES

is predictable and competitively small, where g, denotes the measurement at pixel site s. Often the

In fusing depth and intensity information, Gamble and noise can be adequately modeled by unbiased Gaussian distribu-
Poggio [Gamble and Poggio 1987] use the intensity edges tions. That is
detected with the Canny operator to constrain the locations of
the depth discontinuities while reconstructing a depth map. g1 , : e .? 2.2)
Their rule is that no depth discontinuity is allowed without a z -
corresponding intensity discontinuity. The results of combining
the two information modalities are encouraging and better than Discontinuity Observations Based on Intensity: Instead of treat-
either modality operating alone, but the uncompromising rela- ing inteiiity edges as constraints on the locations of depth
tion between depth and intensity discontinuities means that discontinuities, we consider them as partial evidence supporting
depth discontinuities within regions of little intensity variation or refuting the hypotheses about depth discontinuities. The
will be lost even if the depth information is good. To use the motivation is simple. The intensity images are the results of
HCF algorithm to fuse depth and intensity, three issues arise: many confounding factors - lighting, surface geometry, surface
how to specify the energy functional for the continuous depth reflectance, and camera characteristics. Intensity discontinuities

label, how to specify the "confidence" or "stability" of a site for may reflect sudden changes of depth values, but depih discon-
the HCF algorithm, and how to assign a general a priori rela- tinuities do not necessarily imply large intensity variations.
tion between depth and intensity information. For the last Figure 1 shows the conceptual hierarchy that consists of the

issue, Chou and Brown [Chou and Brown 1987] treat visual interesting events involved here. At the first level, only EDGE
integration in the context of the labeling problem. In this paper or NON-EDGE is of concern. Node EDGE represents the event

we organize interesting labels as a hierarchically structured that the site of interest corresponds to some sort of discontinuity •

tree, where bodies of external evidence, in terms of likelihoods of in the world; NON-EDGE represents the event that the site is

the labels, are combined following Bayes' rule and a couple of within a homogeneous region. At the next level, whether a par-
conditional independence assumptions. The combined evidence ticular discontinuity is due to depth discontinuation becomes I
is fused with spatial prior knowledge at an appropriate level of interesting. Intensity observations provide information about the

the tree resulting in the a posteriori distribution for the labeling events in the first level, but say nothing about the events in the
problem, second level, which are important to the depth segmentation

problem. Our approach is to incorporate prior experience and
In the remainder of this paper, we give technical details of knowledge, represented in terms of conditional probabilities, to

the formulation of the fusion problem and present some experi- infer the amount of support, represented as likelihood ratios, to
mental results and directions of future work the events of depth discontinuities provided by the intensity

observations. Given the conditional probabilities corresponding
2. Coupled MRF's and Observation Models to the father-son links in the figure, the likelihood ratio of

Represent a pixel image S = {s,s 2 ,.  AN} as a set of DEPTH-EDGE can be calculated [Chou and Brown 1987]. In
grid-structured sites, and the discontinuity image, D, as the set the rest of the paper, Ad denotes the likelihood ratio of site d
of sites placed midway between each vertical and horizontal pair given the intensity observation 0,d, where dED.
of pixel sites. Let F={f,,sES] be the set of random variables P(odIld )  kn N
indexed by S, with fER representing the depth value at location Ad(ld) = I 2.3) ,d2.3
a, and L = {ld,dED] be the set of random variables indexed by D, P(O1 I ld)-

with /dE{0,1} representing the absence or presence of a discon- Again, we consider the spatially distinct intensity observations
tinuity at site d. F and L correspond to the depth (intensity) pro- are conditionally independent:
cess and the line process respectively of the coupled Markov
Random Fields introduced by Geman and Geman [Geman and P(O 1) UIPd(Od ld), (2.4)
Geman 1984] and used in [Marroquin, Mitter, and Pog- ,to
gio 1985], [Gamble and Poggio 1987]., and this paper. A where 0 denotes the collection of intensity observations.
configuration of 1F,L) corresponds to an admissible solution to Conditional Independence between Intensity and Depth Observa-
our problem. tions: We assume that the depth and intensity observations are

only related through the geometry of the surfaces in view. They
2.1. Early Visual Observations are conditionally independent in the following sense:

We model early visual computations as the computations P(g.O [fl) = P(gfl) P(O Ifl). 12.5a)
performed by a set of independent modules. These modules pro-
duce estimates of surface parameters and discontinuities either We further assume that the knowledge of depth discontinuities
through active sensing, such as radar and laser, or with passive contributes no information to make one prefer the observation of
visual data, such as image irradiance and stereo disparities. A foyer others once the true depth values are known:
module, when making an opinion (hereafter, observation) about P(g fl) = P(g I/P, (2.5b) I
a site t , examines its input at some small spatial region depen-
dent on t. It is reasonable to assume that the characteristics of and that the knowledge of surface depth does not make 0 more
these modules can be modeled with statistical knowledge of or less likely once the depth discontinuities are known:
domain noise and sensor error. Hence their observations of POIfl = POI U . (2.5c) 5image parameters can be represented in terms of likelihoods or
likelihood ratios (Sher 19871 [Chou and Brown 1987], reflecting The scene depth, ii, many circumstances, affects the observed

21 5

05~% 6N %m.



r') .r

o_ II 1

01 010 10101 -
- - - 1010 I 1

Figure 2: Neighborhood system used. Circles represent pixel sites; lines
DE NDrepresent discontinuity sites. Surrounding sites are the neighbors of the

central site.

Figure 1: A label hierarchy. Label E denotes an edge element (discon-
tinuity), NE non-edge, DE depth edge, and ND edge but not depth
edge.

U(fl) = , V,(f,l) (2.7b)
intensity values. The assumption (2.5c) is reasonable, however, c(2c.

since it is the indirect observations of intensity discontinuities C denotes the set of cliques defined by F. V, the potential func-
but not the magnitude of the intensity that are actually used in tional of clique c, measures the contribution to the total energy
this work. Thus in this work we discard intensities after comput- from the local interactions of the elements in c. The MRF-Gibbs
ing likelihoods of discontinuities. An interesting research prob- equivalence not only relates the local conditional probabilities to
lem would be to use the intensity information (perhaps through the global joint probabilities, but also provides us a conceptually
the irradiance-orientation constraint (Horn 1975]) more directly. simpler way of specifying MRF's, thus the prior knowledge, by

Summarizing (2.1) - (2.5), we assume specifying potentials. For example, continuous surfaces can be
modeled by setting the potential energy for the cliques consist-

P(g, O f l) = flP (g, 1f8 ) HPd(Od I ld) . (2.6) ing of two adjacent depth sites, say i and j, and the line site in
of s dED between them , say ij, proportional to (1-u)(f-fj)2 [Marro-

quin, Mitter, and Poggio 1985] [Gamble and Poggio 1987].
2.2. Markov Random Fields and Energy Measures Other types of cliques that have non-zero potential functionals

In short, a Markov Random Field is a set of random vari- used in our experiments consist only of line sites. They are
ables such that the value of a variable depends, probabilistically, described in [Chou, Brown, and Raman 1987].
on the values of its neighboring variables. The neighbor relation,
an important part of its definition, encodes the only direct inter- 2.3. A Posteriori Energy
dependence among the variables. The utility of the MRF con- Bayes' rule combines the a priori knowledge and the early
cept is that the dependencies among a large number of variables visual observations to derive the a posteriori belief.
can be adequately modeled with neighborhoods that are small plI,%
enough for practical purposes. P(flg,O) = I , ', (Bayes)

Spatial adjacency is a natural neighboring relationship. (.1
Within each F and L, spatially adjacent variables tend to have Note, from (2.1) and (2.4), that scaling all of the likelihoods for a
similar values. That is, surfaces and boundaries tend to be con- fixed site by a constant does not change the posterior distribu-
tinuous and smooth. MRF's corresponding to F and L can be tion of (F,L). From (2.6) and (2.7), and assuming (2.2), the pos-
separately defined to model these properties. Chou et al [Chou, terior distribution is a Gibbs distribution, with the a posteriori
Brown, and Raman 1987] have demonstrated some promising energy functional
edge detection results using an MRF for the line process alone.
The depth and line processes, however, are not independent of U(f,llg,O) = Xv(f,l) + T( Z - -fglogd(ld)2.8)
each other. The presence of a line at an edge site breaks the cCC sES 2a.

2  
d(D

connection between the two variables at the adjacent pixel sites;
a small change in the values of two adjacent depth variables
suggests the absence of a discontinuity in between. This inter- 3. Energy Minimization with HCF
dependence is the basis for the concept of coupled MRF's - an One important aspect of the Highest Confidence First
unified treatment of reconstruction and segmentation. Figure 2 method is the use of an "uncommitted" state for each site. An
shows the neighborhood system F of the MRF consisting of the uncommitted site is a node with only input links in a coopers-
edge and line processes used in our experiments. In addition to tive network in the sense that it does not contribute to the deci-
the depth and line processes, the concept of coupled MRF's can sions of other sites while collecting information from its commit-
also be applied to model many other interdependent processes ted neighbors. The uncommitment reflects the lack of
corresponding to various intrinsic parameters [Poggio 1985]. "confidence" to make a decision based on its current knowledge.

(F,L) is an MRF with respect to the neighborhood system I' Only when no other sites have higher confidence will an uncom-
if and only if, according to Hammersley-Clifford theorem, the mitted site commit to its best choice. Commitments are not final:
joint probability distribution of the variables is a Gibbs distribu- Any commitment can be altered later if strong opposition is
tion. That is, posted by others.

- Im, Let denote the uncommitted state, and R =RU{'},
Pfl) e ' (2.7a) L,={ ,O,1 denote the augmented state spaces for the depth and

Z line processes respectively. Based on (2.8), define the augmented
where Z is a normalization constant, T the "temperature" of the local energy measures with respect to an augmented
field, and the energy functional configuration (fl) as:
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E,(f) = V',(r,l) + T (f,) )2 for s(S, (3.1a) configuration contains uncommitted depth sites, due to the
. t 2e, sparseness of the depth data. In the initit.' 3tAp of +he computa-

tion, E,(f) -'0 if sES-S. This local energy measure, and tnus
E,(f) = XV,(rl) for sS- , (3.1b) the stability measure, will remain zero until one of the pixel

C: 3(c neighbors becomes committed and the line process indicatesand there is no discontinuity in between. If a region of pixel sites,
Ed(l) = I V'f') - T logA(I for dED ,(3.c) consisting only of members of S- S, was surrounded with discon-

c: di tinuities before any of them has nonzero stability measure, all of
where (ri') agree with (fl) everywhere except f', = f and them will stay uncommitted. In the extreme case, if there is no

I'd = 1, with (f)E(R,L). V'c = 0 if there is an uncommitted depth measurement at all, this network will not produce an esti-
it is equal to V. Thus the cliques containing mate of the depth map. We think that as an advantageoussite in c, otherwise no e ct on the auentainrg feature since in such degenerate cases, there are infinite number

uncommitted sites have no effect on the augmented energy of configurations that have the minimal energy measure. It ismeasures. Since the only cliques involved in (3.la) and (3.lb) imotnfrth w-eepoestondcetelakfifr-.

are those consisting of two neighboring pixel sites and a line site important for the low-level process to indicate the lack of infor-
inmation to higher-level processes so that attention can be directedcie c to acquire more information. This feature can be turned off, if

X fl(1-4,.) (f,- f,)2, where N, is the pixel neighborhood of s. desired, by assigning a priori estimates (e.g. expected range of
'EN, the scene) to those sites. p
The augmented local energy measures for pixel sites thus are An interactive graphical simulator for several MRF optimi-
quadratic; the shape of each quadratic depends on the constant zation techniques was developed for our original work with line
parameter P, the number of active neighbors, and the variances process [Chou and Raman 1987]. An enhanced version was built
of the noise in the early measurements. The temperature T is for experiments on coupled depth and intensity fields with HCF
set to 1 throughout our experiments, therefore f8 decides the optimization. We implemented the HCF network on a serial
degree of smoothness relative to the magnitude of noise. machine using a binary heap to decide the visiting order of the
3.1. Stability Measures sites. At any instant, the top element of the heap is the site

with the smallest stability measure. A state change made by a
The confidence of a site in a configuration (fl) is evaluated site in general changes the stability measures of the sites in its

in terms of the following tability measures: neighborhood. The number of comparisons in maintaining the
G,(f,1) = AEs(fm~fmn+ a) if , =heap property for each change is limited by the height of the

(3.2a) heap -- - log 2(3N) where N is the number of sites. Ideally, the
= AEs(fmin,fa) otherwise , computation terminates when the top element has nonnegative

where E,(f j0 ) = minE,(f), and stability since no more energy reduction would be possible after-
fER wards. In practice, a small (negative) threshold is used to force

Gd(fl) max AEd(lmoi,I) if Id= , termination without noticeable degradation of depth value (see
I(L.,I3,2 below). Some threshold would have been necessary in any case

AE(Imindd) otherwise , (3.2b) because of limited precision in the calculations. ,

where Ed(Ii) = minEd(l). The term AEr(k,j) is defined as 4. Results %,)
IE The enhanced HCF algorithm, which reconstructs depthE,ik) - E,(j) with respect to (f,l). It represents the change in and finds depth discontinuities from a pair of depth and inten-

local energy measure of r, thus the global energy (e.g. (2.8)), if r
should switch its state from j to k. The stability of a site is non- sity images, is demonstrated on two synthetic scenes. Each
negative only when it is in its minimal energy state (i.e. 'mIs or scene consists of a range image and an irradiance image. Noise
fn)itresplywet t n its rren al energy msurie.A lare of a particular description is added independently to each image.f.i.) with respect to its current local energy measure. A large Terneiaei ape ihra ulrslto rrnol €

negative stability value signals high confidence in making a The range image is sampled either at full resolution or randomly
state change to the minimal energy state. The constant a deter- at reduced resolution (this section reports experiments with
mines the stability of uncommitted pixel sites: it gives the price 100%, 80%, and 50% of the original full-resolution data points,

paid in energy for remaining uncommitted, a has the seman-
tics of offset along R from state of minimal energy. Using it, the The first sequence shows experiments with images created
stability measure for uncommitted states has the semantics by utilities in the PADL-2 solid modeling system [Brown 19821
"how much energy could be lost by committing." Large a Figs. 3a and b show original full-resolution intensity and depth
encourages quicker commitment, images, and Figs. 3c and d show the images with added noise.

The intensity image has a range of pixel values in [0,255], and is
3.2. Convergence Properties perturbed by zero-mean, signal-independent gaussian-distributed

noise GA, a) with a=16. Perturbed values less than 0 are setThe HCF network behaves as follows. Every site starts in to 0, greater than 255 are set to 255. The range image has anthe uncommitted state. At any instant, only the sites with the unusual noise pattern. Part of the motivation is to test the
highest confidence in changing their states, i.e., the least stable efcs o patly n irm oi the nois o aect the

oneswit repec tothe urrnt onfgurtion ar alowe to effects of spatially nonuniform noise (the noise model affects theones with respect to the current configuration, are allowed to stability calculations of elements'. Another motivation is to

change their states. The identities of the sites, pixel or discon- reflecty a angu ia i n g sysem ' w o a esr mo rei a c rteou
tinuity, are ignored in the process of comparing the stability reflect a range imaging system whose values are more accurate '
tinuyre ignor the pconstructionandsemtain h ses y near its optic axis, perhaps as an effect of reduced resolution p
measures. Thus the reconstruction and segmentation processes (averaging) in the periphery. The noise distribution for the syn-
proceed simultaneously. Eventually, the network settles at a thetic range image is radially symmetric around the center of
configuration when no further reduction of the global energy the image, with standard deviation of the additive, signal-
measure can be made at each site; i.e., when all local stability independent, zero-mean gaussian noise at a point increasing
measures are nonnegative. exponentially as the distance of the point from the center of the

The convergence property can be easily verified (Chou and image. The exponential is scaled so the maximum noise has
Raman 1987]. It is possible, however, that the final a=20 (in the corners of the image.)
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Fig. 3: a) Original intensity image. b) Original depth image. c)
Intensity image with G(0,20) additive noise, clipped to range Fig. 4: a) Reconstructed depth with s-10 and =O.01. hi
[0,255). d) Depth image with spatially-varying Gaussian Depth edges with a and as in a). c) Reconstructed depth

noise, maximum standard deviation of 20 (see text), with aO and =0.01. d) Depth edges with a and as

in c),
Figs. 4a and b show the reconstructed depth and the depth

discontinuities found with . high setting of the parameter , a. b.
which increases sensitivity to small depth discontinuities. Here N
orientation changes in the cube and noise in the sphere boun-
dary have given rise to a spurIous segmentation. In Figs. 4c and
d, a smaller 8 avoids the problems.

Figs. 5 and 6 illustrate the effect of sparse depth data on
the final depth reconstruction and segmentation, and also show
the beneficial effects of incorporating intensity information. In f
these four experiments a and f8 are held constant. Figs. 5a and b .
show the reconstruction and segmentation using just 80% of the
depth information. It is interesting that the results are no "
worse; however Figs. 5c and d show the improvement gained by
allowing the MRF access to the irradiance image as well. Fig. 6 . ' !
is precisely analogous to Fig. 5, only the depth density is down .... .
to 50%.

Figs. 7a and b show the "depth" and "irradiance" parts of %
an artificial scene of the sort used by Sher [Sher 19871. Such
scenes have the advantage of having well-specified right and
wrong locations for edges. In this case both depth and intensity I . -
images have spatiaally-independent, zero-mean, signal- %
independent, additive gaussian noise, and the perturbed image L.,.,/"
values are clipped to the range [0. 2551. For the depth image, " ) S
a 16, and for the intensity image a =20. Fig. 7c shows the
depth edges recovered using only the depth image (Fig. 7a), and
Fig. 7d shows the depth edges recovered using depth (full resolu- 'sw's

tion) and intensity. As expected, 7c only shows and edge struc- A.

ture related to the brightness differences of squares in Fig. 7a. c. d.
Fig. 7d has clearly incorporated information from the intensity
image Fig. 7b. The ideal desired is of course that all lines of the Fig. 5: a) Reconstructed depth with a=50 and ft=0.001.
checkerboard are in evidence. It can be seen that the lines are with 80% depth data randomly sampled and no intensity S
missed when the evidence in both images is weak. input, b) Depth edges with conditions of a) c) Reconstructed

depth with a and 0 and 80% depth sampling as in a), but
Fig. 8 shows the effects of sparse depth in the domain of using intensity input in MRF d) Depth edges with conditions 1= .

Fig, 7. Fig. 8a gives a glimpse into the inner state of the MRF of ,

218



a. a. b.

. ...... ::: ::: :::: ::: :: : ::: ::: : ..: ....: ..:: : .: :.:... : ::. :: .:: .:: ....: ::: ::: :::

. . . . ,.. . . ... .......... ................. ........ .......... .................... ........

.. .. ... .

C. d.

Fig. 7: a) Artificial "depth" image, with spatipily independent
Fig. 6: a), b), c), d) as in Fig. 5 except that depth sampling G(0,16) additive noise, clipped to [0,2551. b) Artificial
density is 50%. "intensity" image, with G(0,20) noise as in a).a c) Depth edges

found with a-- 50, P =-0.001, no intensity input used in MRF.
d) Depth edges found under conditions of c) but using intensity
input.

a,
algorithm. It shows the initial thresholded likelihoods (line ele- : il.:-:i.:..i ,kh-i

ments) used by the intensity discontinuity detector, overlaid on T-".:.i:iili :•:~ - i!

the points where sparse (50%) depth information is available. :: '"" "- :
Figs. 8b and c show the reconstructed depth and depth discon- " . ... .
tinuities, respectively The areas of bad performance correlatei a).a cDpeg

with areas of weak or missing information. c)...... ut --- u

5. Discussion and Future Work.

5.1. Discussion ::. .. :..: :.. :.. - ::..
The Role of Intensity Discontinuities: Successful integration of

multi-modal data requires knowledge about the characteristics of.. . --

scene and the vision modules processing the datai Such ......

knowledge affects the decisions that have to be made when : : : :
different modalities provide coinformti ormation about partic- n........ ............ ..........

ular events. Fig. 3 shows an example: The strong intensity gra- .

dients across the cube edges suggest depth discontinuities at the
face intersections but the relatively small depth differences at
these locations refute such suggestions. Also, the self-shadowed :::::::""'""' "-'

e face merges with the background in the intensity image while .... :.:.. ::.:::.:.
the depth information indicates clear separation of the two
regions. If reliable depth observations are available, e.g., a noise ;V7

free depth map, it is bad practice to use the intensity observa- .............::::: : .:..

tions for clues to depth discontinuities. On the other hand, when ..-......
the depth observations are sparse and unreliable, the correlation
of intensity information with depth information should be recog- ...

nazed and used. fhe probabilistic integration provided by HCF b. c.
optimization is one coherent framework for such integration
tasks. The HCF scheme, as a deterministic method, finds a local Fig. 8: a) Locations of 50% depth sampling overlaid with the

probability maximum. In so doing, its behavior is consistent initial thresholded likelihoods from intensity-discontinuity

with the natural evidence weighing described above. In detection. a and fP as in Fig 7 b) Depth reconstruction. c)
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particular, if the depth observations are less reliable than the (3) Distributed asynchronous data sources. The HCF algo-
intensity observations (i.e. they have larger variation from their rithm so far has only been tested under the condition
expected true values), the line sites tend to have larger (news- that it is presented with all tho data .imulLaueously, and
tive) stability measures than the depth sites at the early stage of thus can correctly find the globally highest-confidence
the computation. This means the line sites commit (since they element. Under different circumstances, the data may
are based on intensity information) earlier than the depth sites, arrive partially or asynchronously. The question then is
resulting in a final configuration that is more consistent with how is HCF performance is affected by data arrival that
the intensity discontinuities. At the locations where depth may result in spatial or temporal discontinuities in the
observations are missing (e.g. Figs 5, R. 8), the intensity discon- MRF element field.
tinuity information helps to localize the depth discontinuities
before the depth information can be spatially propagated. Simi- (4) Spatially nonuniform MRFs and serial data accumula-tion. We are interested in fields with a peripheral and
larly, when the depth observations are more reliable (denser, foveal organization, with a central high resolution area %
less noisy), the depth sites commit earlier. The early depth com- surrounded by a (perhaps progressively) low-resolution
mitments influence the stability measures, and thus the later one sc a rgato aoreinay Ovr time,
commitments, of the line sites. The resulting configuration "eyemovements" can reposition the retinal organization %
tends to be more consistent with the depth data. within a larger, uniformly high-resolution MRF
The Computational Advantages of HCF: The performance representing a stable world, or its prcrection. The
characteristics of HCF in minimizing the energy of coupled interaction of the elements over time is of interest. If an
MRFs is consistent with its performance on simple MRFs, incor- element is seen first in the periphery and is then 0
porating only the line process, reported earlier [Chou and foveated, it proceeds through a "coarse to fine" context
Raman 1987]. That is, the enhanced HCF algorithm behaves that may allow it to reach a correct labelling more reli-
efficiently and predictably. The introduction of th? "ontinuous- ably. There are several technical questions about the
valued depth process requires more visits to the depth sites than implementation of this idea. "

occurred in the optimization using only the binary line process. ( Computational advantages. With HCF one can set a
The line-process only MRF stabilized after fewer than 1.01 visits threshold on stability measures that will terminate the
per site (on the average) [Chou and Raman 1987]. Experiments computation with high confidence that only insignificant S
with the checker board images (Figs 7), show that it takes on c fo n u r
average fewer than 3 visits per site to achieve reasonable esti- changes of the depth configuration would occur if the

mates in the coupled intensity-depth MRFs. The situation is computation would continue. This property is bought at

complicated by the fact that the sizes of the regions affect the and raises the obvious question: "is the gain worth the-" "
speed of convergence: Larger regions require on average more cost?".se are stding th e bten the rvisis pe sit forresuts t proagat thrugh hem.cost?". We are studying this tradeoff between the over- .
visitshead paid in deciding the dynamic visiting order of HCF

Since the energy functional is quadratic given a line and its computational gain of fewer visits to the sites.

configuration, in principle any deterministic minimization a
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IU AT UI: AN OVERVIEW AND
AN EXAMPLE ON SHAPE FROM TEXTURE •

Narendra Ahuja
Thomas Huang

Coordinated Science Laboratory r
University of Illinois

1101 West Springfield Avenue
Urbana, Illinois 61801

This paper is in two parts. The first part presents an satisfies a range of constraints imposed by the image structure
overview of some recent research in image understanding (IU) and the model of the scene. We use a simple set of processes
at the University of Illinois (UI). This includes an overview of each having a narrow area of expertise. The processes carry
the integration approach which we have used in a number of complementary or redundant information obtained from
IU problems. Several examples of our research that use different image cues. Image interpretation is derived as a
integration for image interpretation are summarized. The result of a cooperative computation that resolves conflicts and
second part describes in detail the use of integration in solv- Ambiguities arising from the individual processes. We sum-
ing the shape from texture problem. marize below examples of the integration approach on three

specific problems: surfaces from stereo, surfaces from focus,
1. OVERVIEW OF RECENT IU RESEARCH AT UI stereo and vergence, and perceptual grouping in dot patterns. 0

A major part of our recent research is in four different A fourth example of integration, on recovery of the orienta-
areas of image understanding. The first area (Sec. 1.1) deals tion of textured surfaces from image texture, is presented in
with integration of multiple image cues in performing image detail in Section 2.
interpretation. These cues capture different aspects of the
scene structure, and their integrated analysis leads to a more 1.1.1. Integrating Stereo Matching, Contour Detection and

robust inference about the scene characteristics than possible Disparity Smoothness

from individual cues. The second area (Sec. 1.2) is concerned The purpose of stereo algorithms is to take two images
with our work on interpretation of image sequences showing of a scene, from slightly different viewpoints, and produce a
dynamic scenes. Here we estimate the three-dimensional (3- complete depth map of the visible surfaces. The usual para-
D) motion parameters of moving objects and the 3-D surface digm of these algorithms is: (1) detect suitable features in
structure, given feature correspondences over a sequence of each image, (2) match corresponding features to determine
images. We develop compact models of scene motion that their depths, and (3) interpolate to obtain a complete depth
can make predictions about future scenes. Projects in the map. For the most part, the features that have been used in
third area (Sec. 1.3) report work on different components of stereo have been low level. However, due to their simplicity,
an evolving 3-D representation and navigation system. The low level features can have many ambiguous ,'atches, and
goal here is to build a system that can acquire, maintain and this makes the matching step difficult. Also, occluding and ,4
use 3-D information about its environment. Since the ridge contours in the scene (where the depth and orientation,
emphasis is on a working system, computational complexity respectively, change abruptly) create difficulties for matching
and operating speed are of central importance in our work in and interpolation.
this area. Finally, in the fourth area (Sec. 1.4), we summarize Algorithms developed in the past complete the matching 0
our work on a specific multiprocessor architecture that we process before interpolating to obtain a dense depth map.
have proposed for image understanding computations. 'I he Uniqueness of matching is only enforced by conditions that
architecture is designed to efficiently execute divide-and- involve simple local relationships among disparity values as
conquer algorithms for image computations. Some of the pro- mentioned above and not the properties of the resulting sur-
jects in these areas are summarized in the following subsec- face. However, since a given disparity value implies depth a
tions. To keep the paper brief, we have not included in the value, a stereo pair with matching ambiguities implies multi-
overview section (Section 1) any discussion of and references ple surfaces, having different smoothness properties. The rela-
to relevant work done by others; such discussion and refer- tive acceptability of these surfaces should be determined by
ences are available in our publications cited. However, a com- the nature of the real world objects, namely. that their sur-
paritive analysis with and references to other approaches are faces are smooth in the sense that the normal direction varies F
contained in Section 2, which presents a detailed description slowly, except across relatively rare ridges. Since, effectively,
of one of our recent integration examples. the matching process determines the final surface derived, the

correctness of the choice of matches ought to be judged by
1.1. Integration the type of surfaces it produces. Therefore, the interpolation

Our goal in this area is to perform 3-D or other interpre- process should be used to choose correct matches. The 41

tation of images, such that the interpretation simultaneously matching and interpolation processes thus should be
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ii.,egrated. This is in contrast to the traditional first-finish- 1.1.2. Integrating Focus, Stereo and Vergence
matching-then-interpolate approach used by stereo algorithms Most work on stereo (ours included) has been concerned
developed in the past. with the estimation of a local depth map, i.e., a depth map for

Through a pilot study, we have tested the merit of of our the part of the visual field in the immedite vicinity of a refer-
smoothness-of-disparity constraint in human stereo vision, ence. This is because only a limited part of the visual field
against the constant-local-disparity constraint used in the past around the reference point may be in sharp focus, or visible,
(Hoff and Ahuja, 1985, 1987). We have developed an at a time. Stereo algorithms require an initial, coarse estimate
approach that integrates the processes of feature matching, of the local surface through the reference point. The estimate
contour detection, and surface (disparity) interpolation, must not be too far out of this range in order for the algo-
Integration is necessary to ensure that the detected surface is rithms to succeed. (In our algorithm summarized above, this
smooth. The surface interpolation process takes into account estimate is given as a frontal surface at a depth between the
the detected occluding and ridge contours in the scene; inter- depths of the closest and the farthest objects in the small

polation is performed within regions enclosed by these con- visual field. The algorithms then obtain 3-D structure over
tours. Planar and quadratic patches are used as local models the small visual fick'.
of the surface. Occluded regions in the image are identified Real scenes are often large, and have large depth ranges.
and are not used for matching and interpolation. The Therefore, camera directions and other imaging parameters
approach developed is fairly domain-independent since it uses need to be changed to photograph different parts of the scene.
no constraint other than the assumption of piecewise smooth- Like human eyes, the cameras must pan and tilt, converge and
ness. A coarse-to-fine algorithm is used that requires no diverge, focus on near and far objects, to acquire the stereo
human intervention other than an initial rough estimate of images for different fixation points. Therefore, to reconstruct
depth. The surface estimate obtained at any given level of depth map from each stereo pair, a different initial estimate
resolution is used to predict the expected locations of the appropriate for the local surface must be given, which may be
matches at the next finer level. As the final result, a mul- obtained from associated imaging parameters. Thus, a close
tiresolution hierarchy of surface maps is generated, one at interaction is necessary between the imaging parameters used
each level of resolution. and the stereopsis process, and hence the need for acquiring

The most characteristic and novel feature of our images in an integrated fashion with generation of depth map.
approach is the use of the surface smoothness criterion for Several researchers have discussed the roles of focussing
stereo matching, and thus an integration of matching and sur- and camera vergence as sources of 3-D information, and have
face interpolation operations. The control passes back and pointed out their computational as well as the biological
forth between matching and interpolation processes,* each significance. However, there has been only a limited use
depending on the result of the other to make progress, and made of these sources in computational approaches, especially
generating a progressively refined set of depth maps of a in a mutually cooperative mode. Focus, vergence and stereo
scene at increasing degree of resolution. A given coarse level disparity each has its strengths and weaknesses as a source of
surface predicts the locations of edge matches at the next finer 3-D information. Focus provides an estimate of depth whose

""evei. The mat4he1e' in,. , , , .. ,. x..' -'.- "'zct depth. Overall,
refined surface which in turn predicts pairs of edges to be focus provides a coarse depth estimate. Vergence provides a
matched at the next finer level of resolution. Arother unique depth estimate of the point of intersection of the optical axes
characteristic of our approach is that our smoothness con- of the cameras which is fairly accurate for low vergence
straint explicitly incorporates the existence of depth and orien- angles but whose accuracy decreases for objects far away.
tation discontinuities in the computation. It is domain However, to use vergence it must be ensured that the two
independent, i.e., it uses no world knowledge other than the cameras actually are fixated on the scene point common to
constraint that objects in the real world tend to have smooth their optical axes. This may not be the case if the view of one
surfaces, i.e., the depth/orientation varies gradually except of the cameras is obstructed by an object which does not
across relatively rare, occluding/ridge contours. In our intersect the optical axis of the other camera. Stereo dispar-
approach, these contours are constantly detected and a smooth ity, of course, provides an accurate depth estimate if a coarse
surface is interpolated allowing depth/orientation discontinuity estimate is available initially. It is interesting to note that
across the contours, thus implementing the piecewise-smooth these strengths and weaknesses are complementary. For exam-
model of real world objects. Finally, our approach enforces pie, while stereo disparity can provide accurate surface recon-
smoothness and continuity of 3-D occluding and ridge con- struction, it requires a coarse initial surface estimate which 5
tours. This constraint is based upon the assumption that real can be readily provided by focus and/or vergence. However, %
world objects have surfaces that have smooth borders. depth estimate of a scene point from vergence is valid only if

A detailed discussion of the algorithm, performance and it is ensured that the cameras are fixated -at that point. For
advantages that accrue from the use of the above integration relatively close objects, this can be done by ensuring that theapproach can be found in (Hoff & Ahuja, 1987a,b). An early depth estimates for the image centers provided by the focus,,'
report on this work appears in the 1985 proceedings of the IU process are for the same 3-D point. For distant objects, this
workshop (Hoff & Ahuja, 1985). Some experimental results problem of possible occlusion from one viewpoint is less seri-
indicative of the performance of the algorithm are shown in ous. Another problem that arises when stereo alone is used is

Figure i. that, in any given configuration, surface estimate can be
obtained for only a limited part of the complete visual field of
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interest. The part of the visual field imaged is limited both orientation, color, brightness, and the termination points (if
along the lateral dimensions and along the depth dimension. the tokens are elongated or curvilinear). The roles of some of
The former limitation occurs because of the limited field of the properties in grouping may be complex. To reduce this
view of the cameras, and may be remedied by changing the complexity, a first step toward understanding the grouping
orientations of the two cameras so that their optical axes inter- phenomenon may be to study the roles of some relatively sim-
sect different parts of the visual field. The latter limitation pie properties. One way of accomplishing this is to eliminate
arises for two reasons. First, the entire surface may not be in all but one property at a time and examine the effects of that
focus simultaneously over its large depth range. Second, the property on grouping. Since dots are without size, orientt-
entire surface may not give disparity values in a workable tion, color and shape, dot patterns provide a means for study-
range; for example, the parts of the surface much closer than ing the effect of token positions on their grouping, while
the point of fixation may give disparity values on the order of minimizing, the role of nonpositional properties. We call
image dimensions, whereas those parts much farther away such initial grouping of dots based only on their positions as
may give disparities that are too small (less than a pixel), the lowest level grouping.
This problem may be remedied by obtaining depth estimates The single variable that determines the grouping of dots
of small parts of the surfaces at a time, having small depth is the relative locations, or proximity, of dots. Four possible
ranges. The necessary stereo pairs of images of local surface perceived structures in dot patterns are: (a) a cluster with
patches can be obtained by changing the vergence angle of nonempty interior, (b) a cluster with no interior (e.g., a bar),
the cameras so the point of fixation moves along the depth (c) curvilinear structures, and (d) a single-dot cluster. In the
dimension, while simultaneously adjusting focus to obtain first case a dot may lie either along the border of a cluster or
sharp images. To reconstruct depth map from each stereo in the interior region. The goal of the computation of the
pair, a different initial estimate of the surface must be given lowest level groupings may be achieved by assigning to each
which approximates the local surface in the vicinity of the dot one of the above roles, or one of the following labels:
fixation point. A computed local depth map may be extrapo- interior, border, curve and isolated. We have developed a
lated to predict vergence and focus parameters necessary for computational approach to perceptual grouping in dot pattenis.
imaging adjacent parts of the scene. As the scan of the scene Central to our model of grouping is the issue of representa-
continues, depth maps generated for visual subfields around tion. How should the geometric structure of a dot pattern be
different fixation points must be merged to generate the depth represented? How is the perceptual structure related to the
map of the entire visual field, possibly having a much larger geometric structure? How are local and global perceptual
global depth range than the individual local maps. organizations related? How should the perceptual structure be

We have developed an algorithm for achieving the estimated? How should the estimates be checked for their
integration described above. The current implementation validity? How should the differences between the model's
makes limited use of camera vergence, and emphasizes the predictions and the human segmentation be used to improve
integration of focus and stereo. The algorithm repeats the fol- the computational model? Our work incorporates one set of
lowing steps until the entire scene has been mapped: 1. answers to some of these questions in the defining a computa-
Choose direction of gaze; 2. Fixate: repeat until both image tional approach.
centers are in focus at the same distance (2.1. vary focus to To perform the lowest level grouping, first the geometric
estimate depth at image centers, 2.2. Rotate camera platform structure of the dot pattern is represented in terms of certain
and verge so that both cameras are aimed at nearest scene geometric properties of the Voronoi neighborhoods of the
point); 3. Vary focus to produce a grid of depth estimates dots. (The Voronoi neighborhoods of dots are defined in

over the entire images; 4. Invoke stereo, supplying the depth terms of the Voronoi tessellation of the plane generated by the

estimates from focus; and, 5. Merge the resulting depth map dot pattern. The Voronoi tessellation is a partition of the plane
with an~evolving global scene description . where the edges are the bisectors of nearby dots. Each cell of

There are several advantageous features of integraton the tessellation contains exactly one dot, and defines the
that the current aigorithm does not still incorporate. However, neighborhood of that dot. This definition of the neighborhood
the current simple implementation does demonstrate the power of a dot captures the intuitive notion of neighborhood in many
of integration in dramatically improving the performance of ways (Ahuja, 1982). The properties of the Voronoi neighbor-
surface estimation, over what would be possible if the indivi- hoods are then related to the primitives of the perceptual
dual depth cues were used independently. In particular, the structure, e.g. interiors of blobs, borders of blobs, curves and
algorithm obtains good surface maps of a large scene having a isolated dots. The association between the perceptual roles of
large depth range, as illustrated in Figure 2. dots and the geometric structures of their Voronoi neighbor-

hoods, however, are only typical. The presence of a certain
1.1.3. Integrating Region, Border and Component Gestalt local geometric structure is neither necessary nor sufficient for
in Extracting Perceptual Structure in Dot Patterns a certain perceptual interpretation of a given dot - the local

This research concerns perceptual grouping, or goal geometric structures of other dots, near and far, and their per-
independent detection of perceptual organization in images. ceptual interpretations have a profound and usually domineer-
The organization, of course, is often at a range of scales. The ing influence on how the given dot is perceived. "Faults" in

image entities, or tokens, that may be grouped include blobs, the expected local geometric structures of a limited number of
edge segments, and geometrical features of image regions. dots are tolerated in favor of Gestalt properties such as
These tokens have properties such as position, shape, size, smoothness of borders or curves, or compactness of com-
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(a) View direction 1, left image. (d) View direction 2, left image.

(b) View direction 1, right image. (e) View direction 2, right image. !

(c) View direction , (f) View direction 2, -7.-

reconstructed surface. reconstructed surface." "'.\.

(g) Combined surface.

Figure 2: Integration of focus, stereo and vergence. (Vergence is used to a limited extent in the current implementation.)-. '-
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ponents, thus resulting in global interpretations that may In the implementation of the approach, we have
assign such perceptual roles to dots which conflict with their attempted to minimize the use of ad hoc thresholds for deci-

local geometric structures. The grouping is seeded by assign- sion making. Instead, we have tried to increase the amount of

ing to dots their locally evident perceptual roles. This is done information used, whenever possible, to reduce any ambiguity

through independent modules that possess narrow expertise in interpretation.
for recognition of typical interior dots, border dots, curve dots The lowest level grouping constitutes an important first
and isolated dots, from the properties of the Voronoi neigh- te wetoing const itu e n porn t Subs tborhoods. The results of the modules are allowed to influence step in extracting perceptual structure in dot patterns. Subse-
anrhod Tha e eh t ofthe odes t re l d n pe cm quent steps would further group the lowest level tokens to
and change each other so as to result in perceptual com- identify any hierarchical structure present. The grouping

ponents that satisfy global, Gestalt criteria. Thus, an integra-
ion is performed of multiple constraints, active at different among tokens is again done based on a variety of constraints

including their proximity, orientations, sizes, and terminations, .'
perceptual levels and having different spatial scopes in the dot integrated so as to mimic the perceptual roles of these cri-
pattern, to infer the lowest level perceptual structure. The teria. The result of the gouping of lowest level tokens is even

constraints that are integrated include local structure of dots, large tokens. The hierarchical grouping process repeats until
smoothness of borders, and compactness of components. no new groupings are formed. The final result is a represen-
Starting with the first constraint on the local structure, the fol- tation of the heirarchical perceptual structure in a dot pattern. 0
lowing two constraints incorporate information having increas- Figure 3 shows some dot patterns, along with the lowest level
ingly global spatial scope in the dot pattern. The local structures found by our algorithm. Also shown is an example
interpretations as well as lateral corrections are performed of the hierarchical grouping found. Details of this work are
through constraint propagation using a probabilistic relaxation reported in (Ahuja and Tuceryan, 1987; Tuceryan & Ahuja,
process. The result of the lowest level grouping phase is the 1983, 1989).
partitioning of a dot pattern into different perceptual segments 1983, 1987).

or tokens.

•%

•%

• ! : .. I

Figure 3. Integration of region, border and component Gestalt. The lowest level groupings of %
dots are shown by the detected borders.
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1.2. Motion Analysis estimate the motion parameters using a robust linear algorithm

The long-range goal of our research in this area is the that gives closed-form solution for motion parameters and

understanding of dynamic scenes. A major problem in this scene structure. The second step is to optimize the results

direction is to estimate the scene surfaces as well as 3-D given by the linear algorithm using maximum likelihood esti-

motion parameters from a sequence of images. The frame- mation. The details of these two steps can be found in

work we have used consists of three stages: finding feature (Weng, Huang & Ahuja, 1987c) and (Weng, Ahuja and

correspondences in a sequence of frames, determining motion Huang, 1988a). We have observed that the stability of motion
parameters and surface structure from the correspondences, parameters strongly depends on the type of motion and system

and finally, characterizing motion exhibited in the frame parameters. The field of view of a sensor, magnitude of
sequence. translation, and direction of translation are among the parame-

ters that significantly affect the accuracy of the solutions. We

In most of our work so far, we have assumed that the have studied qualitative relationships among these parameters,
feature correspondences are given. We have done limited and empirically demonstrated these relationships though a
work on this first stage (Gu & Huang, 1985; Gu, Yang & series of simulations (Weng, Huang & Ahuja, 1988b).
Huang, 1987) which is highly scene dependent. In the follow-
ing subsections, we will summarize our research results on the The choice of the type of features depends on their avai-

second and third stages. lability in the images and the reliability of their measure-
ments. When points are not available in large quantities,

1.2.1. Motion and structure from two images other features such as lines can be used. Since the higher
Give1. alevel features such as lines and edges are determined by a set
Given a sequence of stereo images and feature corespon- of pixels, the redundancy in the pixels make it possible to

dences, the 3-D positions of the features are determined by locate those features accurately. We developed algorithms
triangulation. The problem is then determining motion that use line correspondences to solve for the motion parame-
parameters from 3-D positions of the features. Though a ters (Yen & Huang, 1983; Liu & Huang, 1986). These algo-
closed-from solution for motion parameters is easy to derive, rithms are iterative, and like many iterative algorithms, they
it is necessary to ascertain the iact ofvnose in the data on do not guarantee a solution, and exhibit great sensitivity to
the results of estimation. We have developed an algorithm noise. To avoid this problem, we have developed a closed-
for determining least squares estimates of motion parameters form solution to motion and structure from line correspon-

in the presence of noise, and compared its performance with dences from monocular perspective image sequences. The

other algorithms (Arun, Huang & Blostein, 1987). W e have aegorithm req u r pemini vu m seuenes o e

found from extensive analysis that uncertainity in the esti- algorithm requires a minimum of 13 lines over three

mates of the 3-D positions due to image sampling on the esti- perspective views. A unique solution to motion and structure
mates of 3-D positions obtained by the stereo triangulation is is guaranteed if and only if the line configuration is not
larger in the forward dirction (say, Z--direction) than in the degenerate and the translation between any two views does
Xagernd theYfor direction &(Han, 1987). thanot vanish. Necessary and sufficient conditions for degenerate
X and Y directions (Blostein & Huang, 1987). spatial line configurations have been derived. The algorithm

Given a monocular image sequence and feature uses weighted linear least-squares techniques to combat noise
correspondences, the problem of determining motion parame- and so is more robust. Details can be found in (Weng, Huang
ters and structure of the scene is harder than the case of stereo & Ahuja, 1988a).
sequence because the 3-D position information is available in
a more indirect form in the monocular image sequence. We 1.2.2. Motion modeling and prediction
developed a closed-form solution using point correspondences The algorithms discussed above estimate structure and
(Tsai & Huang, 1984). However this algorithm is primarily motion parameters from subsequences of images, without 

meant for a noise free case, and it is very sensitive to noise as attempting to develop a compact model of the scene that

reported in (Tsai & Huang, 1984) and (Fang & Huang, 1984). might unify the estimated parameters. If such a model were

Further, for the case where the corresponding points lie along extracted, it would make it possible, for example, to interpo-
a planar patch, this algorithm fails. Therefore, we developed a late motion and supply any missing image frames or to
new algorithm in which overdetermination of intermediate correct any erroneous frames, or to extrapolate mQtion to
parameters is used to combat noise. A method to estimate the predict future positions of moving objects. Human vision is
errors in the solution is also given. Specifically, the standard adept at using image sequences to quickly develop an under-
deviation of the error is calculated in terms of the variance of standing of the scene required for such capabilities. For
the errors in the image coordinates. Our experiments show example, after a football is kicked off, people can judge

that acceptable accuracy (under 10% relative errors for motion whether the football will pass through uprights long before it

parameters) is achieved for 256 by 256 images. The details acther the there.
can be found in (Weng, Huang & Ahuja, 1987b). We have a A natural approach to building a compact model of the
also developed algorithms that successfully analyze correspon-
dence data from planar surfaces (Tsai & Huang, 1981; Tsai, scene motion is to use principles of dynamics that govern 3-D

Huang & Zhu, 1982; Weng, Ahuja & Huang, 1988b). object motion. We have introduced a locally constant angular
momentum (LCAM) model. The model is local in the sense

To further improve the robustness of these algorithms, that it is applied to a limited number of image frames at a
we have developed a two step approach to motion parameter time. Specifically, the model constrains the motion over a
and struture estimation. The first step in this approach is to local frame subsequence to be a superposition of precession
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and translation. Thus, the instantaneous rotation axis of the 1.2.3. Motion of multiple objects
object is allowed to change through the subsequence. The tra- In Sections 1.2.1 and 1.2.2, we are concerned with a sin-
jectory of the rotation center is approximated by a vector gle rigid object in relative motion with respect to the camera.
polynomial. The parameters of the model evolve in time so In many situations, the scenes contain multiple objects mov-
that they can adapt to long term changes in motion charac- ing differently. Therefore, one faces a segmentation problem
teristics (Weng, Huang & Ahuja, 1987a). along with the problem of motion/structure estimation. With

The nature and parameters of short term motion can be stereo sequences, rigidity constraints can be used to to do the
estimated continuously with the goal of understanding motion segmentation. Along this line, we have developed algorithms
through the image sequence. We have developed such an for matching 3-D features which can be used to estimate
estimation algorithm. The algorithm is linear, i.e., it consists motions of multiple objects (Chen & Huang, 1987).
of solving simultaneous linear equations. Based on the
assumption that the motion is smooth, object positions and 1.2.4. Nonrigid objects
motion in the near future can be predicted, and short missing Many scenes of interest contain nonrigid objects, e.g.,
subsequences can be recovered. Figure 4 shows a sequence people. We have developed an algorithm for analyzing the
of stereo images taken from a model airplane. Starting from motion of objects consisting of jointed rigid parts (e.g., robot
the fourth frame,. the prediction is made for the 3-D coordi- arms). The algorithm is based on the use of Gaussian and
nates of the feature points at the next time instant. The rela- mean curvatures of the surfaces of the objects (Goldgof,
tive maximum prediction errors are shown to the left of the Huang & Lee, 1988).
corresponding frame pairs in Figure 4.c1.3. 

Deriving 3-D Occupancy Maps from Images, and
Navigation

The goal of our work in this area is to develop algo-
rithms and systems for generating maps of the occupancy of
3-D space by objects, and for deriving collision free and
efficient trajectories to move an object from a given source
location/orientation to a given destination location/orientation
through an environment with a given occupancy map. We are
concerned with only a coarse 3-D representation of
filled/empty space, not with representing fine shape details of

-  occupied space. There are three different aspects to represen-
tation of spatial occupancy: initial generation of the represen-
tation for a given scene, its maintenance as the objects in the
scene move, and its use in environment manipulation includ-
ing tasks such as planning trajectories of moving objects
through the scene. Our work has addressed all three of the
these aspects. We have used a single representation, the

2.65% octree, in all three parts . This has helped integrate our
efforts in the different parts, so that they have contributed to
an evolving system. These three parts are described in the

following subsections.
1.30%.

1.3.1. Octree generation from orthographic views
We have developed an efficient algorithm that derives

2.32% 410 the octree representation of an object, given a sequence of
object silhouettes as obtained from any subset of 13 different
vantage points. These viewing directions include 3 directions

7 %parallel to the three axes, and 6 directions parallel to the bi-

3.97%V sectors of angles, two each between x and y, y and z, and z
and x pairs of axes. These correspond to the three "face-on"
and the six "edge-on" directions of viewing an upright cube

2.92% centered at the origin. The remaining 4 directions correspond
to the four "comer-on" views of the upright cube. The
octree is generated by effectively projecting each silhouette as
a cylinder onto the octree space, and identifying the nodes

Figure 4. Image frame sequence of a model airplane: whose corresponding cubes fall completely within or outside

left column :left view; right column :right view. the cylinder. Successive silhouettes generate cylinders with
(beginning with the fifth frame, the maximum relative prediction different orientations and cross sections, and their evolving

errors are shown to the left of the corresponding frame pairs.) intersection provides an increasingly accurate representation of
the object. Projection of a silhouette onto octree space is actu-
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ally accomplished by a recursive subdivision of the silhouette the cube by the smallest enclosing sphere. It is then easily
image into quadrants and extending squares into cylinders., determined if the sphere and the cone do not intersect, mean-
instead of working with cylinders having cross sections as ing that the octree node is white. If they intersect, a second P
complex as the object silhouettes. As a consequence, detec- test is performed to'eliminate a few cases of no intersection.
tion of intersection of a cylinder with the octree space In this test, if all eight vertices of a cube are found to be con-
amounts to a table look-up operation. This simplicity is tained inside the pyramid, it is decided that the cube and
afforded by the restriction of views to the 13. mentioned pyramid do not interstct; if some vertices are found to be
above, and the resulting fixed relationships between quadrants inside and some outside, it is concluded that they intersect.
of the silhouette image and octants of the octree space, which If all vertices are found to be outside, then the cube may or
eliminates the time spent in computing intersections. We may not intersect with the pyramid. To resolve this problem,
have empirically measured the average performance of our a third test examines if all eight vertices of the cube lie on the
system from the octrees generated for a selected set of outside of the face, or, if not, whether the edges of the
objects. The measure of accuracy for a given object and pyramid intersect with the extended faces of the cube. This J
orientation is the ratio of the volume of the object to the gives the final set of octree nodes due to the pyramid. The
volume of the intersection of the extended silhouettes of the octree for one silhouette is obtained by taking the union of
object. To obtain the average performance a Monte Carlo octrees obtained for each component. Such octrees obtained
simulation experiment is performed involving a large number from the different silhouettes are intersected to obtain the final
of executions of the following three step procedure. First, an octree of the object which represents the volume of intersec-
arbitrary object from the chosen set and a random orientation tion of the different pyramids. To measure the accuracy of
is selected. Second, the object is projected along each the resulting octree, we use the ratio of the volume of the
viewing direction to provide a set of silhouette images. object reconstructed from the octree representation to the
Finally, the octree is constructed and the corresponding object actual volume of the object, as for the case of orthographic
volume computed. The ratio of the actual to the computed views above. The algorithm and its performance on the same
volume is the desired result for the chosen object and orienta- set of objects as used for the orthographic view algorithm
tion. Then, for a given set of objects, the measure of accu- above are reported in (Srivastava & Ahuja, 1987).
racy for a set of viewing directions is the estimated expected
value of the ratio of the object volume to the constructed 1.3.3. Octree updating for moving objects
volume for a randomly selected object at a randomly selected A major feature of octree representation is the environ-
orientation. We have made measurements on objects that are ment centered nature the spatial decomposition used. How-
often used as primitives for 3-D representations, e.g., general- ever, this same feature makes the representation sensitive to
ized cones, and some complex objects. Figure 5 shows a object motion. Thus, if a system is to use octrees to represent
display of some objects as represented by the generated dynamic scenes, it must efficiently update octrees so as to
octrees. The details of the octree generation algorithm can be track objects and keep the representation current. We
found in (Ahuja & Veenstra, 1988). A brief description of developed a binary arithmetic that can be used to update
the algorithm appears in (Veenstra & Ahuja, 1986). octrees for translation of the represented objects. Each object

node in the octree is identified by a sequence of edge labels
1.3.2. Octree generation from perspective views encountered along the path to the node from the root node.

Each successive label thus correspond to a cube of half of the
The above algorithm accepts orthographic views. Thus, size of the previous cube. The translation is expressed as a

the objects are assumed to be far away from the camera(s). vector of three components, corresponding to three axial
For the case when the images cannot be treated as ortho- translations. Each component is expressed as a binary
graphic, we have developed an efficient algorithm for generat- number. The location of each octree node after translation is
ing octrees from multiple perspective views of an object. obtained by finding its sequence after translation. The binary S
This algorithm does perform the necessary intersection nature of the representations of the label sequence as well as
between object and octree nodes. The intersection tests are the translation vector makes it possible to realize the transla-
designed to be computationally efficient. The algorithm first tion through binary addition. Each leaf node is translated
obtains a polygonal approximation of the object silhouette. individually to obtain the updated octree. To obtain the new
This polygon is then decomposed (if necessary) into convex node after translation, the components of the desired transla-
components. For each convex component, a pyramid is tion vector are "added, one after another, to the above path
formed treating the view-point as its apex and the convex vector according to our binary arithmetic. This algorithm is
components as one of their cross-sections. The octree reported in (Ahuja & Nash, 1984). We further refined this
representation of each of these pyramids is obtained by per algorithm so that it does not introduce new leaf nodes in the ,
forming intersection detection of the object with the cubes original tree corresponding to the interior of the object, since
corresponding to octree nodes. The intersection detection step this would require compaction after translation. Translation is
is made efficient by decomposing it into a coarse-to-fine performed on nodes as high up in the tree as possible to .0
sequence of intersection tests. These tests exploit the known minimize the computational effort. The details of this algo-
cubical and pyramidal nature of the shapes to make intersec- m
tion detection efficient, rather than perform a general three- rithm can be found in (Osse & Ahuja, 1984).

dimensional polyhedral intersection detection. The first test To allow for arbitrary rigid motion of the objects, we
approximates the pyramid by the smallest enclosing cone, and have developed an algorithm that updates the octree represen-

230



*~~~- .7. .7 -D.~t a- F1-- -7- -

Sper

A self occluding object

.23



tation of an object undergoing arbitrary translation and rota- tacle avoidance problem is resolved by the repulsive force.
tion. Because of the anisotropic nature of the primitives This force can be calculated as the negative gradient of a
(cubes) used to define octrees, rotation of objects usually potential field. The potential field approach divides the prob-
results in fragmentation or compaction of their octrees. Since lem into two stages. First, all possible paths between the
some approximations must be made at the finest level of reso- starting and goal configurations are found, and a candidate
lution to contain the octree size, the octree may undergo path that is mostly likely to yield the shortest collision-free
cumulative distortion as increasing number of rotations are path for MO is selected. Second, three algorithms are used to
performed. For example, a rotation by 0 followed by a modify the candidate path to derive the final path and orienta-
reverse rotation by 0 may lead to a different octree. We have tions of MO.
partly resolved this problem by keeping a compact octree The best candidate path is found as follows. First, a
representation of the object corresponding to a certain refer- scalar potential field is computed due to all charged objects.
ence orientation. As the object is subjected to a sequence of Minima of the local potential field are identified. These
rotations, a Euclidean sum of the rotation angles is maintained minima capture the topological structure of the free space.
to indicate the precise current orientation. The current octree All distinct paths between the starting and goal configurations
of an object is obtained by performing the appropriate rotation are identified along the valleys of potential minima. The
on the compact, reference octree. The efficiency of the algo- minimum potential valleys (MPV) represent possible paths for
rithm accrues from efficient, coarse-to-fine test sequence used point objects and serve as initial estimates from which the
to det'rnine the nodes of the new octree. The tests used are final paths/orientations of MO are derived. The best candi-
similar in spirit to those used in octree generttion from per- date path is found from MPV using a cost function and
spective. views. Details of this algorithm can be found in dynamic programming. The cost function is based on the
(Weng & Ahuja, 1987). length of the paths and the width of the free space along the

1.3.4. Display of octree represented objects paths. The cost goes to infinity when the width of the free
space is smaller than the width of MO, and decreases as the

We have developed an algorithm to display the line width of the free space becomes larger. After the cost is
drawing of the object represented by an octree. The display assigned to all the paths in MPV, dynamic programming is
algorithm takes as input a pointer to the root of an octree and used to compute the shortest path with the minimum cost. %
an arbitrary viewpoint, and produces as output a Tektronix The selected path serves as the initial estimate of the solution,
compatible line drawing of the object with hidden lines and is used by findpath algorithms to derive the final path and
removed. The algorithm makes use of the known spatial orientation of MO. If the initially chosen candidate path does
configuration of the cubes defining octree nodes in obtaining not yield a solution, the parts of the candidate path where MO -
the sequence of lines to be displayed. The algorithm is a use- collides with some of the obstacles are assigned infinite costs.
ful general purpose tool in working with octrees. For example, Dynamic programming is run again to find the next best can-
it can help monitor the progress made by the octree genera- didate path, and this path is used by the findpath algorithms.
tion algorithm as successive views are assimilated, monitor
octrees as they are updated for object motion, and monitor The final paths are desired to be short and collision-free,
any other changes in octree structure. This algorithm was and they should minimize the change in object orientation as
used to obtain the line drawings of objects presented in Sec. it moves along the path. In problems where the free space
1.3.1 to illustrate the performance of octree generation algo- between obstacles is wide, the final path and orientation of
rithm. Details of the display algorithm appear in (Veenstra & MO can be obtained by simply changing the initial candidate
Ahuja, 1988). path away from the obstacles MO is colliding with. In other P

cases, the simple strategy of "running away" from the obsta-
1.3.5. Navigation cles may not result in a collision-free path and orientations of 4 -

MO. The initial estimate may have to be modified
In this section, we summarize our wok on the use of 3-D significantly to derive the final path, and the final path mayrepresentation, derivation and maintenance of which ar require a complex change in the configuration of MO as it -

accomplished by the algorithms described above. We have reueacopxchneitecnfgainofM astaccoplihedby te agorthmsdesribd abve.We ave moves along the path. In still other cases, the initial estimates
concentrated on the problem of path planning, i.e., deriving an moven he t In tillo gcally to obtal tias

effiien an colison reetraectry o mve n ojec frm a may even have to be changed topologically to obtain the final

efficient and collision free trajectory to move an object from a path. These three levels of difficulty of the findpath problem
given source location/orientation to a given destination have led us to use three different optimization algorithms.location/orientation through a given environment. A basic Given an initial estimate, the final path can be derived by theconsideration that has guided our approach is the desired use parallel optimization algorithm (POA), or in more difficult
of only local occupancy (obstacle) information in devising the case l optimization algorithm (OA), or in thecases by the serial optimization algorithm (SPA), or in the ,,,
local path of the object. This reduces the combinatorial com-
plexity of the problem, while at the same time allowing the third case by the sidetracking algorithm (STA).

use of a global topological map to guide the choice of one The parallel optimization algorithm employs a numerical I'
among the available local, collision-free paths. To obtain a method to minimize a weighted sum of the path length and
compact representation of free space, we have used a global the total potential experienced by MO along the path. The
potential field function. This representation is motivated by minimization of the potential pushes MO away from the obs-
the electrostatic repulsion between like charges. Imagine that tacles, whereas the minimization of the path length keeps MO
all the obstacles are composed of positively charged matter. from wandering in wide parts of free space. This algorithm
If the moving object (MO) is also positively charged, the obs- solves the easiest class of findpath problems. If some parts of U
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the free space. are so narrow that MO must approach the The algorithm generates the Voronoi diagram for a set of
narrow spaces with specific orientations, POA does not yield planar points using the divide-and-conquer approach. We
a collision-free path and orientations. The serial optimization have devised a highly flexible multiprocessor system called
algorithm moves MO along the candidate path, and identifies NETRA for image computations. NETRA is motivated by the
the narrow parts of the free space. SOA then finds collision- pyramid architecture but it attempts to avoid the serious prob-
free configurations of MO in these regions and tries to con- lems associated with direct, physical pyramidal interconnec-
nect the start and the goal configuration through a sequence of tion among processors.
intermediate collision-free configurations, one corresponding The overall structure of NETRA is recursively defined in
to each narrow region. Thus the global path is synthesized a tree-type hierarchy. Leaves of the tree are clusters of pro-
from the segments connecting successive intermediate cessors. The internal nodes are processors, their primary
configurations. The third and the hardest class of the findpath function being task scheduling and load monitoring. In the
problems that we have considered requires excursions from final level of task schedulers, each task scheduler has a pro-
the initially estimated paths to derive the final paths. Even cessor cluster as its leaf successor. No degree of the
humans need more than several seconds to solve these prob- scheduler tree is implied. As a matter of fact, the degree need II
lems because a sequential search of the free space is hard to not even be uniform.
avoid. The sidetracking algorithm allows MO to sidetrack The major feature of NETRA is the fact that it is algo-from the candidate path to get proper changes of the orienta- rithm driven, i.e., its design is determined by general compu-
tion of MO. tational characteristics of the algorithms it is intended to exe- F"

We have implemented our algorithm for polyhedral cute; it is not designed to perform efficiently on some selected
objects. Thus, it can be applied almost directly when an types of image operations. The divide-and-conquer paradigm
octree representation is given, since cubes are simple polyhe- is a powerful method of parallelizing image understanding
dra. We have tested the algorithm on a variety of 2-D and computations, and NETRA constitutes a "divide-and-conquer
3-D examples, some of which are shown in Figure 6. Details machine."
can be found in (Hwang & Ahuja, 1988 a, b). The traditionally used array processors are unable to han-

dle complex mathematical functions and complex data

1.4. Parallel Archit'ct ,irs structures that are required for high-level operations in image
To design an efficient architecture requires taking into understanding. Similarly, many traditional, special purpose,

account the characteristics of the algorithms to be executed by pipeline architectures are designed to control data flow to
the architecture. A major feature of image data is its planar efficiently perform certain low level computations. Therefore,
nature, and an important feature of many image computations even if such processors, e.g., WARP and CAAP, are available
is that they are spatially local. Together these two charac- for lower level image processing operations, we must still
teristics imply that parallel subtasks may be generated by have some other multiprocessor to handle high-level opera-
using the divide-and-conquer paradigm to perform computa- tions. NETRA can use machines such as WARP and CAAP
tions on subimages, in parallel, and by merging their results, as slaves to combine their power of efficiently executing low

level operations with NETRA's own capability of efficientWe have described multiprocessor pyramids as one task parallelization and parallel execution. 1

example of an architecture that uses a hierarchical organiza-

tion of processing elements (PE's) to implement the divide- NETRA should be as easy to program as any geperal
and-conquer paradigm (Ahuja & Swamy, 1984a,b). The cen- purpose machine, since the algorithms need only use the high
tral feature of these architectures is a hierarchy imposed on level, divide-and-conquer paradigm. No familiarity with the
the image by a recursive square decomposition of the image hardware is necessary. This is another advantage of NETRA
The image is overlaid with a sequence of increasingly fine over some other special purpose machines which are non-
square tessellations that define a recursive embedding of, and trivial to program.
thus a hierarchy over, image windows. The hierarchy is NETRA is expected to overcome the problems men-
described by a complete tree whose root node is associated tioned earlier with pyramid and other architectures. Two
with the entire image (Figure 7). Each node in the tree important factors contribute to this improvement. First, the
represents a square window. Each nonleaf node has four chil- flexibility of configuration allows tasks to be executed in a
dren. Each child node is associated with a quadrant of the manner that is most efficient for the particular task. Theseparent window. Leaf nodes correspond to pixels or to win- include dynamically configured pipelines, special-purpose

dows of the smallest size. interconnection patterns for sorting, FFTs, etc., and an MIMD

The pyramid structure holds the promise of being a mode that is most suitable for problems characterized by a
natural environment for parallel execution -of divide-and- great inhomogeneity of computaiional requirements across
conquer algorithms. It also allows fast message passing image, e.g., generating the Voronoi diagram of a dot pattern. %

between distant nodes. However, we observed that a simple- Secondly, the clusters of processing elements do not
minded translation of a pyramid model into hardware fails to correspond to fixed regions in images. Tasks are allocated to ,

provide a cost-effective, high-performance system. We clusters not on the basis of their spatial locality but in a
arrived at this conclusion as a result of a detailed simulation manner that heuristically distributes the load evenly over the
of the execution of a purely bottom-up algorithm on a pyrami- entire system.

dal structure wherein each interior node has four children.
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A rigid foot is putting on a shoe. An X shape goes through a series of
rotations to pass three narrow bottlenecks.

A flower with a crooked root is being pulled A grand piano is being moved into
out of a vase (the front wall is not shown). a room with a narrow doorway.

, tart J%

Teacneeds to sidetrack from the T-shaped A square object sidetracks to The problem of moving a chair from one ,A ,

hjunction to the right first (top), then to the the free space above to make side of a desk to the other. The chair

left (bottom) to reach the goal from the start, a turn at the crossroad, sidetracks twice to change its orientation.•

Figure 6. Examples of Path Planning in two and thrcc dimensions.",
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Since NETRA executes divide-and-conquer algorithms,.I
the utility of these algorithms goes beyond NETRA, to any
system that implements the divide-and-conquer paradigm.
This property is a direct consequence of the fact that NETRA
is designed for efficient execution of all levels of image
understanding operations: it is not designed to perform very
efficiently on only certain specialized tasks. Details of P
NETRA can be found in (Sharma, Ahuja & Patel, 1987;
Sharma, Patel & Ahuja, 1985).

50DDP DSP

DSP DSP D S P

I NTERCCNNECT ION NETWORK 0

SECONDARY MEMORY AND I/O

C: Processor Cluster M: Memory Module
DSP: Distributing and Schedulin, Processor MLC: Memory Line Controller

Figure 7. The organization of NETRA.

2. SHAPE FROM TEXTURE BY INTEGRATING
TEXTURE-ELEMENT EXTRACTION AND SURFACE
ESTIMATION*

2.1. Introduction disks of constant size. The disks project as ellipses in the

Texture variations provide important cues for recovering image. The major axis of each ellipse is perpendicular to the , -

the three dimensional structure of the surfaces visible in an tilt1
, whereas the minor axis is parallel with the tilt. The

image. A uniformly textured surface undergoes two types of apparent size of the major axes decreases linearly in the direc-

projective distortions during the imaging process. Firstly, an tion of tilt, due to increasing distance from the viewer. The
increase in the distance from the surface to the viewer causes apparent size of the minor axes decreases more rapidly: in :4

a uniform compression of increasingly large areas of surface addition to the distance scaling, the minor axes are reduced by
onto a fixed area of image. Secondly, as the surface slants increasing foreshortening. (Foreshortening is inversely pro-
away from the image plane, foreshortening causes an anisotro- portional to the cosine of the angle between the line of sight
pic compression of the texture. The resulting texture gra- and the surface normal.) These changes in the major and
dients provide information about the relative distances and minor axes cause an increase of the eccentricity of the ellipses
orientations of the textured surfaces visible in an image. in the tilt direction. The area of the ellipses decreases fastest

Projective distortion affects many texture features. Con- in the direction of tilt. This is accompanied by an increase in

sider an idealized texture showing the perspective view of We express surface orientation in terms of two angles, slant and tilt

slanted a planar surface covered with nonoverlapping circular (Stevens [19831b. Slant, ranging from 00 to 900, is the angle between the

0 surface and the image plane. Iilt, ranging from 00 to 3600 , is the direc- 0
This section is part of a paper by Blostein and Ahuja, currently under tion in which the surface normal projects in the image; a tilt of 0° indi-
review at IEEE PAMI. cates that distance to the viewed surface increases fastest toward the right

side of the image.
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the density of the ellipses. In this idealized texture, the uni- of texture elements is best done in parallel with the estimation

formity in the size, shape and placement of the texture ele- of the shape of the textured surface.

ments (texels) leads to pronounced texture gradients.

Natural textures are much less regular than the idealized 2.2.1. Texels

disk texture mentioned earlier; therefore the texture gradients The term texel, short for texture element, denotes the

are not as easily observed (Ahuja, 1987). Natural textures repetitive unit of which a texture is composed. "Texel" refers

display considerable variability of texel size, shape, coloration to the physical texture element in the real world as well as to

and density. Physical texels are typically three-dimensional, the appearance of the texture element in the image. In cases

in contrast with the two-dimensional disks. This three- where the distinction must be made, we use the phrases physi-

dimensionality results in highlights and shadows, and in cal texel versus image texel. Distance and foreshortening

occlusions between one texel and the next. Also, physical changes alter the appearance of the image texel, although the

texels have a complex structure. In contrast to a uniform syn- physical texel remains unchanged.

thetic disk, a physical texel changes in appearance as the reso- We restrict image texels to be regions of relatively uni-
lution is increased: subtexture becomes visible. In an image form gray level. Under this definition, a physical texel can
with fixed resolution, more subtexture is visible for the nearby give rise to several image texels: typically the physical repeti-
texels than for the distant texels. Supertexture regions arise tive unit of a texture contains both bright and dark regions. •1

when small image texels, corresponding to distant physical As described below, we treat the bright and dark image texels

texels, blur into larger regions of relatively homogeneous gray as separate texture fields. Requiring an image texel to have
level. These factors make it difficult to identify texture ele- "relatively uniform" gray-level means that the texel is uniform
ments and extract texture gradients from real images. relative to the gray-level changes that occur at its own scale;

This section describes our work on how to exploit tex- however, the texel may contain significant internal variations

tural cues to infer the relative distance and orientation of the of gray level. In other words, large texels appear as regions

textured surfaces depicted in an image. We do not address of uniform gray-level only after suitable blurring of the origi-

the problem of texture discrimination; we work with images nal image.

containing only one type of texture. A primary goal of this
research is to demonstrate the feasibility of extracting useful 2.2.2. Texture fields

measures of texture gradients from images of natural (as We use the term term texture field or field of texels to

opposed to man-made) textures. The textures present on denote a collection of image texels that exhibit one or more
man-made objects frequently exhibit regularities such as paral- consistent texture gradients. Consistency is defined with

lei lines, perpendicular lines, equally-sized texture elements, respect to the texture gradients expected from a particular e k"
or equally-spaced texture elements. Several existing shape- surface arrangement viewed under perspective. There are

from-texture algorithms exploit these regularities (Kender several common reasons for several texture fields to occur in
(1980], Ikeuchi [1980]); however, most naturally occurring a single image. Firstly, many textures are composed of

textures are too variable to permit successful application of closely associated bright and dark fields which arise from
these methods. lighting effects. For example, the aerial view of houses in

A major challenge in texture analysis is to handle scale Figure 10(a) contains a field of bright texels composed of the

consistently. Natural surfaces exhibit a rich hierarchy of tex- houses and a field of dark texels composed of the shadows

tures, with each texture element containing subtexture. All cast by the houses. Secondly, associated bright and dark tex-

texture measurements are prone to distortion due to the pres- ture fields can arise from different components of the physical

ence of subtexture, since the imaging process captures more structure of the texture elements; see, for example, the

subtexture details for close texture samples than for distant sunflowers in Figure 15(a). Thirdly, it is possible for physi-

ones. The algorithms presented here provide good surface- cally separated textured surfaces to be spatially interleaved in

orientation estimates even in the face of significant sub- and an image. This is strikingly illustrated by the birds over .

supertexture. For a summary of the work reported here, see water shown in Figure 11(a), where the birds and the water

Blostein and Ahuja 11987b]. are located in two physically separated planes. Finally, multi-
ple texture fields result from physical surfaces that are

2.2. The Inference of Surface Shape covered by several types of texture elements. An aerial view.2

Since texture properties vary across the image in a of a residential neighborhood shows one texture field consist-

manner predictable from the physical texture and surface ing of houses and another texture field consisting of trees.

shape, it should he possible to infer surface shape from tex- The concept of texture field is useful for separating por-
ture gradients. This section examines the basic requirements tions of physical texels that exhibit differing foreshortening
of such an inference process. We argue that correct interpre- properties. Consider, for example, an aerial view of many
tation of texture gradients requires explicit identification of flat-roofed houses. The roofs of the houses, which are paral--%

image texels, especially when textures show three-dimensional % to the textured plane, are foreshortened increasingly as the

relief, when texels exhibit significant subtexture, or when it is angle between the line of sight and the plane decreases, -

unknown a priori which texture gradients carry surface-shape whereas the walls of the houses exhibit the opposite behavior
information. Texture elements cannot be identified in isola- since they are perpendicular to the textured plane. Any

tion since texels are defined oniy by the repetitive nature of analysis of foreshortening in such an image must treat these
the texture as a whole. Therefore, we claim, the identification two texture fields separately. The difference in' gray-level
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properties of the two fields can help to achieve this separa- dealt with, it becomes difficult to distinguish between
tion. responses due to texture elements and those due to other

The unknown and often statistical nature of texture regu- image features. For example, edge density measurements

larities makes it impossible to judge a priori whether two tex- include contributions from subtexture or supertexture edges, 4-

ture elements belong to the same texture field. The percep- from borders of partially occluded texture elements, and from
tion of a texture field is the result of an aggregation edges of texels belonging to several texture fields. Similarly,
phenomenon that requires a consistent texture gradient across when making an edge-direction histogram it may not be possi-
the whole field. All the texels belonging to a texture field ble to distinguish between edges from texel borders and edges
must be recognized simultaneously. due to other features such as subtexture. Fourier domain

features are also sensitive to the presence of subtexture and
2.2.3. The importance of texture element identification supertexture. It appears to be necessary to recognize the tex-

The extraction of texture elements is an essential step in ture elements before the various measures can be computed as
texture analysis. Texel identification permits correct analysis intended.
of textures containing subtexture. Explicit texel identification This problem is illustrated by Figure 8, which shows all
also permits a unified treatment of the various texture gra- of the edges extracted from the texture image of a rockpile
dients that may be present in an image. Previous researchers' (Figure 9(a)). We use an edge operator described by Nevatia _e
have avoided texel identification because it is quite difficult to and Babu [19801. Six 5-by-5 edge masks at different orienta-
do in real images2 . Instead, indirect methods are used to esti- tions are used; the mask giving the highest output at each
mate texel features. We give below several examples of such pixel is recorded. The edges are thinned by suppressing non-
methods, and indicate why these methods may give erroneous maxima perpendicular to the edge directions. The exact
results on many images. details of the edge operator are not important here. We

Most previous shape-from-texture algorithms use indirect merely wish to illustrate that it would be incorrect to interpret

methods to estimate texel features, by making some assump- all of the detected edges as boundaries of texture-elements.
tions about the nature of texture elements. For example, texel Additional edges arise due to sub-texture and due to the pres-densi ayt e natresim tey ur e ge doren , uner ence of several texture fields in a single image; these edgesdensity m ay be estim ated by m easuring ed ge density, under a e n t atf c s o h sp ri u a d e d t c o ,s n e t e r
the assumption that all detected edges correspond to the bord- are not artifacts of this particular edge detector, since they are
ers of texture elements (Rosenfeld 119751, Aloimonos and clearly present in the original images. Many natural textures
Swain [19851, Aloimonos [1986], Kanatani and Chou [19861). have a hierarchical physical structure that causes observed ,

Alternatively, texture elements may be assumed to have uni- edge density to be nearly constant throughout the image:
form edge direction histograms; surface orientation can then edges from subtexture and sub-subtexture are observed tO
be estimated from any deviations from isotropy observed in whatever detail the camera resolution permits.
the distribution of edge directions (Witkin [19811, Davis et al. In the early stages of this research we experimented with
[1983], Kanatani 119841). Texture coarseness and directional- measurements of edge density to detect texture gradients. To
ity may be characterized using Fourier domain measurements eliminate sub texture edges, we suppressed weak edges in the %
(Bajcsy and Lieberman [1976]), making the assumption that vicinity of strong edges. This was somewhat successful, since
only texel characteristics are captured by the Fourier domain the contrast of subtexture is usually less than the contrast of
measurements. Many man-made textures have parallel, per- the texture elements themselves. This edge suppression is an
pendicular and equal-length lines. Assuming that the texel indirect attempt to identify texture elements, since the goal is
borders can be detected in the image, the surface orientation to suppress all edges except those that result from the boun-
can be estimated from the observed angles between line seg- daries of texture elements. We abandoned the edge-based
ments in the image (Kender 119801, Ikeuchi 119801, Nakatani approach in favor of a region-based approach, in which the
et al 119801). problem of texel identification is approached more directly,

All of these methods may encounter errors when applied and can thus be solved in a more general way.
to complex natural textures seen under natural lighting condi- Explicit identification of texture elements offers an addi-
tions 3. Since texture elements are not identified and explicitly tional advantage: texture elements provide a unifying frame-

2 Ohta et al. [19811 use the observed areas of pairs of texels to ob- work for examination of the various texture gradients (gra-
tain vanishing points. However, the method has been tested only on syn- dients of apparent texel area, aspect ratio, density etc.) that
thetic textur- ;,ag' The problem of extracting texels from natural im- may be present in an image. A given image may exhibit any
ages is not addressed, combination of texture gradients. The relative accuracy of the

Shape-from-texture algorithms are sometimes tested on images gradients, in general, varies from image to image4 . Since it is
formed by artificial projections derived from images of frontal texture
samples (either by digitizing a perspective view of a photograph of the not known in advance which texture gradients are useful for
frontal texture, or by using a computer program to simulate such a per- estimation of the three-dimensional layout of a given scene, a
specuve projection). Such projections introduce simplifications, because shape-from-texture system should analyze the variations in
physical relief and subtexture are not accurately modeled (texels do not different textural properties, and selectively pay attention to
shadow or occlude each other, they foreshorten improperly, no subtexture the relevant and accurate gradients.
details appear when regions of the frontal texture sample are expanded to
model parts of the surface that are close to the viewer). Therefore, texture
algorithms that successfully handle images derived from frontal texture
samples cannot necessarily cope with real images of slanted physical tex-
lures.
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2.2.4. Integration of texel identification and surface shape to a proportionally larger neighborhood in the image. The list .,

estimation of candidate texels must include uniform regions of all shapes
Texel identification is difficult because texture elements and sizes. We simplify the problem of extracting regions of

have tremendously varied shapes, sizes and gray-level charac- arbitrary shapes and sizes by assuming that each region can
teristics. Regions of relatively uniform gray level are be represented as a union of overlapping circular disks. Large
appropriate primitives for texel recognition. However, only a disks define the rough shape of a region, with overlapping S,-

subset of the uniform image regions correspond to texture ele- smaller disks capturing finer shape details such as protrusions
ments. Other regions arise from subtexture within close-range and concavities. Below we describe a method of extracting

s ral distant all circular image regions of relatively uniform gray level.
texture elements, from partly occluded texture elements, and Sets of overlapping circular regions are then used to form
from isolated objects that are not part of a texture (for candidate texture elements.
example, the snowy areas and the tree trunk in the rock-pile Our region detector is based on the image response to ,6

image of Figure 9(a)). An image region is a texel only if the convolution with V2G filters over a range of scales. Related
region has properties consistent with the properties of many work includes Witkin [1983] (a scale-space representation of
other image texels; the region must be one among many V2G zerocrossings) and Crowley and Parker [19841 (a
regions, all of whom are the projections of physical texels dis- representation of V2G peaks and ridges over a range of S
tributed along some 3-D surface. Since a surface hypothesis scales5). We find circular image regions of uniform gray
is needed to decide whether a region is a texel, texel level by convolving the image with V G masks over a range
identification must be integrated with surface shape estima- of scales, and comparing the convolution output to that
tion. expected for an ideal circular disk of constant La level.

We have developed a two-step approach to carry out 2.3.1. A closed form expression for the V2G response o f a
such integration of texel identification and surface estimation. di
First, we assume that all homogeneous gray-level regions are disk _

candidates for being texels; the first step performs a local The algorithm for uniform-region extraction is based on
gray-level analysis to identify potential texels. Second, we calculations of the V2G and --LV2G responses of a disk
use surface-fitting to identify the true texels from among the image. Here we present a brief summary of the region dctec- ,.
candidates, while simultaneously constructing an approxima- tion algorithm. This region detector is discussed and analyzed
tion to the shape of the textured surface. The second step in greater detail in Blostein [1987a], Blostein and Ahuja
thus enforces perspective viewing constraints to select texels. [t987cl. e 0
The next three sections present the algorithm that we have Gtw-y
implemented. Section 2.3 describes a region detector for Given a function I(x,y) which specifies the intensity of
extracting candidate texture elements. The surface-fitting an image, the V2G response of this image at (x,y) is given by
algorithm is described in Section 2.4. Finally, Section 2.5 tfl nc ui
contains a summary of the implementation, and presents V2G (x, y) *1 (x, y) =
results for a variety of images of textured natural scenes. +_

20 2-(U2 V2 ) e-(U5 +v)/2al(x-u,y-v)du dv (I) .$,"W,
2.3. Identifying Candidate Texture Elements: Multi-scale 4

Region Detection
Any region that has relatively uniform gray-level is a Mathematical analysis of the response of the V2G filter to

candidate texel. The uniformity of small regions is measured most images is difficult because the convolution integrals of
relative to a small surrounding neighborhood in the image, Equation (1) do not have closed form solutions. However, a
whereas the uniformity of large regions is measured relative closed-form solution can be derived for the center point of a

circular disk of constant intensity. We analyze the V2G
response at the center of an ideal circular disk in the continu-

SThis may be illustrated by the following examples. It is common ous domain; to generate the V2G convolution of digitized .
for physical texels to be fairly uniform in size and shape, but for the gaps images, we sample the V

2
G filter values and perform a j'-1

between the texels to be much less uniform (Figures 11(a), 17(a), 19(a), discrete convolution. The image of a disk of diameter D and
and 20(a)). In these images, it is more accurate to infer a three- contrast C is defined by
dimensional surface from the ize and aspect-ratio gradients than from the
deity gadient or the gradient of spacings between texels. As a son 2f 2y

2 
<D2/4_

example, the potential accu radient is higher in disk image: I(x, y) = (2)
textures where the physical texels are separated by gaps than in textures 0 elsewhere %
where the physical texels overlap and occlude one another (the lilly pads % 'aden

in Figure 20(a) show a much better aspect ratio gradient than do the rocks Using this definition of I(x,y) in Equation (1), and setting x %
in Figure 9(a)). Thirdly, for the water hyacinths of Figure 22(a), the ran- and y to zero, we find (Blostein [1987a1, Blostein and Ahuja
dom three-dimensional arrangement of the leaves makes the aspect ratio 1987c]) that at the disk center
gradient very weak, while the area gradient is still quite significant. Final-
ly, in images with partial occlusions (Figures 14(a) and 15(a)), the per-
spective gradient (length of the unforeshortened texel dimension) is more w
accurate than the area gradient: if only part of a texel is occluded, the ap- Crowley and Parker use a difference-of-Gaussian Lerator, which is

parent texel area is decreased, whereas the complete unforeshortened di- a discrete approximation to 'G and hence to V
2
G. By the diffusion

mension may remain in view. equation, V2 G = (1/a)-LG.
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V2G response = - -CD 218 (3) 2.4.1. The expected distribution of texel areas for a planar
surface

V2G response tCD D2  2 eD/8o2  (4) The current implementation is restricted to fitting a sin-
2 4-5 -)gle planar surface to the image, based on the observed areas

of the candidate texture elements. In order to find a planar fit
Dividing these expressions, we solve for the diameter D and to the candidate texels, we need to know the distribution of
contrast C of the disk: texel areas that occurs in an image of an idealized textured %

D = 2; - (-"V2G*I)/(V 2G*I)+ 2 (5a) plane. To derive this relationship, we assume a planar tex-
tured surface covered with :dentical texels, where the texels
show no three-dimensional relief. Natural textures are typi-

C = 2 2 eD/8° (V2G* ! ) (5b) cally more complicated: they are composed of highly variable ,%
icD2  texels that show three-dimensional relief. Nevertheless, our

where the convolutions are evaluated at the center of the disk. experiments show that the equations derived from considera-
tion of idealized textures are useful for analyzing a variety of V.

2.3.2. Extracting candidate texture-elements in real natural textures as well (Section 2.5).
images In Blostein f 1987a], Blostein and Ahuja 11987b] we

We construct an approximation of image texture ele- derive expressions for spatial variation in the dimensions and
ments by first detecting disks of homogeneous gray levels in area of texels in idealized, planar textures. We express the
the image, and then identifying spatially disjoint subsets of texel parameters as a function of image location in the direc-
disks such that disks in each subset are connected through tion of greatest depth increase. For example, the area Ai of a
pairs of overlapping disks. For the first step, we use equa- texel anywhere in the image may be expressed as
tions (5) to estimate region diameter (along with region con-
trast) from the V2G *1 and _-_V2G *1 values at the center of Ai ='A,(l - tan0 tanS) 3  (6)
a region. We choose extrema of the V2G *1 images as possi- where A, is the texel area measured at the image center, S is v
ble disk-center locations. The disks fit to local maxima have the slant, and 0 is an angle that depends on the tilt-direction %,rP

positive contrast (regions brighter than the surround), whereas component of the vector from the image center to the current

the disks fit to local minima have negative contrast (regions image location. To measure 0 given an image location, a tilt,

darker than the surround). We use a range of filter sizes. For and the field-of-view of the camera lens, project the view-ray
a given region, local V2G extrema occur at the region center onto the plane through the focal point that is parallel to the

for filter sizes that approximately match the diameter of the tilt and perpendicular to the image plane. Then 9 is the angle
region (w =D, (I242D). To fit disks as accurately as possi- between this projected view ray and the optic axis.

ble, we accept a disk only if the computed diameter D is
close to the width of the V2G center-lobe: o=24-24D. Details 2.4.2. Fitting a planar surface to the candidate texture

of the implementation are covered in Section 2.5. elements

In the second step we form a union of overlapping disks Having extracted candidate texels from an image of a
to construct an approximation of the texture elements. When textured surface, we find the orientation of the textured plane

that best agrees with the observed areas of the candidate tex-
overlapping disks are grouped together, concavities are els. A planar surface is characterized by the triple (Ac, S, T),

formed at the joins between the disks. Some concavities arisethe image center, S is
at the border between two neighboring texels; at other times the slant, and T is the tilt. In order to find the best planar fit
the concavities are part of the shape of an individual texel. the a d te t . In d r to fite bes plaA fit

There is no a priori way to tell whether a set of disks should Sand T, and evaluate each possible planar fit. For each

be split at a concavity or not. For each set of disks, we there- choice of (Ac, S, T), Equation (6) gives the expected texel
fore treat all possible subsets of disks (split and unsplit) as
mutually exclusive candidate texels. Some implementation area at each image location. These expected areas are com-
details are given in Section 2.5. For further details see (Blo- pared to the region areas actually occurring in the image, and
dtils are given n1987bion). Fora fit-rating is computed for the plane. The plane that receives

the highest fit-rating is selected as the estimate of the textured

2.4. Surface Estimation and Texel Identification surface. The candidate texels that support the best planar fit
are interpreted as true image texture elements. The rating of

Our goal in analyzing image texture is to find a spatial a planar fit is computed as
layout of homogeneously textured surfaces that could result in
the given image texture. We do this by testing many spatial fit-rating =

layouts and choosing the one that is the most consistent with (as (
a maximal subset of the candidate texels. The surface param- )area) Iregion contrastl e(reiont)

2
/4

a regio n (7)
eters are determined at the same time that the true texels are %
chosen from among the candidates. where region-fit = max(expected area, actual area)

min(expected area, actual area) "
The region-fit is 2.(1 for a candidate texel that is either half as
big or icc as big as the size predicted by the planar fit. We
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begin with a coarse fit, in which the (Ac, S, T) space is D =2o o( V2G*I)/(V2G*I)+2
searched at sparse locations. To refine the planar fit, a more
detailed search of the (Ac , S, T) space is done in the neigh- 2
borhood of the best plane from the coarse fit. The fit-rating C 2&. 2

/8o (V2G*J)
values change smoothly as a function of Ac, slant and tilt. tD 2

Section 2.5 gives some implementation details. For further Retain only the disks where w -2 _< D -< w + 2 (w is the
details, see (Blostein and Ahuja, 11987b]). width in pixels of the center lobe of the V2G filter). 'V

Form a single set of disks by taking the union of the
disks detected at the various filter sizes.

2.5. Application of the Algorithm to Real Images Construct potential texture elements from the disks
Parts (a) of Figures 9 to 25 show the images of natural To form the list of potential texture elements, extract all

textures we have used in our experiments. A few of the subsets of disks that are spatially connected and contain
images are photographs of outdoor scenes taken by one of the no concavities greater than 90'. If a concavity is in the
authors in Urbana, Illinois. The rest are illustrations in books range 500 to 900, use the disk's to form three potential
(see Blostein 11987a] for references), which we have rephoto- texture elements 6: one large region consisting of all the
graphed. All of these images are digitized off of the photo- disks, a n o a ge region re s isting f althe

graphic negatives using a drum scanner. The images are 512 ds, a n t sae rons r musplittingu-
by 512 pixels; the image sizes in the figures vary because the large region at the concavity7 . Mark mutual exclu-
image borders have been trimmed. All of the images are pro- sion between potential texture elements that share a disk:
cessed the same way; the method has no parameters that need at most one of them can contribute support to a planar fit
to be tuned to particular images. Before discussing the results and be chosen as a true texture element.
on these images, we present some details of the implementa- Fit a planar surface to the candidate texels
tion. A, is the texel area expected in the image center, S is

the slant, and T is the tilt of a hypothesized planar fit.
2.5.1. Summary of the implementation For a coarse fit, choose A, (in units of pixels) from the

Here we list the processing steps used on each of the set { 10, 20, 40, 80, 160, 320, 640), choose S from (00,

images shown in Figures 9 to 25. The processing of an 50, 10 , . 700, 750, 800), and choose T from [00, 200,  .. 0%
image I is divided into three main phases: fit disks to the uni- 400, ..., 300, 320', 340'). To perform a fine fit in the
form image regions, construct potential texture elements from neighborhood of the best plane from the coarse fit,
the disks, and fit a planar surface to the candidate texels. change S in increments of 2.50, T in increments of °,•
Fit disks to the uniform image regions and A, in increments of less than 25%. (The A, values

(1) Compute the convolutions V2G*I and _- V2G*I for increase exponentially because area-discrepancies are
'~,2'~ 3I~,an measured as a ratio of expected to actual areas.)the following six Y values: 42,2, The expected texel area for a particular choice of an d.

64I2. (The center lobes of the six V2G filters have diame- ( T) ispcomtedl asea fo a panticulan chc (
ters w of 4, 8, 12, 16, 20 and 24 pixels respectively.) To S 41 for a i of tan t.) au e a
compute V2G*I for a particular a value, the image is Section 4.1. for a definition of the angle 0.) Evaluate a

convolved with a mask whose coefficients are taken from planar fit by adding contributions from each potential
texel:

8

4 fit-rating

To compute -eftiV2G*! for a particular a value, the (region area) Iregion contrast e- (region ' fi t)2/4

image is convolved with a mask whose coefficients ar al regions
taken from,_

6r 2 2-r 4-4o e-r '12& 6 The particular values 500 and 90 are not critical; we have found JA

07 that the range 500 to 900 is large enough to capture all regions of interest ',

and yet small enough to prevent a combinatorial explosion in the number
(2) Mark the locations where disks will be fit. To of potential texture elements generated.
analyze the positive-contrast regions of the original 7 Region splitting is implemented as follows. We begin with a set P
image, mark all local maxima in the V2 G*I images. To of overlapping disks, which together cover an image region R. The larg-
analyze the negative-contrast regions of the original est concavity in R is found by computing the angles formed by every pair

of neighboring disks on the border of R. Suppose that X and Y are twoimage, mark all local minima in the V2 G*I images. neighboring disks on the border of R, and that they form a concavity that

Local maxima and minima are computed relative to a causes a split into smaller, more convex regions. The concavity is split

3x3 neighborhood. by (I) removing X from P and repeating the above process, and then (2)
(3) At each marked location, use the measured V 2G*I removing Y from P and repeating the above process.
and At e If potential texture-elements are mutually exclusive (they share aand _ 2 G*! values to compute a disk diameter and disk), only .'e potential teel that has the smallest region-fit is included in

disk contrast: the fit-rating sum. ,%
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where highly variable. More complete texel extraction can be
max(expected area, actual area) achieved by adjusting the criteria for choosing texels from the

region-fit = set of candidate texels: the criteria should vary as a functionmin(expected area, actual area) of the broadness of the fit-rating peak in (Ar, S, T) space.
Select the plane that receives the highest fit-rating as the
best estimate of the textured surface. Texture elements The accuracy of the results may be illustrated in two

are those regions that have an area close to the area ways. Firstly, the reader can compare his perception of the

expected by the best planar fit. textured surfaces (part (a) of Figures 9 to 25) with the planar
surface fitted by the program (part (c) of Figures 9 to 25).

2.5.2. Discussion of the results Agreement with human perception is quite good for many ofthe images. Secondly, since the processing of the positive- r
Figures 9 to 25 illustrate the results we have obtained for thimgs Seodysnctepresng ftepstv-17igues f t2lustrate .The ar ty of tvexbtunes for contrast and negative-contrast regions is performed totally,, ~17 images of natural textures. The variety of textures for idpnety h gemn ewe h lnsadtls,.

independently, the agreement between the slants and tiltswhich the results are presented should help in judging the obtained by the two analyses strengthens the confidence in the
strengthes, weaknesses and generality of the algorithm and its re (o tha the spretes are not e ce te~results. (Note that the A, parameters are not expected to be
current implementation. The results obtained tor each image similar for the positive-contrast and negative-contrast regions
are illustrated for the positive-contrast image regions. -- the positive-contrast and negative-contrast regions may be p

The original image is shown in part (a) (top of the of very different sizes.) However, the two analyses may not
column) of Figures 9 to 25. The parameters of the best always lead to the same estimates of slant and tilt, because a
planar fit are illustrated by the synthetic texture image in part texture may not be homogeneous in both texel size and texel
(c) (bottom of the column) of the figures. The detected texels separation. Thus, an agreement among multiple analyses
are shown in part (b) (middle of the column): these are all (such as the two discussed here) must not be required. A
candidate texels having area within a factor of two of the area method of selecting and integrating the pertinent analyses in a
expected by the best planar fit. given case must be devised. Such inferencing from gradients

The shape of the fit-rating peak (not displayed here) is of multiple texture properties has not been addressed in the
related to the properties of the image texture. A sharp fit- work reported in this paper.
rating peak indicates that the texels have small size variance. Table I summarizes the planar fits obtained for all
This is illustrated by the aerial view of houses (Figure 10) and images. These fits use slants that are multiples of 2.50 and
by the field of sunflowers (Figure 15). If the texel sizes have tilts that are multiples of 5' . The slant and tilt values com-
larger variance, as for the clouds (Figure 13) and the rock pile puted from the positive-contrast and negative-contrast regions
(Figure 9), then the peak is much broader. (In the rock-pile are often within 100 of each other. Seven of the 17 images
image, the non-planarity of the original textured surface also have differences less than 100; nine of the images have
contributes to the broadness of the fit-rating peak.) The texels differences less than 150. For reference, a 300 difference in
shown in part (b) of the figures are those candidate texels tilt is equal to the angular distance between adjacent numbers
having area within a factor of two of the area expected by the on a clock face. A 300 differenc6 in slant, on the other hand,
planar fit. Using this same factor of two for all images causes is a more serious error. In many of those images that have a
incomplete extraction of texels in images where texel size is large discrepancy between the two planar fits, attributes of the

TABLE 1 c i

Description Fit to positive- Fit to negative- Difference
contrast regions contrast regions

A, slant tilt A, slant tilt slant tilt

A rock pile 40 62.50 65o 40 60o 75o 2.5o 1"
Aerial view of houses 35 62.50 950 60 67.50 1100 50 15'
Birds flying over water 35 45o 80' 40 57.5' 100' 12.50 20'
Prayer at a mosque 160 27.50 500 120 42.50 100 '  

150 50' ,
Fleecy clouds 100 550 2750 160 550 2800 0o 50
3-D movie audience 280 450 1050 320 7.50 3300 large
Sunflowers 160 700 950 200 700 900 0 50
A tree trunk 70 650 3450 80 42.50 00 25.50 15' ,.

Bathers on the Ganges 100 450 80' 80 650 850 200 50-

, A plowed field 80 42.50 400 1(X) 650 800 22. 5 40"
A field of flowers 50 700 900 140 52.5' 20' large
Water lillies 120 750 900 160 52.5, 70" 22.50 20'
Ripples 50 52.50 1050 120 62.5' 105' 10' 0.
Water Hyacinths 100 37.50 800 10W 400 80 2.50 00
The Toulumne River 25 57.50 850 40 650 950 7.50 10-
Sand 240 40

'  
800 200 55 801 15" 01-

Fallen leaves 40 600 901 51 62.5' 95' 2.5
°  

5'
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Physically Based Modeling
fer Vision and Graphics

Andrew Witkin
Michael Kass

Demetri Terzopoulos
Kurt Fleischer

Schlurnberger Palo Alto Research , .

3340 Hillview Avenue, Palo Alto, CA 94304

1. Overview

A few years ago the Vision and Modeling group at SPAR
began working on unified solutions to problems in corn- "t

puter vision and computer graphics, motivated by the ob-
servation that "vision is backwards graphics." The effort
has proven fruitful, in some ways even more so thalL we an- "

* ticipated. As it turns out, the benefits of combining vision
and graphics are substantial and concrete: we've reached
a point at which we are able to use the same approach, the ]
same mathematics, in fact, the same code to solve a wide r

range of interesting problems in vision, graphics, anima-
tion, motion control and planning, and design. %

Surprisingly, one reason for the progress we've made is 1/

that the dictum that "vision is backwards graphics" turns
out to be wrong. In fact, graphics is backwards too. It is Figure 1: A single frame from an animation sequence of a
true that image synthesis runs the laws of optics forward rug draping over other objects a tn co
to get images from models, while visual analysis in the
"shape-from-x" school seeks to run the same laws back-

wards to get models from images. However, as people as a stiff spring that pulls them together. A constraint U
in the graphics community tired of seeing exquisitely ray- that a surface point must project to a particular image
traced images of simple objects floating passively in space, point is a spring pulling the surface model toward the ray
the cutting edge in graphics research underwent a marked corresponding to the image point. The manner in which aI
shift from image synthesis to model synthesis, focusing on model responds to these and other applied forces is used to
the economical creation of realistic complex forms and nat- encode expected or desired properties of the object, such as

ural coordinated motion. a tendency toward smoothness. Additional forces, applied
The key problems in model synthesis are inverse prob- dynamically by the user, provide a remarkably effective

lerns in which a compact specification of the constraints mode of use interaction. Mathematically, this approach
th-t a shape or motion must fulfill is converted into an yields systems of ordinary or partial differential equations S
explicit description of the shape or motion itself. Viewed governing the evolution of the model through time.
this way, model synthesis in graphics differs from visual This section presens a brief overview, more in logi-
shape and motion analysis primarily in the source of the cal than chronological order, of the results that this ap- "S1
constraints. In graphics, the constraints are supplied by proach has yielded. Each of the three following sections
a user, encoding desiderata, while in vision they encode will present a selected topic in greater technical detail.
evidence extracted from tl,e image data.

Our approach to solving both sets of problems uses Animating elastic objects. Deformahle models are
the machinery of physics. Our models are composed of free-form curves, surfaces, and solids imhued with inter-
simnlated materials that move and deform in response to nal energy functions that make them respond actively to
applied forces. Constraints, whether derived from image, applied forces. The most conceptually straightforwzrd ap- %
or specified by a huulan model-huilder, are imposed by ap- plication of these models is to the direct simulation of non-

plying carefully designed constraint forces to the models, rigid bodies such as paper, cloth, and rubber (figure 1) as
These forces serve to mold the model into a form that sat- described in [41]. We have used deformable models as a
isfies the constraints they represent, vanishing only when means of animating wind- -own flags, flying carpets, tear-

the constraints are net. ,or instance, a constraint that iig clcth I111, and bouncing vegetables !13' anong ,ther
giv, n points oni two objects loist coincide may he treated things.
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Computer modeling clay. The same machinery that f
produces animation of flags waving in the wind may be
used as a powerful model-building medium, a kind of mod-
eling clay in which free-form shapes are created by pushing
and pulling on the deformable model interactively, nail- -
ing it down explicitly at important points, subjecting it -a

to shape-controlling force fields, and so forth [40]. We are
currently experimenting with this approach for real-time .A i- l *
surface modeling using a stereo display and 3D pointing
device.

Snakes. The idea of elastic media as model-building

tools applies to visual analysis as well. A snake [24] is a
simulated piece of stretchy, springy wire that responds in
real-time to a variety of applied forces. We immerse snakes
in force fields derived from images to create an easy and
accurate means of interactively localizing edges and other
line features. The image forces rapidly pull the snake to- Figure 3: Top: Stereo images of a pear and potato.
wards the nearest feature of interest. If the snake gets Lower-left: 2.5D depth map from scale-space stereo. The
caught in an undesired local energy minimum, the user original image has been mapped onto the 2.5D surface
can easily push it towards the desired minimum by ex- and shown from a different viewpoint. Parts of the scene
erting forces controlled by a mouse. The snake's internal not visible from the original viewpoint are left black.strain energy provides a preference for smoothness, allow- Lower-right: 3D symmetric models. Unlike the 2.51)
ing it to complete contours over regions of low contrast. As model, this model looks edible from behind.
a result, snakes can "see" subjective contours just as well
as traditional lines and edges. Snakes also prove to be ef-
fective motion trackers-as the image changes, the energy field that coerces it into a 3D shape whose 2D silhou-
wells move and the snake follows. A detailed description ette matches an edge in the image. The result is a full
is presented in Section 2. 3D reconstruction of the shape. When stereo images are

Analysis of oriented patterns. Elastic models have available, we can simultaneously coerce the model to match
also proven useful for analyzing oriented or striated tex- silhouettes in both images. As with snakes, the symmetry-
tures. In [23, 47], an energy function is used to align seeking model tracks motion by following the moving en-

the rectangular grid of parameter lines on an elastic sheet ergy wells in an image sequence [43]. Figure 3 contrasts

to the locally measured orientation of an image. The de- the full 3D description computed by by the symmetry-

formed grid defines a coordinate system in which the ori- seeking model with the 2.5D description computed by the

ented pattern is "straightened out," creating a more nearly scale-space stereo technique. A detailed description of the

stationary texture that is far simpler to analyze than the symmetry-seeking model is provided in Section 3.
. original. Figure 2 shows the straightening process applied Se-asmlnprmteidmo l. Thme-

to a wood texture. ods described so far employ free-form deformable models.

* Scale space image matching. We have applied elas- A different but equally useful style of modeling creates
- tic sheets to the problem of computing stereo and motion complex shapes and structures by the composition of sim-

correspondence.[46] The images to be matched are mapped ple building blocks-basic geometric shapes such as cylin-
onto elastic sheets which are deformed by a force arising ders and blocks, subjected to transformation operators
from a simple local correlation measure. To avoid unde- such as translations, rotations, bends, twists, subtraction,
sired local energy minima, we use scale.space continuation etc. The methods described above apply equally well to
in which the energy function is blurred, a large-scale mini- this alternative modeling scheme. In [48] we apply energy
mum found, and the minimum tracked through continuous methods to hierarchic parameterized models as an efficient

deblurring. The blurring continuum is created by simulta- means of constructing and animating models of complex
neously varying the elastic stiffness of the sheet, the spatial objects. Figure 4 shows the parts of a model moving and I
extent of the correlation measure and the blurring of the deforming to satisfy attachment constraints.
images.

Visual analysis using parameterized models. The
Symmetry-seeking models and 3D reconstruction. same method can be applied to visual interpretation by
In 42 we created symmetry-seeking computer modeling deriving constraint forces from images. We are currently
clay. The simulated material prefers axisymmetric shapes, working on methods that reconstruct shapes and motion
but can be pulled away from symmetry by appied forces. by attracting critical curves and points to rays derived froix

We immerse this symmetry-seeking material in a force image features. Interestingly, the melhod is not restricted

to the recovery of shape. We have used the method suc-
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t :'.' - 3." .... In recent computational vision research, low-level tasks

~. .-. . !<. .. such as edge or line detection, stereo matching, and mo-

tion tracking have been widely regarded as autonomous
bottom-up processes. Marr and Nishihara[281, in a strong

statement of this view, say that up to the 2.5D sketch,3 3 "no 'higher-level' information is yet brought to bear: the
compuitations proceed by utilizing only what is available in

5 . the image itself." This rigidly sequential approach propa-
.I |gates mistakes made at a low level without opportunity

for correction. It therefore imposes stringent demands
on the reliability of low-level mechanisms. As a weaker
but more attainable goal for low-level processing, we ar-
gue that it ought to provide sets of alternative organi-

zations among which higher level processes may choose,
rather than shackling them prematurely with a unique an-
swer.

.- In this paper we investigate the use of energy mini-
.nization as a framework within which to realize this goal.

We seek to design energy functions whose local minima
comprise the set of alternative solutions available to higher
level processes. The choice among these alternatives could
require some type of search or high-level reasoning. In the
absence of a well developed high-level mechanism, however,-ou r we use an interactive approach to explore the alternative
organizations. By adding suitable energy terms to the min-ii we us loan fintcive aproa toe dexlred sltnThe trative

inization, it is possible for a user to push the model out of

tlocal ruininium towards the desired solution. The result-- -" is an active model that falls into the desired solution when
: ,..: :placed near it.

Energy minimizing models have a rich history in vi-
--- sion going back at least.to Sperling's stereo model [381.

: .: Such models have typically been regardcd as autonomous,
-' 4-'xc rr. but we have developed interactive techniques for guiding

" s" them. Interacting with such models allows us to explore
.--. .,the energy landscape very easily and develop effective en-

ergy functions which have few locd nimnira and little de-

" .- ~ pendence on starting points. We hope thereby to make the
job of high-level interpretation manageable yet not con-
strained unnecessarily by irreversible low-level decisions.

The problem domain which we address is that of
finding salient image contours- edges, lines, and subjective
contours-as well as tracking those contours during itlon i

- and matching them in stereopsis. Our variational approach
to finding iniage contours differs from the traditional ap-

- '" ' ." . .proach of detecting edges and then iinking them. In our
'. .. model, issues such as the connectivity ,if the contours andI

. , the presence of corners affect the energy functional and

Figure 4: A flexible pipe attaching itself to neghbong hence the detailed structure of the locally optimal con-

pip e tinder the ifluexle e ofa tra in t itself o Te in tour. These issues can, iin prin iple, be resolved by very
pips uehiu efnr thigh-level conmrutatiorns. Perhaps more irrprtaatly, high-
configuration is shown at the top, the final assembled con- level inechanisirs can interact witi thie contour riodel by
figuration at the bottom, and an intermediate one in the isirg it towards ai appropriate hucal nin. Opti-
middle.

iization and relaxatimi have uven used pureviously in edgeI

IH. Snakes: Active contour

models1 Active ('o,,utur Mdel,s," by Mich:ae Kas, Andlrw Witkin, arid
Demuutri "'r7o.(ip-u(i, which appears in I nlnatt,,ial Journial of
e '.nutre ,tr m 0 , 1 (4), 1987

'The material i tis -tinm is adapted fr-om the taper "Snakes%

%1 p• "5

4 # f € ¢ 4 a . € ._ -. , . • . - € . . . . .. •. , ~ . :r t .' .j% .'*. 7 . p. J. ' p 'a • .•
' " , €'." / •" ," , d" €' , •" . . - .A. " .- A..A.. .tA . -- - • . 5" A-A- -' 5- • .- s -. . . -a .=- C,_- * - . , , - ., . o ," -



segments. The segments themselves are changed by the

perceptual organization.

Without detailed knowledge about the object in view,
it is difficult to justify a choice among the three interpre- r.
tations. Knowing that wood is a layered structure, or per-
haps inferring its layered structure from elsewhere in the
picture could help to rule out interpretation (b). Beyond
that, the "correct" interpretation could be very task depen-
dent. In many domains, such as analyzing seismic data, the
choice of interpretation can depend on expert knowledge.

Different seismic interpreters can derive significantly dif-
ferent perceptual organizations from the same seismic sec-
tions depending on their knowledge and training. Because

a single "correct" interpretation cannot always be defined,
we suggest low-level mechanisms which seek appropriate
local minima instead of searching for global minima.

Unlike most other techniques for finding salient con-
tours, our model is active. It is always minimizing its en-
ergy functional and therefore exhibits dynamic behavior.
Because of the way the contours slither while minimizing
their energy, we call them snakes. Changes in high-level
interpretation can exert forces on a snake as it continues its
minimization. Even in the absence of such forces, snakes 0
exhibit hysteresis when exposed to moving stimuli.

Snakes do not try to solve the entire problem of find-
ing salient image contours. They rely on other mechanisms
to place them somewhere near the desired contour. How-
ever, even in cases where no satisfactory automatic start-
ing mechanism exists, snakes can still be used for semi-
automatic image interpretation. If an expert user pushes
a snake close to an intended contour, its energy minimiza-
tion will carry it the rest of the way. The minimization
provides a "power assist" for a person pointing to a con-
tour feature. I.II,

Snakes are an example of a more general technique ,
of matching a deformable model to an image by means of 9
energy minimization. In spirit and motivation, this idea
shares much with the rubber templates of Widrow[52].

Front any starting point, the snake deforms itself into con-fortuity with the nearest salient contour. We have applied "t'

the same basic techniques to the problem of 3D object re-
construction froni silhouettes by using energy minimizing
surfaces with preferred synnnetries [42]. We expect this .. 2-

Figure 5: 'Fop: Original wood photograph froni Brodatz. general approach will find a wide range of applicability in,
Others: Two different local minima for the active contour vision.
model.

A. Basic Snake Behavior
Our basic snake model is a controlled conlir uity39] spline

and line detection 19, 11, :32, 54, 551, but without the ill under the influence of itage forces and external constraint .
teractive guiding used here. forces. The internal spline forces serve to impose a piece-

In many image interpretation tasks, the correct inter- wise smoothness constraint. Te image forces lmsh the
pretation of low-level events cam require high-level knowl- snake towards salient inlage featuire' like lines, edges, and
edge. Consider, for example, the three perceptual organi- subjective contours. ']'he external constraint forces are re-
zations of two ark lines in 41gre 5. The three different sponsib for pitting the snake near the dsired local mil-

organizations correspond to three different local iriniria i deanea. 'I'iese forces can, fIlr exanileh', cone front a user
ill ouir line-cintour inodel. It is iniplrtant to notice that interface, a tllilatic attenltinal nlecll;llisnls (Ir high level

exanple, nt jist ecam~e (If a diferenit linking Oof lilne
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Representing the position of a snake parametrically - ... I.

by v(s) = (z(s),y(s)), we can write its energy functional
as

E~nake - EnaeYs)s ~

Eint(v(s)) + Eimage(v(s))

+Eom(v(s))ds (1)

where Eint represent the internal energy of the spline due
to bending, Ei.. gives rise to the image forces and E ..
gives rise to the external constraint forces. In this section,

we develop Eint and give examples of E,= for interactive

interpretation. Eiage is developed in section II-C. Figure 6: The Snake Pit user-interface. Snakes are shown

in black, springs and the volcano are in white.
B. Internal Energy

The internal spline energy can be written snake in the rest of the way. Accurate tracking of contour

features can be specified in this way with little more effort
= (a(s)Iv,(s)12 + fl(s) v,(s)()/2 (2) than pointing. The snake energy minimization provides a

The spline energy is composed of a first order term con- "power assist" for image interpretation.
trolled by a(s) and a second order term controlled by fl(s). Our interface allows the user to connect a spring to
The first-order term makes the snake act like a membrane any point on a snake. The other end of the spring can be
and the second-order term makes it act like a thin plate. anchored at a fixed position, connected to another point
Adjusting the weights a(s) and /3(s) controls the relative on a snake, or dragged around using the mouse. Creating
importance of the membrane and thin plate terms. Setting a spring between x, and x 2 simply adds -k(xl - x 2 )2 to

,3(s) to zero at a point allows the snake to become second- the external constraint energy Eco,
order disconLinuous and develop a corner. The controlled In addition to springs, the user interface provides a
continuity spline is a generalization of a Tikhonov stabi- 1/r 2 repulsion force controllable by the mouse. The 1/r
lizer [44] and can formally be regarded as regularizing [35, energy functional is clipped near r = 0 to prevent numer-
36] the problem. ical instability, so the iesulting potential is depicted by

Details of our minimization procedure are given in a volcano icon. The volcano is very useful for pushing a

[24]. The procedure is an 0(n) iterative technique using snake out of one local minimum and into another.
sparse matrix methods. Each iteration effectively takes Figure 6 shows the snake-pit interface being used. The
implicit Euler steps with respect to the internal energy two dark lines are different snakes which the user has con-
and explicit Euler steps with respect to the image and ex- nected with two springs shown in white. The other springs
ternal constraint energy. The numeric considerations are attach points on the snakes to fixed positions on the screen.
relatively important. In a fully explicit Euler method, it In the upper right, the volcano can be seen bending a
takes 0(n 2 ) iterations each of 0(n) time for an impulse to nearby snake. Each of the snakes has a sharp corner which
travel down the length of a snake. The resulting snakes has been specified by the user.
are flaccid. In order to erect more rigid snakes, it is vi-
tal to use a mor- stable method that can accommodate C. Image Forces
the large internal forces. Our semi-implicit method allows In order to make snakes useful for early vision we need en-
forces to travel the entire length of a snake in a single 0(n) ergy functionals which attract them to salient features in
iteration, images. In this section, we present three different energy

Snake Pit. In order to experiment with different en- functionals which attract a snake to lines, edges, and ter-
minations. The total image energy can be expressed as a

ergy functions for low-level visual tasks, we have deve'oped

a user-interface for snakes on a Symbolics Lisp Machine. weighted combination of the three energy functional

The interface allows a user to select starting points and Eitnage = WlinEline + WedgEedge. + WterEter,n. (3)
exert forces on snakes interactively as they minimize their
energy. In addition to its value as a research tool, the user- By adjusting the weights, a wide range of snake behavior
interface has proven very useful for semi-automatic image can be created.

interpretation. In order to specify a particular image fea- Line Functional. The simplest useful image functional
ture, the user has only to push a snake near the feature. is the image intensity itself. If we set
Once close enough, the energy minimization will pull the

E,.= I(r,.y) (4)
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then depending on the sign of wui,,, the snake will be at- are dominated by the small-scale texture rather than the '.
tracted either to light lines or dark lines. Subject to its region boundary, but the snake nevertheless is able to use ,
other constraints, the snake will try to align itself with the zero-crossings for localization because of its smooth- D
the lightest or darkest nearby contour. This energy func- ness constraint. ,
tional was used with the snakes shown in figure 5. By
pushing with the volcano, a user can rapidly move a snake D. Termination Functional
from one of these positions to another. The coarse con- In order to find terminations of line segments and corners,
trol necessary to do so suggests that symbolic attentional we use the curvature of level lines in a slightly smoothed d
mechanisms might be able to guide a snake effectively. image. Let (z,y/) = G(,y/) * I(z,yt) be a slightly

Edge Functional. Finding edges in an image can also smoothed version of the image. Let 0 = tan-,(C,/C.)
be clone with a very simple energy functional. If we set be the gradient angle and let n = (cos 0, sin 0) and n.L=
E, dg = -[VI(x,y€)[ 2 , then the snake is attracted to con- (sin 0, cos 0) be unit vectors along and perpendicular to,,
tours with large image gradients. An example of the use of the gradient direction. Then the curvature of the level i'

this functional is shown in figure 7. In the upper left, a user contours in C(x, y) can be written,,-,
has placed two snakes on the edges of the pear and potato.
He has then pulled part of the snake off the pear with a
spring. The remaining pictures show what happens when (6)m 0
he lets go. The snake snaps back rapidly to the boundary _ nL(6

of the pear. !9C/0n 'L(7
Scale Space. In figure 7, the snake was attracted to CO
the pear boundary from a fairly large distance away be- C,,,C - 2UC.,., + C..C " ,'

cause of the spline energy term. This type of convergence = +U)3/2(8

is rather common for snakes. If part of a snake finds a low- '%
energy image feature, the spline term will pull neighboring By combining Eed., and Et,.... we can create a snakex'¢,
parts of the snake towards a possible continuation of the which is attracted to edges or terminations. Figure 9 shows . "
feature. This effectively places a large energy well around an example of such a snake exposed to a standard subjec- .%'
a good local minimum. A similar effect can be achieved by tire contour illusion[22]. The shape of the snake contour%
spatially smoothing the edge- or line- energy functional. between the edges and lines in the illusion is entirely de-•
One can allow the snake to come to equilibrium on a very termined by the spline smoothness term. The variational.-_,
blurry energy functional and then slowly reduce the blur- problem solved by the snake is very closely related to a
ring. The result is minim-zation by scale-continuation[45, variationa formulation proposed by Brady et al. [7] for ,.'-
46]. the interpolation of subjective contours. Ullman's [51] pro-

In order to show the relationship of scale-space contin- posal of interpolating using piecewise circular arcs would .
uation to the Marr-Hildreth theory of e dge- detection [30], probably also produce a very similar interpolation. An ap-
we have experimented with a slightly different edge func- pealing aspect of the snake model is that the same snake .
tional. The edge energy functional is that finds subjective contours can very effectively find more .,

traditional edges in natural imagery. It may, moreover, .Eli, -(G * VI) 2 (5) provide some insight into why the ability to see subjective, ,,

V..

where G , is a Gaussian of stanrd diaont.Mim ontours is important. %.;

of this functional lie on zero-crossings of G, * V1I which '

define edges in the Marr-Hildreth theory. Adding this en- E. Motion
ergy term to a snake means that the snake is attracted Once a snake finds a salient visual feature, it "locks on." 2 _
to zero-crossings, but still constrained by its own smooth- If the feature then begins to move slowly, the snake will .,-
Mess. Figure 8 shows scale-space continuation applied to simply track the same local mfinimum. Movement which .e'
this energy functional. The upper left shows the snake in is too rapid can cause a snake to flip into a different lo- ,,,.
equilibrium at a very coarse scale. Since the edge energy cal minimum, but for ordinary speeds and video-rate sam- -"-
function is very blurred, the snake does a poor job of lo- pling, snakes do a good job of tracking motion. Figure 10
calizing the edge, but is attracted to this local mnimum shows eight selected frames out of a two second video se-- .,,
from very far away. Slowly reducing the blurring leads quence. Edge-attracted snakes were initialized by hand on
the snake to the position shown in the upper right and fi- the speaker's lips in the first frame. After that, the snakes"- -'
nally to the position shown in the lower left. For reference, tracked the lip movements automatically. ,
the zero-crossings of G, * V2I corresponding to the energy The motion tracking was done in this case without .,
function of the snake in the lower left are shown super- any inter-frame constraints. Introducing such constraints
imposed on the same snake in the lower right. Note that will doubtless make the tracking more robust. A simple
the snake jumps from one piece of a zero-crossing contour way to do so is to give the snake mass. Then the snake :
to another. At this scale, the shapes of the zero-crossings will predict its next position based on its previou~s velocity. , .
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Figure 8: Upper-left: Edge snake in equilibrium at coarse scale. Upper-right: Snake in equilibrium ,
-it intermediate scale. Lower-left: Final snake equilibrium after scale-space continuation. Lower-right: ' '
Zero-crossings overlayed on final snake position. .. ,

The profile of an object, also known as its occluding con- nonrigid motion of free-form, flexible objects from natu-%
tour, refers to the curve which outlines the image region ral images-a task which the human visual system accom- __.
covered by the optical projection of the object. The hu- plishes routinely-has traditionally been considered a very
man visual system has the remarkable ability to infer the difficult open problem in machiine vision. Our algorithms" .,

3D shapes of objects from their 2D profiles in images. To can perform this task directly from image intensity data ,
emphasize this, David Marr was fond of showing Picasso's without requiring intermediate optic-flow fields or 2.5D1)r '

"Rites of Spring," which consists entirely of silhouettes (see surface representations. .

figure 11 We present physically-based models with accom- To reconstruct models directly from natural images i
panying computational techniques capable of reconstruct- that possibly involve significant occlusions, we must exploit .. '.
ing, directly from the silhouettes, a 31) rendition of Pi- several powerful constraints in unison, some deriving from '
casso's "Rites" shown below. the sensory information content of images, others reflecting

Our approach, which is applicable to natural images, background knowledge about image formation. We take ,.

simplifies the integration of image information acquired a physi cally- based modeling approach, in which objects '
from different viewpoints and/or different instants in time. are represented as elastically deformable bodies subject to ,.-
Our models can infer the 3D shapes of objects in proper continuum mechanical laws, while constraints are modeled -.
depth from their profiles in stereoscopic views. More- as forces applied to the deformable bodies. Physically- ,,.
over, they can capture the motion of objects moving nion- based models integrate constraints in a natural way-by ,

rigidly in space by tracking the evolution of profiles in summing together the associated forces. The net force o,
dynanmic image sequences. Recovering shape, depth, and field propels the models through potentially complicated-,"

motions such that they satisfy the available constraints
through time. We distinguish two types of forces: Intrin

Motion" by Denietri Terzopoulos, Andrew Witkin, and Michael Kass, ".
which first appeared inProc. AAAI-87, Seattle. An extended version sic forces encode constraints internal to our deformable ,f

is in press in Artificial Intelligence. models. Extrinsic forces couple the models to the image _ ,

.-
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Figure 10: Selected frames from a 2 second video sequence showing snakes used for motion tracking.

After being initialized to the speaker's lips in the first frame, the snakes automatically track the lip

movements with high accuracy.

data and provide an avenue for user interaction. faces for the purposes of vision [5]. It captures axisymme-
The intrinsic constraints reflect generically valid as- try much like the generalized cylinder; however, we take

sumptions about natural objects. Our deformable models seriously the fact that many objects of interest are only ap- i,'
apply a basic constraint -- surface coherence-which can proximately symmetric. Unlike generalized cylinders, our .. J.

accurately quantify the free-form shapes and motions of model can accommodate deviations from exact symmetry ;

natural objects. The constraint is inherent in the elastic b5 deforming. Only as the intrinsic forces are strength- .

forces prescribed by the physics of deformable continua. ened does the symmetry-seeking model tend to impose ex- .

These forces elicit piecewise continuous deformations. act symmetry. As the intrinsic forces are weakened, how-
A second generic constraint built into our models is ever, the model will be able to faithfully represent increas-

symmetric regularity, an attribute of many natural and ingly asymmetric shapes, although axisymmetric shapes '-

synthetic objects. Rather than imposing strict symme- have greater stability and hence are preferred.

tries through explicit parameterization, we design more The extrinsic constraints reflect, in part, observations,,€

liberal syrnmetry- aeeking intrinsic forces. These forces con- about the environment that can be extracted from sen- .
strain the deformations of the model in order to give it a sory data. Althouugh, in principle, we can exploit within #

preference for certain symmetries. Representing symme- symmetry-seeking models a variety of image based cues,
try as constrained deformation rather than through gee- including shading and texture, for the tirne being we make '
metric parameterization frees our model from the shackles exclusive use of information about profiles. The models are,".

of particular parametric shape families such as, say, the embedded in a force field which encodes the profile infer- .'

quadrics-spheres, cylinders, ellipsoids, etc. marion. The ambient forces mold the deformable models '

Our work to date considers the reconstruction of the to make their 3D shapes consistent with the observed 2D "
3D shape and nonrigid motion of objects possessing ap- profiles of objects or subparts.,"

proximate axial symmetry. Our model is close in spirit to Another possible source of extrinsic constraints is a

the generalized cylinder representation first recommended human operator. We augment the ambient force fieldI with ,
in 1971 by Binford as a convenient description of 3D stir- forces controlled by computer pointing devices, thereby '
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Figure 11: 'Rites of Spring' by Pablo Picasso (top). "We .

immediately interpret such silhouettes in terms of partic- ""

Figure 9: Top: Standard subjective contour illusion. Bot- ula three-dimensional surfaces-this despite the paucity"' ,

tom: Edge/Termination snake in equilibrium on the sub- of information in the image itself. In order to do this, we

jciecnorplainly 
must invoke certain a priori assumptions and con- ,';

jectivecontourstrants about the nature of the shapes." -D. Marr [27]. ,

Silhouette shapes in confluence with a priori constraints,.

providing opportunity for a user to guide the reconstruc- itrinsic to the symmetryseeking models described in this '£

tion prcs.W a raesmer-ekn oesad article can suffice to recover 3D shapes from a monocular ,'

pull or push them through space using a 3D interactive image. (bottom) 3D reconstruction of Picasso's "Rites"

pointer (flying mouse, a.k.a. bat). We bring models near usn 3smer-seeking models (see text). Note that-.

imaged objects of interest and we monitor them as wire- the reconstructed shapes are only approximately axisym- [Q

frames projected into the image plane(s) while they cap- metric, as dictated by the shapes of the silhouettes. ..'

ture the shapes of these objects. On a sufficiently power--""

ful computer, deformable models offer a fully interactive.""

" ,

modeling medium of practical interest in its own right. contrast in the Gaussian-smoothed image. Hence, the tigh

Nonetheless, our long-range goal in the context of machine contrast contour in the image (by assumption, the profile of V

vision is to replace the user input with fully automatic the object) attracts the occluding boundary of the model "O.N

top-down control processes. (the locus of points along which lines of sight graze theN

Figure 12 illustrates the reconstruction of a crook- surface of the model). The model comes to equilibrium

necked squash from its monocular image using a in the ambient force field such that its occluding bound-

symmetry-seeking model. The user initializes the model ary, relative to the viewpoint associated with the image, N

by specifying the projection of the spine in the image plane is consistent with the shape of the object profile in the•

near the medial axis of the object. In the monocular case iiage. The model's intrinsic continuity and symmetry-

the model is subject to extrinsic forces expressed as the seeking forces specify 3D shape over thereanrofis,,

gradient of a potential function which measures the local surface, including hidden portions. Figure 13 sketches the
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- ~Figure 12: Reconstruction of a 3D symmaetry- seeking m~del. (left) Squash image. (center) User i-,
tialized spine shown in (black curve) and initial tube (white wireframe). (right) Reconstructed model "
displayed as a wire-frames projected into the image. ''

Symmetr.-s~kng % .... their binocular projections coincide as much as possible t
Img, P!-, with object profiles in both images."

The ambient force field becomes dynamic when ima-,,
aged objects are in motion, It carries the model through '

-,nt .. nonrigid motions, continually molding its shape to main-"
tain maximal consistency with the evolving image data. -~~The evolution of the model is computed by numerically |

"," integrating the partial differential equations of motion for "
," the deformable body as it reacts to the dynamic force field.

;" A. The Symmetry- Seeking Model and,"_Intrinsic Forces

Figure 12 Rcntu The "construction" of a symmetry-seeking model is

Figure 13: Monocular reconstruction scenario. The arrows stagtowr.Tkeaceombesee"aeo lsi!" dpictextinsi fores n spce hichact n te syme- material (a membrane-thin-plate hybrid). Roll this sheet 'e
~ ~~try-seeking model's occluding boundary as seen from the tofratueNxpss domblsiemdefsi-iapizTed spieshown ine (black cure) and nitil beilar material down the length of the tube. Couple the spine

diwp isplayhed aocs ade-frmes prodeced inasto th mae.t h uewt ailypoecigfre htidc x

its image plane projection (dotted curve) more consistent ttheir biutrh rocdiones ojetin rs mh a thtoube ar
with the 2D profile of the imaged object. The model comes isymmety co itme, a nd thege stubetr
to equilibrium as soon as its 3D shape achieves maximal n nd n contll di ta t mi

conssten y wi h t e i m ge d ta.and curvatures can either be prescribed or m odified dy- -tam imal consistency with the evovin ime dais set .

to zero, for instance, the tube will tend to contract around ..the ;pine, unless the other forces prevail. The model will -.reconstruction scenario in thi monocular case. shorten or lengthen as the longitudinal metrics of the tube
The image potential is generalizable to exploit more and spine are modified. In short, a variety of interesting |

extensive profile information in multiple images acquired behavior (including viscoelasticity and fracture) can be ob-

from different viewpoints arolind an object. For the par- tained by adjusting the control variables dtoignedl into the ..titular case of stereo, the potential incorporates two iy- symmetryn-seeking model.
'ages from slightly different vantage points. Deprojection We rnithe and tube

represent~ spin geometr
strighforard Tae adefrmalese madeofeasi

of its gradient through a binocular camera model creates pings from material coordinate domains into Euchidean 3- "
a stereo xrc frield in space. Points on the model's oc- space. The spine is a deformable space curve, while the
eluding m oundaries with respect to both the left and right tube is a deformable space sheet. Punctionals character-eye are sensitive to e stereo force field. The forces po- ize the eformable materials by associating non-negative

sition boundary points laterally and in depth such that strain energies with the mappings. The strain energies of .
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the deformable spine and tube are expressed by second- J
order controlled-continuity spline functionals.[39] These
functionals contain weighting functions which vary over the
material coordinate domains. One set of weighting func-
tions controls the local tension of the deformable material,
while a second set controls its local rigidity. In addition to
controlling elastic properties, along with the natural met-
rics and curvatures of the material at rest under zero strain,
the weighting functions can be set to zero at any point to
permit position or tangent discontinuities to occur in the
material (hence the name controlled-continuity spline).

In addition to the elastic forces due to the deformable
material, which are given by a variational derivative of the

strain energy functionals, the intrinsic forces of the model )
include three symmetry-seeking forces that couple together
the spine and tube components. The first force coerces
the spine into an axial position within the tube. The sec- Figure 14: Result of applying image operations to the

arond thre sinore. the finl foe prvdey ssquash image of Fig. 2. Smoothing a increases progres-around the spine. T he final force provides control oversi e y f o l ft o rgh an t p to b t m . D k e s d -
j ~~~~sively frmlf oright and top tobottom. Darkness indi-expansion and contraction of the tube around the spine. cates magnitude of local gradient of the Gaussian blurred

The strengths of each of these forces is adjustable over thelengh o thespie. Fr eampe, ctub wil hae a image. Each image has been reseaed to span the available
length of the spine. For example, .e tube will have a intensity range.
tendency to inflate wherever the strength function of the
third force is positive or deflate whenever it is negative.
In particular, this force can be used to cinch shut the two systems are efficiently solvable (linear-time in the number
ends of the tube by assigning large negative values to the of unknowns) using direct solution methods. We employ
strength function at s = 0 and s = 1. a normalized Cholesky decomposition step followed by a

The nonrigid motion of the spine and tube are dic- forward-reverse resolution step. The direct solution of each
tated by continuum mechanical equations for deformable unidimensional system obtained through operator splitting
bodies under applied forces. Hence, the symmetry-seeking "immediately" distributes to all nodes along two perpen-
model is governed by a pair of partial differential equa- dicular parametric grid lines the effects of forces acting on
tions (one for v s and one for vT) coupled through the their common node.
symmetry-seeking forces. The (hyperbolic-parabolic) sys-
tem is second-order in time and fourth-order in the mate- B. Extrinsic Force Fields
rial domains. The equations dictate that the net extrinsic BF

force is balanced by the inertial forces due to the mass We transform input images into generalized potential func-
density of the deformable body, plus the damping forces tions suitable for reconstruction. The force fields resulting
due to dissipation, plus the intrinsic forces which include from these potentials bring symmetry-seeking models into

elastic forces and symmetry-seeking forces. The extrinsic maximal consistency with the images, and maintain the
forces are expressed as variational derivatives of external consistency over time in the dynamic case. More specif-
potential functions which are described in the next section. ically, profiles in the images exert an attraction over the

The continuous differential equations of motion for model such that the deformable tube, as projected into the
the symmetry-seeking model pose a nonlinear initial- image planes through a suitable camera transformation,
boundary-value problem. To obtain a numerical solution, accounts as much as possible for the observed profiles.
we first perform a semi-discretization in the material coor- To simplify the potential functions, we consider ob-

dinat:s of the model using standard finite-difference meth- jeets with subdued texture which are imaged in front of
ods. Our reconstruction algorithms integrate the result- a contrasting background. lence, we can expect that the
ing coupled system of second-order ordinary differential stronger image intensity gradients are associated with ob-
equations through time using a semi-Implicit Euler time- ject profiles. To define a potential we first compute the
integration scheme. Numerically, this amounts to solving magnitude of the gradient of the image convolved with a
a sequence of dynamic equilibrium problems, each solu- Gaussian smoothing filter of width aT. Figure 14 illustrates
tion providing initial crnditions to the subsequent prob- the effect of these image operations for progressively larger
len. An operator splitting approach, as used in alter- values of a.
nating direction implicit (ADI) methods has been eflica- The ambient force field stemming from this potential
cious on our rectangular computational grids. Splitting the attracts the occ',ding boundary (with respect to the imag-
controlled-continuity spline operator yields unidimensional ing viewpoint) of the deformable tube towards significant
systems with pentadiagonal coefficient matrices. These image intensity gradients. The 3D shape of the model's

occluding boundary in space a: ns to maximize the magni-
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of the objecta. In the monocular case, depth informatien
is not available directly, so the user presently specifies the
depth ordering.

We can obtain true depth information through stereo,
* .>. I however. In the binocular case, the deformable model is

matched to an object's profiles i a stereo image pair. We
make the occluding boundaries with respect to both left
and right image viewpoints sensitive to the ambient force
field. The symmetry-seeking model is free to undergo mo-

tion in 3-space while deforrning, such that its stereoscopic
projection though the binocular camera model best ac-

A counts for the observed profiles in both images. The image
processing operations are the same as for the monocular
case.

Profiles of smooth objects and the occluding bound- a

aries which generate them are known to present difficul-
Figure 15: Reconstruction of a still-life scene with symme- ties to conventional stereo matching techniques. This is

try-seeking deformable models. (upper left) Image of the mainly because profiles observed in the left and right im- .t"

scene. (upper right) Initial, user-specified configurations age map to different occluding boundaries on smooth ob-

of the 3D models. Two graphically rendered views of the jects. Our method for reconstructing models directly from

reconstructed still life: (lower left) Frontal view of the 3D images overcomes this problem. The use of a full 3D model

models; (lower right) side view. in tandem with separate left and right projection opera-
tors simplifies the association of each image profile with
the corresponding occluding contour on the model.

tude of the image gradient (darkness) along the projected Figure 16 shows the binocular reconstruction method

model profile in the image. The force field thereby deforms applied to a stereo image of a human finger. The user

the symmetry-seeking model to make its shape consistent specifies an initial spine and the initial tube is a cylinder

with the ,ject's profile in the image, with the remaining around the spine. The model's differential equations are
surface following smoothly. solved to reconstruct the shape of the object in propers c fdepth. The figure shows the reconstructed shape rendered

By creating potential functions at several scales, we from several viewpoints.
can trade-off localization accuracy against long range at-W es-rnv When the input images are time-varying the ambient
tractiou. A q is -vident from figure 14, broad wells surround force field becomes dynamic. It carries the model through

fthe image potential at the coarser motions, continually molding its shape to maintain maxi-
scales. Suc, vnils attract the model from a considerable mal consistency with the evolving image data. Our method
distance, but the associated minima are blurred and local-
ize the profiles in the image data rather poorly. Continu- for allowing the symmetry-seeking model to track an ob-

ous scale-space provides a good medium for obtaining both ject undergoing nonrigid motion is as follows. The first
frame of the image sequence is presented to the model as

long range attraction and good localization. We can apply %f e tage seene i he model a s
a continuation method in the image potential scale space, ie
parameterized by a, which allows the model to equilibrate sible reconstruction using this initial data, The projected

boundary points equilibrate at a fixed point in the ambientat a coarse scale, then continuously reduces the smoothing force field and the model locks on to the consistent state P..
or to track an equilibrium trajectory from coarse to fine Wscale [461. Whereas the equilibrium persists indefinitely in the ,

static case, in the dynamic case we immediately present the

Figure 15 illustrates the reconstruction of two quasi- model with the next frame of the image sequence. Now the
symmetric objects, a pear and a potato, from a single im- ambient force field is perturbed due to the motions of ob- ',
age. The g.ey-level image of the still life scene is shown jects in the scene. The model actively seeks a new consis-

on the upper left. Notice that the potato partially oc- tent state by moving towards the nearest fixed point. If the
eludes the pear in the image. The initial model configu- motion of the object is sufficiently slow and continuous, the
rations manually specified by the user are shown on the model will track the dynamic equilibrium point, thus up-
upper right. The lower part of the figures shows the recon- dating its state in accordance with the new image informa-
structed 3D models from two points of view. To handle the tion available to it. By repeating this procedure with each
partial occlusions (incomplete boundaries), we must desen- successive incoming frame, the symmetry-seeking model

sitize occluded parts of the model from image forces. We integrates the incoming information over time.
employ a standard 3D ray casting technique in conjunc- As an illustration, we use a stereo-motion sequence
tion with the imaging projection in order to test surface consisting of 40 video fields that portray the 3D motion of
,,dUCS for visibility using a depth buffer. The ray casting the human finger. We use as initial condition the equilib-

operation requires knowledge of the relative depth ordering
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to extrinsic forces as one would expect real elastic objects 0

to react to applied forces. This is because deformable mod-
els are dynamic models governed by physics; specifically,
by the principles of elasticity theory as expressed through
Lagrangian dynamics.

The distributed nature of deformable models enhances
their representational power. Every material point poten-
tially contributes three spatial degrees of freedom which
are mutually constrained with variable tightness by the
model's intrinsic forces. Shape representations capable of
applying constraint in a controlled manner are desirable
for reconstruction and recognition. An immediate advan-
tage is that the geometric coverage of deformable models
can be significantly broader than lumped-parameter fami-
lies of shapes such as the superquadric models that have
applied to computer vision.[33] Lumped-parameter mod-
els, while relatively inexpensive to work with, are capable
of accurately representing only a restricted class of artifi- -p
cial objects. This is because they "wire into the parame-
terization" a relatively small family of shapes, rather than

-place generic constraints on shape as do our deformable
models. Lumped-parameter models cannot immediately
accommodate most natural objects of interest, so precise
hierarchical subdivision and parameterized deformations
become practical necessities to contend with. By contrast,
the free-form flexibility of our deformable models renders
them immediately adaptable to natural shapes.

The force fields that we employ yield interesting re-
sults, their simplicity notwithstanding. However, the main
shortcoming of our current algorithms stems from the fact

Figure 16: Evolution of the reconstructed 3D finger model that profile information alone, even moving stereo profiles,
through time. (top) Six frames of the stereo motion se- provide incomplete information about objects. When no
quence. (bottom) Evolving shape and motion of the model. image data is directly available over substantial portions

of the object's surface, the symmetry-seeking material may
yield an inaccurate reconstructed shape. Also, it is diffi-

rium shape computed on the first frame of this sequence. cult to detect rotations around the object's axis exclusively
The equations of motion are then integrated through time from moving profile information. Region-based measures
over the remaining frames of the stereo sequence. This over the surface would be helpful in this regard.
produces a dynamic 3D reconstruction of the finger's non- Despite the limitations of our current implementation,
rigid shape and motion. Figure 16 shows six representative a crucial advantage of our approach is the ease of integrat-
frames of the sequence along with the corresponding recon- ing additional constraints into the solution. For instance,
structed sbapes. we can straghtforwardly generalize the binocular poten-

In the restricted case of computing 3D models of ob- tial function to integrate any number of views taken from
jects from a single monocular image, we tacitly assume a known viewpoints around the object. We can formulate
suitable viewpoint wherefrom all significant object features extrinsic constraints that exploit shading and texture in-
are visible, and we assume that the axis of the object is formation over the entire visible surface. Stereo-motion
not severely inclined away from the image plane. However, constraints based on local area correlation promise to ef-
in the more general case involving stereo information, we fectively supplement our current edge-based information.
experience little difficulty in tracking the shape and mo- By applying more sophisticated image processing methods,
tion of an object, even if it's axis tilts away from the image we expect to obtain extrinsic forces that can deal with tex- V
plane significantly. tured objects and more general imaging conditions.

3

C. Discussion IV. Spacetime Constraints3

A number of features distinguish our modeling approach _ _

from the norm in computational vision. Conventional
models of 3D shape are purely geometric, hence passive. 3The material in this section is adapted from the paper "Space-
By contrast, onr dcformal,, models are active. They react ti,, Uostr2.t" Ly Ancitew ',%nLki and Michael Kass, submitted
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Computer animation has made enormous strides in the pieces are shaped like, what they weigh, how they're
past several years. In particular, Pixar'a Luzo, Jr.4 [34] connected, etc.
marked a turning point as perhaps the first computer-
generated work to compete seriously with works of tra- * What physical resources are available to the charac-
ditional animation on every front. Key among the reasons ter to accomplish the desired motion, for instance the

character's muscles (or whatever an animate lamp has
for Luzo, Jr. 's success is that it was made by a talented io
animator who adapted the principles of traditional anima- in place of muscles,) a floor to push off from, etc.
tion to the computer medium. Luro, Jr., in large measure, Our chosen object of study was a Luxo model of our
is a work of traditional animation that happens to use a own design, and the basic task we set it was to execute a
computer to render and to interpolate between keyframes. convincing jump, telling it only where to start and where
John Lasseter spelled this out clearly in his presentation to end. Before describing our methods and results, we
to SIGGRAPH '87 [26]. begin by reviewing current uses of physical methods for

Although Luzo, Jr. showed us that the team of an- animation. :4
imator, keyframe system, and renderer can be a power- -

ful one, the responsibility for defining the motion rests al- A. Background and Motivation
most entirely with the animator, who must provide enough Recently, there has been considerable interest in incorpo-
keyframes too ensure good splining. If spline interpolation rating physics into animation using simulation methods.
could be replaced by something that knows more about [21, 53, 3, 41, 16, 191 The appeal of physical simulation

the motion being performed, the division of labor could be as an animation technique lics in its promise to produce
improved. realistic motion automatically by applying the same phys-

Some aspects of animation-personality and appeal, ical laws that govern real objects, rather than relying on
for example-will surely be left to the animator's artistry the animator's skill at keyframing to create convincingly
and skill for a long time to come. However, a reading of physical motion.
Lasseter's paper reveals that many of the principles of an- Unfortunately, the realism of simulation-based anima-
imation are concerned with making the character's motion tion comes at the expense of control. The course of a
look r-al at a basic mechanical level that ought to admit to simulation i completely determined by the objects' initial

formal physical treatment. Consider for example anticipa- positions and velocities, and by the forces that act on the

tion, squash and stretch, and follow-through as elements of objects along the way. Consequently, the animator's sole

a jump. Any creature-human or lamp-can only acceler- means of controlling what happens is by choosing initial

ate its own center of mass by pushing on something else. In conditions and by injecting forces into the system.

jumping, the opportunity to control acceleration only ex- The animator who wants to use bare physical simu-

ists during contact with the floor, because while airborne lation to create anything more coordinated than chaotic
there is nothing to push on. Anticipation before the jump tumbling must therefore come up with a combination of
is the phase in which the needed momentum is acquired, initial conditions and applied forces that achieve the de-
by squashing then stretching to push off against the floor, sired motion. Anyone who has actually tried this knows
and follow-through is the phase in which the momentum that even in the simplest cases it is an excruciatingly
on landing is absorbed n painful matter of trial-and-error. For instance, while it

is easy enough to simulate the behavior of a bouncing ball,
tions, but can physics be brought to bear in creating the making the ball bounce to a particular place requiies find.
complex active motions of characters like Luxo? If so, how ing just the right starting values for position, velocity, and
much of what we regard as "nice" motion can be derived in us ig statin meh oston , elly, a

from first principles, and how much is really a matter of spin. Using simulation methods, one generally makes a
style and connion hguess, runs the simulation to see where the ball ends up,
style and convention? and starts again with a new and hopefully better guess.

This section presents the initial results of our effort As the situatioa grows more complicated, this haphazard
to answer these questions. Our specific objective was to approach quickly becomes hopeless. To control an ani-
obtain realistic and pleasing motion, exbibiting as many mate character tis way, it would be necessary to specify
as possible of the principles of animation by specifying: all the muscle forces at each instant in time. This would

" What the character has to do, for instance "jump from be like trying to control a robot arm by manually varying
here to there." the motor torques.

" How the motion should be performed, for instance Lack of control is the basic problem litniting the use-

"don't waste energy," or "come down hard enough fulness of simulation as an animation technique. Ideally,
to splatter whatever you land on." one would like a method that combines the advantages of

" What the character's physical structure is-what the keyframing with those of simulation, providing the anima-
tor with the ability to directly specify or coprtrain any Lb-
pects of the motion-where things start, where they wind

tn Sir( tAPI't t up, and how they get there-and allowing those aspects of
"Luxo" is a trademark of Jac Jacobsen Industries AS. motion that follow directly from physics to emerge auto-

'
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matically within the framework imposed by the animator, beginning to end. Each function might be represented as .

Evidently, simulation is far from this ideal, a spline or simply a sequence of values. Similar functions
In an effort to reconcile the advantages of simula- are maintained for time-dependent forces, such as those B

tion with the need for control, several researchers [3, 21] generated by muscles. The state of the spacetime system
have proposed methods for blending positional constraints is the set of values of all the variables used to control the
with dynamic simulations. The idea behind these meth- time functions. If a spline representation is chosen, the
ods is to treat kinematic constraints as the consequences state consists of the knot points; if a sequence of values is
of unknown "constraint forces," solve for 'the forces, then chosen, the state consists simply of the values themselves.
add them into the simulation, exactly canceling that com- Encapsulated in the state of the spacetime system is
ponent of the applied forces that fights against the con- every modeled aspect of the physical system's behavior
straints. In principle, constraint forces are equivalent in over the time interval of interest-position, velocity, ac-
their effect on the system to enormously stiff springs that celeration, kinetic energy, force, etc. Some states of the
keep pieces firmly attached in the face of any applied force, spacetime system denote physically valid motions, while
although the methods used to compute them avoid the others do not. We can express physics as a constraint on ."-
practical difficulties that actual stiff springs would intro- the system whose basic form is f - ma = 0. If we read off
duce. the forces and accelerations and discover that this relation 0

Constraint forces offer a good way to model mechan- holds at all times, the state represents a physically valid
ically coupled objects, particularly jointed or articulated motion, otherwise it does not.
bodies. However, as a means of controlling animation The idea of spacetime constraints is simply to com-
they offer only the ability to drag objects around with gi- bine this "physics constraint" with kinematic constraints
ant invisible springs, which fails to solve the basic control that specify positions, velocities, etc., of various objects at
problem posed above. Consider again the example of the various times, and solve for a state that satisfies both sets
bouncing ball whose desired destination is known. Were of constraints. Additionally, where this solution is under-
we to use constraint forces to drag the ball straight to its determined, we may add criteria that say how the motion
destination, we would see in the resulting motion a ball be- is to be performed within the kinematic and physics con-
ing pulled by an invisible hand. To make the motion look straints. These last take the form of functions to minimize,
natural, it would be necessary to drag the ball along just and may be used, for instance, to achieve optimally smooth
the right physical-looking trajectory, reducing the entire or efficient motion. Solving the spacetime system reduces
physical simulation to nothing more than a roundabout to a standard problem of constrained optimization.
and very inefficient way to do keyframing. The spacetime formulation provides the sought-after

We want the ball to arrive at its appointed destination combination of physics and control. The kinematic con-
"under its own steam" influenced by the force of the hand straints have precisely the form-and the function-of
that threw it, by gravity, by collisions with other objects, keyframes in conventional animation, but we interpolate
and so forth-in short, by legitimate forces, not by the with physics instead of cubics.
action of spurious springs. At the same time, we want it The remainder of the paper is organized as follows:
to end up where we want it to end up. To accomplish this, in the next section we illustrate the spacetime formulation
we need constraints that are more like stage directions than using a toy example moving particle. Then, we outline the
springs, doing their work without introducing stray forces. spacetime model for an animate Luxo lamp. Finally we
Moreover, their effects must propagate backward as well present results obtained using the Luxo model.
as forward through time, influencing, for instance, the way
the ball was thrown at the start of the motion to bring it B. A spacetime particle
to its target at the end. Spacetime methods are complicated, more so than ordi-

These requirements led us to a new formulation of the nary physical simulations. Instead of starting with initial
constraint problem, whose central characteristic is that we conditions and solving sequentially through time, we con-
solve for the motion of the system over the entire time pute the entire path in a single constrained optimization.
Xt-rv,1 of interest, rather than progressing sequentially As a gentle but concrete introduction, we begin with a
through time. Because we extend the model through time minimal example: a moving particle, influenced by gravity,
as well as space, we call the formulation spacel: 1- cn- and possessed of a "jet engine" as a means of locomotion.
straints. With no restrictions on its jet fortcs, the particle can move

'° S

In an ordinary simulation, the state of the system- any way it likes. The problem we formulate here is that of
the values of all the variables of position and velocity, to- obtaining the particle's motion and jet forces as a function
gether with the values of other independent variables-is of time, such that (a) phiysiLs L.5is, (',) soull postional-
maintained at the current instant in simulation Lime, and constraints are satisfied, and (c) the consumption of "jet
updated as the simulation proceeds. Each of these state fuel" is minimized. Here, (a) and (b) are the constraints
variables is a function of time, but only the values at the and (c) provides the function to be optimized. Although e
current instant need be remembered. In a spacetime sys- too simple to produce any really interesting motion, this
tem, these functions of tim,- are represented explicitly, from problem exhibits all the key elements of the method, and
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will aid in understanding what follows, and the forces. 5

Formul.ting the problem. Problems in constrained The power of the spacetime formulation comes when

optimization are ordinarily expressed by specifying a state the physics constraint is combined with kinematic con-

vector of moving variables, a collection of constraint func- straints that specify what the motion is supposed to do:

tions and an objective function to be minimized. The con- a simultaneous solution to both yields a motion that does

straint functions are functions vi that go to zero when the what we want in a physically valid way. For instance, to

constraints are satisfied. For spacetime systems, the state specify where P must be at certain times, we may add con-

vector specifies the entire motion over a particular time straints of the form Ya - Xa = 0, where y. is the desired

interval, position at time t.. Similar constraints can be constructed
to specify velocity, to restrict the particle to a curve orThere exssa xesv ieauetreating the nu-
surface, etc. 's.

merical solution to problems of this form, a review of which Even with the addition of a number of kinematic con-
is well beyond the scope of this paper. For practical treat-ments of the subject, as well as more specialized references, straints, the solution is generally underdetermiined, be- ,
metscofthen subject asd well asmorespecause j allows us to exert an arbitrary force on P at each
we recommend [371 and [15j. instant in time. This state of affairs is typical of ani-

In order to cast the moving particle in the framework mate models. Within the hard kinematic and physical con-
of constrained optimization, we begin by choosing the mov- straints, we may therefore provide criteria that specify how
ing variables. Clearly, we need to represent the position the motion should be performed, expressed as functions
x(t) of the particle over time. In addition, we want to that say how "good" a particular valid force-and-motion
compute the changing thrust j(t) of the particle's jet en- combination is compared to others. Then of all the states
gine. There are two basic choices for representing these satisfying both the physical and kinematic constraints we
functions of time. The first is to use a set of discrete time may seek the "best" one by the specified criteria. For in-
samples of the functions and approximate their derivatives stance, supposing we are interested in fuel economy, we 0
with finite differences. The second method is to represent mi -1-

2,thefuctonsbycoffiietsof ocl ~si fncion (inte might try to minimize -i J] , summing over time sam-
the functions by coefficients of local basis functions (finite ples, on the assumption that burn rate is proportional to
elements). We use the simpler finite difference approach thrust. More generally, different choices of the optimiza-
here. tion function may be used to impose criteria of efficiency,

Using the finite difference approach we represent x(t) smoothness, or style.
and j(t) by vectors of time samples. The time deriva-
tives v = Ox/ot and a = 8 2 x/Ot are obtained from Solving the problem. We are now equipped to pose
the x array according to the finite-difference formulas problems such as "move the particle from point xO at time
vi = (ri - zi-)/h, and ai = (xi+1 - 2xi + xi-l)/h2 , to to a point x. at time t. minimizing fuel consumption,"
where h is the time-difference between samples. The state with ready extension to more elaborate kinematic con-
of the spacetime system consists of the seL of values in the straints. This particular problem can be written as the
two vectors, following constrained optimization

Given these moving variables, we want to express the j

constraint that the motion is physically valid. This con- Minimize E Ul2 -
straint is given by Newton's second law. In order to ensure i=O,n

that f = ma, we construct a constraint function equal to Subject to
the difference f- ma. When the constraint function van- Ji + g - m-(xi+i - 2xi + xi-,) = 0, 0 < i < n
ishes, we have physically valid motion. The total force f T2 %

on the particle is the sum of the jet thrust j and the gravi- x 0 - a = 0

tational force mg, where m is the mass of the particle and x. - b = 0 0
gis the constant of gravitational acceleration. To keep the
example simple, we will assume that the mass of the parti- To solve this problem, we use a modified iterative

cle is much greater than the mass of the fuel, so m can be Newton-Raphson method [371. Let vi be a single vector

regarded as a constant over time. Then the quantity we containing all the constraint functions and let q1 be a sin

want to constrain to be zero is just V =mg +j(t) - ma. gle vector containing all the state variables. We begin each

The constraint should be valid at all time samples, so if we
insert the finite difference formulas, and write V in terms 51t is worth mentioning briefly that f - ma = 0 is not the only
of tb- c.tc ;ariabies xi and ji, we obtain the constraint form that the physics constraint can assume. A particularly attrac- 5,

functions tive alternative is Hamilton's Variational Principle [18] which states 0,
,tlt t- motion between anv twv taxed states always ritr -niis the
integral Jt" T - Vdt, where T and V are kinetic and potential en-

mergy respectively. A shortcoming of Hamilton's principle, which led
vi = fi - ma, = ji + g - T-(xi+l - 2xi + xi- ), us to reject it as a constraint, is its requirement of fixed boundary

conditions, i.e. full keyframes at the beginning and end, which is un-
necessarily restrictive. A minor problem with Hamilton's principle is

which express the physical compatibiiity of the motion that it is awkward to incorporate non-conservative forces. o,
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iteration by solving problem we solve is closely related to the one of controlli. '

Ohi a real mechanism, for instance a robot. For that problem,
- hi = qj (9) it is the motion that is a byproduct and the forces that are

used directly to drive the motors. Although many of the

for a step 4j that would drive the objective functions hi complexities of robot control-motor inertia, backlash, ca-

to zero without regard to the constraints. Equation 9 is ble stretch, etc.-may be safely ignored in animation, the

a linear system which we solve using a conjugate gradient connection is an interesting one. Path optimization meth-

algorithm from [37] to compute the pseudo-inverse solu- ods have been used in robotics (see [7] and [8] for recent

tion [25, 16] while exploiting sparsity. Due to the lcast surveys,) but the central concern has been with the very

squares norm of the pseudo-inverse, solving equation 9 has different problem of path planning for obstacle avoidance.

the effect of minimizing E h,. We next compute another A

update 4j by solving C. Spacetime Luxo 5

We are now equipped to proceed to a more interesting
Vi= + ) (10) spacetime model, specifically a model ofn animate Lux

Oqy Lamp. In principle, the Luxo model has the same form as
that of the particle described in the last section. In prac-

where the Jacobian Ovi/Oqj is evaluated at qj. Equation tice things are far more complicated because the equations
10 is another linear system solved in the same way. The of motion are more complex with more degrees of free-
update 4j simultaneously drives the constraint functions dom. The differentiation of the physics constraint with
vi to zero and cancels any component of 4j which to first respect to state variables produces a great many large and
order would increase the magnitude of v. Finally, we make unattractive expressions. The number and complexity of --
the update qy - qy + 4j + 4j. This algorithm is related to these derivatives is large enough that deriving and cod- 0
the one used by Barzel & Barr [3] to compute constraint ing them by hand would be all but hopeless. Faced with "r
forces. this bleak prospect, the authors implemented a lisp-based

If the constraints are locally linear, then the solution system for symbolic differentiatios. simplfication, and op-
to equation 10 will drive them all simultaneously to zero. timized code-generation of tensor forns. This tool relieved

If the constraints are non-linear, then the procedure must us of the task of cranking out the derivatives, automatically
be used iteratively. We have found the algorithm to belarge,

veryshown later and speedy-some of the Luxo examples to be sparse derivative matrices. Space does not permit repro-,.
shownlrconvergedinfoursteps. ducing the derivative forms here, nor would it be particu-

It is critical to make use of sparsity in Ovi/v in order lary enlightening to do so. Rather, our goal in this section
to obtain acceptable performance for non-trivial constraint is to describe the Luxo model at the level that we were re-

systems. The particle example yields a typical sparsity quired to specify by hand, as input to our math compiler.
pattern: Those who wish to duplicate our results without imple-

menting a symbolic math package of their own face two •
OFi 2m/h 2, = choices: adapt an available symbolic math system, such

-xj as Macsyma, to the task, or perform the differentiations

= -r/h 2 , i j I numerically at runtime. IN
Geometrically, our simplified Luxo is composed of

= 0, otherwise rigid bodies of uniform mass connected by frictionless
OFi joints. Each joint is equipped with a "muscle" modeled

as an angular spring whose stiffness and rest angle are free
0, otherwise, to vary with time. Our lamp is subject to the forces of

its own muscles, in addition to the external force of gray-
where ity and the contact forces arising from its interaction with ,

m objects such as floors and skijumps. In the treatment and
Fi = ji + g - T, (xi+i - 2x, + xi- 1 ). examples to follow, we restrict Luxo's motion to a plane.

This expedient greatly simplifies the mathematics, while
It should be clear that most of the entries in Ovi/Dv are still allowing the creation of complex, subtle, and inter-
zero for this case. esting motion. A picture of the model appears in figure

We conclude the particle example with an observa- 17.
tion about the role of such forces as j(t). Although these Newton's second law suffices to write down the equa-
time-dependent forces are computed as part of the solution tions of motion for arbitrarily complex mechanical systems. .p
process, forces can't be seen, at least not directly, and play However, deriving equations of motion for complex con-
no role in the rendering process. From the standpoint of strained systems directly from F = ma can be a laborious 0
animation, the computed forces are necessary byproducts and error-prone task. An alternative and equivalent for-
of the creation of realistic motion. In principle, at least, the inulation of mechanics, due to Lagrange, sometimes allows 'N.
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of those quantities with respect to the state variables to
obtain Q. Specifics will be given when the forces are dis-
cussed below. b

The kinetic energy, T, of any body is the integral over

the body of the kinetic energy of each particle, 1P , 12_

where p is the mass density at point z. The kinetic energy
of an articulated object is the sum of the kinetic ener-
gies of the parts. Each of Luxo's links is modeled as a

rigid body rotating about an axis of fixed direction that
-/ passes through the origin in body coordinates (see figure

/ 18.) Because the axis is fixed, the orientation of the i-th 

/ / link may be denoted by a single angle 01, with angular ve-
locity wi = Oia, where a is a unit vector in the direction of

the axis. In addition to rotation, the body origin undergoes
Figure 17: Luxo a translation pi, with translational velocity vi = dpi/dt.

Each link has mass mi, a constant moment of inertia 1i

for a more direct derivation of the equations of motion. about the rotation axis, and a center of mass ci expressed

The Lagrangian equations of motion can be written (181 as a displacement from the body origin. In these terms,
the kinetic energy of the i-th link is

d 49T &T) T - Q = O, (11) 1 12 1 V X , pi.1(2)

-Q L9, T~ 2 m~,±,~V (12)

where T is kinetic energy q is the vector of state variables, T
ql is their time derivative, and Q is the generalized force on To connect the links, each link inherits as its translation

q. A generalized force is just a real-world force mapped the position of the previous link's endpoint, with the base's

into the object's arbitrary state space. In the case of a translation, P, serving as a translation parameter for the

conservative force expressed as a scalar potential V(q), whole model. The translational velocity vi of the i-th link N
the generalized force is just -VV. In the case of a force is thus

applied to a point x on the object, Q = xox/Oq. dP

Constructing the physics constraint using Lagrange's Vi - -, i 0
equation involves the following steps: i- v- + ri-1 x wi-1, otherwise

* . Construct an expression for the generalized force, Q. where ri_ 1 is a vector from the (i - 1)-th link's center of
* . Express the kinetic energy, T, of the body in terms of rotation to its point of attachment with the i-th link. The

the position variables and their first time derivatives, total kinetic energy T is obtained by recursively substitut-

e Perform the differentiations indicated in equation 11, ing this expression into equation 12 to obtain the Ti's, and

to obtain Lagrange's equation of motion. summing over i.

* * Re-express Lagrange's equation in terms of spacetime To obtain Lagrange's equation, the kinetic energy

state variables, replacing time derivatives by finite dif- derivatives to be computed are

ferences to obtain the physics constraint. 8T 2  OT2  OT

* Differentiate the resulting expression with respect to a Ow tt a~i'
all state variables to obtain the jacobian of the physics t

constraint. where P is the translational velocity of the base, and the

The first three steps create the equations of motion wis and 8"s are respectively the angular velocities and

needed to perform an ordinary simulation, producing an orientations of the four links. To obtain the kinetic energy

expression analogous in form to f-ma = 0. The remaining terms of the physics constraint's jacobian, these derivatives

ones are peculiar to the spacetime formulation. Only the must again be differentiated with respect to the vector of

first two steps will be described here. spacetime state variables, after finite differences have been

Computing the generalized force is not usually diffi- substituted for time derivatives.

cult. For conservative forces, which may be expressed as Luxo's muscles are three angular springs, one situateda euat. joinr Tosehei forres, forch ony the jointse conctn the

*. gradients of scalar potentials, Q is obtained by writing the at each joint. The spring force on the joint connecting the
* potential function in terms of the object's state variables, i-th and (i + 1)-th links is defined by

then taking a gradient. For non-conservative forces that

are expressed directly in terms of state variables, Q is just Fi = ki(Oi - pi),

the force itself. Forces given in terms of quantities that de-
pend on the state variables, such as the position of a point

on the body's surface, must be multiplied by the jacobian pi is the rest angle. Our model is parameterized by link
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The pose constraints consisted of values for the three
3 joint angles, and were applied to the first two and last two

frames of motion. Because we measure velocity using a
finite difference, this incorporates 

the additional constraint

that Luxo be at rest at the beginning and end of motion.
2Initial values for the orientations were obtained by linear

interpolation between the two poses.
The floor enters both as a kinematic constraint and as S

a force. In general collision constraints appear as inequali-
ties, but to simplify matters, we chose to specify explicitly

p, 8 , the time intervals during which Luxo was on the floor, im-
posing during those times the equality constraints

ir8

0 =O,P-Pf =0

where O0 is the orientation of the base, P is the position of
the center of the base, and P1 is a constant point on the

Figure 18: Each link of the Luxo model rotates about the floor. In other words, the position and orientation of the

previous link, inheriting the previous link's end position as base are nailed. The limitation of this formulation, com-

a translation. pared to an inequality, is that the times at which contact
occurs must be prespecified, rather than allowing things C?

to bounce freely. The floor constraint was enabled for the
orientations rather than joint angles. The joint angle is first and last five frames, allowing time for anticipation and ,w

0i = Oi+l - Oi, the difference between the orientations of follow-through. Of course, two different values were used
the surrounding links. The generalized force on Oi, the for P1 at the start and finish, defining the start end points '
orientation of the i-th link, due to the j-th muscle is of the jump.

4iF d~ iU n lik e t h e p o s e c o n s t r a i n t s , w h ic h a r e r e a ll y " s t a g e 't

O-= directions," the floor constraint represents a mechanical .' , -
I interaction involving the transmission of force between the S

= k y(j ), = i + 1 base and the floor. This contact force must be taken into %

= -kj(j - ps) j =i account to satisfy the physics constraint. Our collision

= 0, otherwise model has the base colliding with the floor inelastically
with infinite friction, which means that the base comes torN

Unlike passive springs whose stiffness and rest state rest, losing its kinetic energy, at the moment of contact.

are constants, k, and pi vary freely over time, allowing The contact force is therefore whatever arbitrary force on

arbitrary time-dependent joint forces to be exerted. The the base-specifically, on P and 00-is required to satisfy ' %n

imposition of active forces by varying stiffness and rest physics in light of the floor constraint. No special provision ,4

state is actually a fair approximation to the way real mus- need be made to solve for the contact forces beyond intro-

cles work. As with all the other independent variables in ducing additional state vpriables to represent them. Their

a spacetime system ki and pi for each of the three muscles values are then determined during the constraint-solving .

are represented by spacetime arrays, whose contents are process. This method of solving for constraint forces ap- ,-

moving variables to be solved for. plies to other mechanical constraints, such as joint attach- 5
ments, and is closely related to the method of Lagrange 11 W

D . R esults multipliers. , -
The choice of optimization criteria is an area we have 44

Jumping Luxo. To create jumping motion, we used just begun to explore. Flash et al. [12 propose that un-
kinematic constraints to specify initial and final poses, us- restrained human arm motions minimize the integral of 1%
ing linear interpolation between them to create a trivial jerk squared, fIdx/dt12 dt, where x is the position of

initial condition for the spacetime iteration. Another con- tile hand. In the examples shown, we chose to optimize a
straint was used to put Luxo on the floor during the ini- measure of the motion's mechanical efcciency rather than
tial and final phases of the motion. Subject to these a d a kinematic smoothness measure. We minimize the power
the physics constraint, w e m inim ized tile pow er due to the a n m a i s m th n es a se . We n e h fo r e h,

muscles, Eq0. In one variation, we adjusted the mass of consumned by the muscles at each time step, which for each
nu's es, lea.in g he itation , o dtetis e a s o joint is the product of the muscle force and the joint's an- %

I n an o t h e , w e a d d i on a l l y t h e s t ra i n d o t le r e u n c h an g , g u l a r v e l o c i t y . O u r p r e l i m i n a r y o b s e r v a t i o n i s t h a t t h i sIn another, we additionally constrained the force of con- criterion produces more fluid and natural motion than do

tact with the floor on landing, to produce a relatively soft kinematic smoothness criteria, which often come out look-
landing. In a final variation we added a hurdle, together ing somewhat arthritic. 4

with a constraint that the jump clear the hurdle. '
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Figure 19 shows a series of iterations leading from an
initial motion in which Lao translates, floating well above
the floor, to a finished jump in which all the constraints
are met and the optimization function is minimized. Note
that the elements of realistic motion already appear after
the first iteration. The final motion shows marked an-
ticipation, squash-and-stretch, and follow-through. From
its predefined initial pose, Luxo assumes a crouch provid- / / \ \ \
ing a pose from which to build momentum. The crouch is b.

followed by a momentum-building forward-and-upward ex-
tension to a stretched launching position. While in flight,
the center of mass moves ballistically along a parabolic arc
determined by the launch velocity and by the force of grav- -

ity. Toward the end of the flight, Luxo once again assumes
a crouched position in anticipation of landing, extending k
slightly while moving toward impact. This "stomp" ma-
neuver has the effect of transferring kinetic energy into the
base, where it vanishes in the inelastic collision with the
floor. Following impact, luxo extends forward while com-
pressing slightly, dissipating the remaining momentum of -_,
flight, then rises smoothly to its prespecified final pose.

In the first variation on the basic jump, we add an
additional constraint fixing the contact force on landing.
The value we choose provides control over a hard-to-soft
landing dimcnsion-a large landing force leads to an exag-
gerated stomp, as if trying to squash a bug, while a small
value leads to a soft landing, as if trying to avoid break-
ing something fragile. Figure 20 shows a relatively soft
landing, generated under the same conditions as the basic
jump except for the contact force constraint. Comparing
the motion to the basic jump, we see that Luxo softened
the blow of impact by squashing while moving toward im- .
pact, reducing the velocity, and hence the kinetic energy

of the base. In contrast, the basic jump has a small stretch
before impact, producing an energy-absorbing stomp.

The next variation has the same conditions as the ba-
sic jump, but the mass of the base has been doubled. The
final motion is shown in Figure 21. As expected, botl. 'he
anticipation and follow-through are exaggerated in com- .9.

pensation for the greater mass.

A final variation, shown in figure 22, has the condi-
tions of the soft-landing jump, but with a hurdle interposed
between start and finish, and an additional constraint that
Luxo clear the hurdle. As one would expect, the extra Figure 19: From top to bottom, a series of iterations
height required is gained by squashing vigorously on ap- leading from an initial motion in which Luxo translates,
proaching the wall. floating above the floor, to a finished jump in which all

The jumping examples each took under 10 minutes the constraints are met and the optimization function is
to compute on a Symbolics 3640. While this is hardly minimized. The final motion shows marked anticipation,
interactive speed, it constitutes a tiny fraction of the cost squash-and-stretch, and follow-through.

of high-quality rendering.

Ski Jumping. Figure 23 shows Luxo descending a ski and the landing left unspecified except at the top and bot-
jump. As in the previous case, Luxo is constrained to be tom of the ski jump. In addition, there is a constraint that
on the ski jump and the landing at particular time sam- the orientation of the base must be tangent to the surface

ples. The biggest difference between the ski-jump and the it is resting on.
infinite-friction floor of the previous example is that Luxo Both the ski jump and landing exert forces on Luxo.
is free to slide, with the exact positions on the ski jump There is a normal force which keeps him from falling
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Figure 20: A variation on the basic jump in which the
contact force on landing is constrained to be small. The
force of impact is reduced by squashing just before land-
ing, reducing the velocity and hence the kinetic energy
of the base. In contrast, the jump in figure 19 ex- Figure 23: Luxo descends a skijump.
hibits a slight stretrh, before impact, producing an en-
ergy-absorbing stomp.

tion without which Luxo is content to go through the air
in a bent position.

Luxo is also given pose constraints at the beginning
and end of the motion. Unlike the previous jumps, how-
ever, his initial velocity is unconstrained.

The initial condition for the optimization was a uni-

form translation in the air above both the ski jump and
the landing. In the first iter.tion, Luxo puts his feet on the
ski jump and landing. By iteration 4, there is significant
anticipation and follow through. Figure 23 is the result

after 16 iterations.

Both the ski jump and landing are built from two B-
Figure 21: The mass of Luxo's base has been doubled. spline segments. The entire jump was computed with 28
In other respects, the conditions are the same as those time samples in the optimization. There were 223 con-
producing the motion in figure 19. straints and 394 state variables. The Jacobian contained

3587 non-zero entries, about 4% of the total number of en-
tries. The entire motion was computed in 45 minutes on athrough and a frictional force whidi is tangent to the sur- Symbolics 3600.

face and proportional to the tangential velocity. The coef-

ficients of friction were state variables in the optimization.
At one time instant while Luxo is in the air, the height E. Discussion

of his base is constrained. In addition, there is a term in Our results show that spacetime methods are capable of
the objective function which gives him a preference for a producing realistic, complex and coordinated motion given
particular pose while in the air. This is a "style" optimiza- only minimal kinematic constraints. Such basic attributes

as anticipation, squash-and-stretch, follow-through, and
timing emerge on their own from the requirement that the
kinematic constraints be met in a physically valid way sub-
ject to simple optimization criteria.

The principle advantage of spacetime methods over
simple keyframing is that they do much of the work that
the animator would otherwise be required to do, and that
only a skilled animator can do. Motions that would require

highly detailed keyframe information may be sketched out
at the level of "start here" and "stop there." This is a

/ profoundly different and more economical means of control
than conventional keyframing affords, an advantage that
easily outweighs the greater mathematical complexity and
computational cost of the method.

Beyond sparser keyframing, spacetime methods offer
Figure 22: Clearing a hurdle, really new forms of motion control. For example, we saw
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in the previous section that constraints on forces, such as J111 Fisctiler, M. A., and Elschlager, R. A. "The repre-

the force of a collision, can be used in a direct and simple sentation and matching of pictorial structure," IEEE

way to say "hit hard" or "hit softly," producing subtle but Trans. on Computers, C-22 p. 67-92, 1973.

very effective changes in the motion. [12] Flash,T., and Hogan, N. "The Coordination of Arm Y

Of the new opportunities for motion control, perhaps Movements: an Experimentally Confirmed Mathe-
the most exciting is the selection of optimization criteria matical Model," MIT AI Memo 786, November 1984.

to affect the motion globally, an area we have only begun [13] Fleischer, K., Witkin, A., Kass, M. and Terzopoulos,
to explore. With a little thought, it is clear that a magic D., Cooking With Kurt, (video), 1987.

"right" criterion, whether based on smoothness, efficiency D ku ( )
or some other principle, is unlikely to emerge and would [14] Fleischer, K., Elastically Deformable Models, (video),

in any case be undesirable. This is because the "optimal" 1987. 4"4

way to perform a motion, as with any optimization, de- [15] Gill, P., Murray, W., and Wright, M., Practical Opti-

pends on what you're trying to do. Consider for example mization, Academic Press, New York, NY, 1981
several versions of a character crossing a room: in one case, [16] Girard, M., and Maciejewski, A., Computational mod-
walking on hot coals; in another, walking on eggs; in an- eling for the computer animation of legged figures,
other, carrying a full bowl of hot soup; and in still another, Proc. SIGGRAPH, 1985, pp. 263-270
pursued by a bear. Plainly the character's goals-and Lt-
tendant criteria of optimality-are very different in ach [17] Gladwell, I., and Wait, R., (ed.) A Survey of Nu-

case. We would hope to see these differing goals reflected merieal Methods for Partial Differential Equations,

in the motion. The possibility of controlling motion di- Clarendon, Oxford,1979. %P

rectly in terms of its goals, not just where it goes but how, [18] Goldstein, H. Classical Mechanics, Addison-Wesley,
is one we intend to explore. Reading, MA, 1950

[19] Haumann, D. Modeling the physical behavior of flex-
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PERCFPTION WITH FEEDBACK

Ruzena Bajcsy
Computer and Information Science Department

University of Pennsylvania
Philadelphia, PA 19104

changing the sensor's stated parameters according to sensing strategies.

Putting it more succinctly, we are introducing a new paradigm for research
in Computer Vision [Bajcsy 1985] called Active Perception. The new
ingredient of this paradigm is the inclusion of feedback, hence the tide of

ABSTRACT the paper.

Problem definition
We have defined active perception as a problem of an
intelligent data acquisition process. For that, one needs to The problem of Active Sensing can be stated as a problem to control % I
define and measure parameters and errors from the scene strategies applied to the data acquisition process that will depend on the *

which in turn can be fed back to control the data current state of the data interpretation including recognition. The question
acquisition process. This is a difficult though important may be asked, "Is Active Sensing only an application of Control Theory?"
problem. Why? The difficulty is in the fact that many of Our answer is: "No, at least not in its simple version." Here is why:
the feedback parameters are context and scene dependent. 0
The precise definition of these parameters depends on I. The feedback is performed not only on sensory data but on
thorough understanding of the data acquisition devices.
(camera parameters, illumination and reflectance complex processed sensory data, i.e., various extracted
parameters), algorithms (edge detectors, region growers,
3D recovery procedures) as well as the goal of the visual features, including relational features.
processing. a-

2. The feedback is dependent on a priori knowledge --- models
Acknowledgements: Ths woais suoporledn pa NSF.CERIDCA82-19196 A02, NSF-CER that are a mixture of numeric/parametric and symbolic

MCS58219196, NSF!DCR-8410771. A For'e/F49620-S5-K-0C8 ARMY DAAG-29-84-K-0061,
0AA29-84-9-0027 and DARPA N)014-5-K -0807 P002.

information.

But one can say that Active Perception is an application of intelligent
control theory which includes estimation, reasoning, decision making and %
control. This approach has beer, eloquently stated by Tenenbaum

INTRODUCTION [Tenenbaum 1970]: "Because of the inherent limitation of a single image, ,.,
the acquisition of information should be treated as an integral part of the

Most past and present work in machine perception has involved perceptual process...Accommodation attacks the fundamental limitation of
extensive static analysis of passively sampled data. However, it should be image inadequacy rather than the secondary problems caused U, it."
axiomatic that perceptic., is not passive, but active. Perceptual activity is Although he uses the term accommodation rather than active sensing the
exploratory, probing, searching; percepts do not simply fall onto sensors as message is the same. Before we can outline the problem of active sensing I.

rain falls onto ground. We do not just see, we look. And in the course, our more formally, we need to enumerate the assumptions under which we are
pupils adjust to the level of illumination, our eyes bring the world into sharp making the design.
focus, our eyes converge or diverge, we move our heads or change our
position to get a better view of something, and sometimes we even put on .%
spectacles This adaptiveness is crucial for survival in an uncertain and Consequences
generally unfriendly world, as millenia of experiments with different
perceptual organizations have clearly demonstrated. Although no adequate The implications of the above realisation are: a-
account or theory of activity of perception has been presented by machine ,r*sa
perception research, very recently, some researchers have recognized the I.The necessity of models of sensors and all subsequent
value of actively probing the environment and emphasized the importance prcessing modules, including noise and uncertainity.
of data acquisition during the perception including head/eye movement pn
[Ballard 87, Aloimonos et al 871. considerations. This is the decomposition or the analysis part Nei

WHAT IS ACTIVE PERCEPTION? of the system.

In the robotics and computer vision literature, the term "activesensor" generally refers to a sensor that transmits (generally electromagnetic 2. The models of integration process different modules,

or acoustic radiation, e.g., radar, sonar, ultrasound, microwaves nd including feedback. This is the synthesis portion of the "'
collimated light) into the environment and receives and measures the
reflected energy. Active Sensing is included under the term Active process.
Perception. We believe that the use of active sensors is not a necessary
condition on active sensing, and that active sensing can be performed with *. Explicit specification of the initial and final state/goal and of S
passive sensors (that or'ly receive, and do not emit) employed actively. Here E.i
we use the term active not to denote a time-of-flight type sensor, but to the task.
denote a passive sensor employed in an active fashion, purposefully
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4. Study of the system as a whole, including its stabilty and Signal Models or Ideal Measurement -- Signal models help us

performance (what optimization procedures could be and analyse and predict the feasibility of detection of certain

should be applied) and how to constrain the system. features. Examples of this case are: edge (step, linear or non-

If the Active Pereption is a ,heory, what is its predictive power? linear) and region (piece-wise constant or linear or nonlinear,

threeEach with certain but monotonic) models [Haralick & Shapiro 1985, Pavlidis &
There are the ope to toOur theory. Ec ihcrani

predictions: Liou 1988] as well as shape models of objects.

1. Local models at each processing level, characterised by
.Noise or Disturbance Models -- Here we have considered not

parameters; these parameters are estimated using estimation only hue normal distribution (as everybody else has) but also

theory. These parameters predict the range of values for anrl ds4abnormal distributions, symmetric or non-symmetric,,.v

which this theory works. distributions of the random variables. -

2. Evaluation process realized by matching of the results All tsese .,,els provide upper and lower bounds for expected errors,

obtained from local models with global models. Here we use resolution, and robustness, which is necessary for making certain decisions,

in particular: "Do we need more data in order to get more accuracy? Can

optimization theory. The global models will make predictions we afford to take more data based on some economy? Given the errors,

how do we combine different pieces of information in order to improve the

about the system behavior, overall performance?"

The Models and Estimation theory have been very successfully

3. Correction and updating, this is the feedback process. As applied by Zucker [Zucker 19851. In this basic work titled: "Theory of Early

& lain 1985] among Orientation Selection", Zucker used the model of a contour that comes from

pointed out by Besl and lain [Bes &Jdifferential geometry. He divides the orientation selection process into three

others, open loop systems are only as robust as their most steps: . N.

limited component. So this portion of our theory will predict 1. The measurement step-series ofconvolutions. ..

the amount of improvement due to feedback. 2. The interpretation step of these convolution values. This is a

The predictive power of the theory is in the clear definitions of the functional minimization problem.

models/parameters at each level, as well as the global models, i.e., rules of

integration or syntihesis. 3. Finding the integral curve through the vector field. " '

The individual pieces of mathematics used here are not new. What is This decomposition in steps, having the parameters of each step

new is the examination of each model. How appropriate is it to a given explicit, allows Zucker to make clear predictions about where the contours

task? How valid are the assumptions are and how do the pieces fit will or will not be found. We very much agree with Zucker's criticism of

together? This paper will try to present those recent pieces of work which the field for lacking this kind of methodology. The very same flavor is in

address the above issues, the components and the whole of the theory of the paper of Leclerc and Zucker [Leclerc & Zucker 1987] where they study

Active Perception as it applies to 3D shape recovery and description. the edge detection of image discontinuities. The work of Binford and
Nalwa [Nalwa & Binford 1987] is again similar in flavor but is applied to
modeling of edges or more general discontinuities.

THE MODELS
A systematic and thorough approach to modeling, as it applies to

When we speak about models of sensors we are not restricted to Active Vision, is shown in the recent Ph.D. thesis of E. Krotkov [Krotkov

hardware only but also include various software modules that play a role in 19871 at the University of Pennsylvania. He has defined the task of

the processing chain. The following highlights of this work are worth determination of spatial layout using an agile camera system and two cues:

mentioning. range from focus and range from vergence. He has decomposed the
problem into three subproblems:

Sensory Models 
"

1. identifying an appropriate model M to represent the spatial " S

" Physics models -- These models represent the mathematical layout of the environment;

equations of principles that the sensors operate. The analysis of l t;%

these models provides range for expected performance of the 2. finding effective methods for constructing M from vision

sensors if no other influences than physics are at work. data; and,

Examples of these models are optics, illumination, radiance, 3. determining strategies for actively, dynamically, and ,

and forces. adaptively setting sensor parameters for acquiring the vision a"

" Geometric models -- From these models we obtain predictions data.

from various aspects of geometry on the best possible values, In this section, we shall review only the first subproblem. Krotkov
modelled two characteristics of objects: extent and position. This means

i.e., the geometry of a pair of stereo cameras predicts how encoding a map of location of objects with respect to the viewer. The extent .5.
was modeled via boxes. In order to accomplish the above he had to model "

resolution decreases as a function of distance [Solina 1985]. the details of the sensor (the camera) as well as the details of the %
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comoutational process of obtaining range from focus and range from.,jw
vergece. Ile hardware of the agile camera is in Figure 1. Notice that the 2. make decisions on acceptanceirejection or other actions in the ',physical dimensions of all the components of the hardware are important for

determining the physical boundaries of the fiial result. It is not possible to process of perceptual activity.
go into all the details of the analysis [Krotkov 871 but we can summarize
the model as follows: One can ask: "What is different between this paradigm of Active l

Perception from the standard robotic paradigm where a mechanical system,
1. determine the optics of the lenses, the depth of field, the i.e., a manipulator or an autonomous land/air/underwater vehicle carries out

accuacyof bjec ditane, in tis etu th disanc ofthesome actionsitasks based on the sensory input?" The difference is in the
accuacyof bjec ditane, in tis etu th disanc ofthetask itself. Here, the task is to improve the perceptual process. Such tasks

object is independent of the depth of field for distances 1-3 could be to improve the estimation of the location of the robot or of an
object; get more or less complete scans of the environment; recognize and

mn.) classify shape or other properties of the outside world, (discriminate among
different substances) etc.

2. circle of confusion: its diameter depends upon the distance of To our knowledge, very latle work has been performed on Active

the object plane from focusing distance. For a given distance Machine Perceptual Systems in the sense of the above definition. To that
extent, the state of the art in this domain is poorly defined. In this section,

between the image and detector planes the confusion circle is we will briefly describe some of the work most pertinent to our point of
view.

directly proportional to the diameter of the aperature, in this l
A few groups have built hardware/software systems, i.e., sensors that

case diameter is 58ram. are mobile and under computer control, that enable us to investigate the
issues of Active Perception. The hand-eye system at Stanford uses a pan-

3. the spatial resolution of the detector array is another limiuting tilt head, a lens turred for controlling focal length, color and neutral filters
mounted on a "filter wheel", and a vidicon camera whose sensitivity is

factor; (for the CCD chip used in this work the width of one programmable. This system is limited in processing, i/o speed (it used a

photrecpto is0.0 mmand he oca legthf=15mmPDP-6 computer) and in resolution (four bits), but its design is well
photrecpto is0.0 mmand he oca legthf=15mmconceived. It was successfully used for adaptive edge following

determines the evaluation window size, typically 20x20 [Tenenbaum 1971].

pixels). POPEYE is a grey level vision system developed at Carnegie Mellon
University [Bracho et al]. It is a loosely coupled multiprocessor system on a

4. determine how to measure the sharpness of focus with a MULTIBUS, with a MC68000, a Matrix frame grabber and buffer, as an
array processor, dedicated image processing units, and a programmable

criterion function. After analysing defocus as an attenuation transform processor. Image positioning is achieved with a pan/tilt head and
motorized zoom/focus lens. Altogether, this is a powerful and flexible

of high spatial-frequencies and experimentally comparing a system. Weiss iWeiss 1984] describes a model reference adaptive control m I
~feedback system that uses image features (areas, centroids) as feedback

, , number of possible criterion functions, the method based on control signals. We would like to do something similar, using a world

]dmaximizing the magnitude of the intensity gradient was model rather than image features.

~chosen. It proves superior to others in monotonicity about the Kuno et al [Kuno et al 1985] reports a stereo camera system whose
• , interocular distance yaw, and tilt are computer controlled. The cameras are
mode and in robustness in the presence of noise. Then the mounted on a specially designed linkage. By controlling the interocular

distance a certain flexibility in processing is achieved: the larger the
Fibonacci search technique is employed to optimally locate distance, the more precisely disparity information from stereo can be

converted to absolute distance information; the smaller the distance, the
the mode of the criterion function. easier is the solution to the correspondence problem. It is not clear how this

flexibility will be exploited, nor how the three degrees of freedomn will t-.
5. Finally the distance to an object poin given the focus motor controlled.

position of sharpest focus is modeled by the thick lens law. Recently, the Rochester group [Ballard 871 as well as Poggio at MIT
[Poggio 87] have reported a mobile stereo camera. Both these groups are

All the above predictions were experimentally verified on more than interested in modeling the biological systems rather than the machine
3,000 points. A very similar exercise that can be presented, although, will perception problemns.
not he for lack of space, is the modeling of the physical relationships for the
vergence controller and the modeling of the line finder that is being used for Models for Segmentation
matching the two stereo pairs of lines.

Local Models for Segmentation
SYSTEMS AND THEIR EVALUATIONS

"What do we mean by Local models in this caseT" Usually oneN
The word "system" is used in this paper in the very traditional form, begins with local (small neighborhood) edgetregion estimation. The

that is, anytime two or more modules interact, we speak of a system. We problem here is the choice of scale. "At which scale should one be
assume, as described above, that each module is clearly defined, detecting discontinuities (edges) and continuities (regions)?" Typically, the
characterised by some formal means, i.e., we not only know the scale for detecting edges and regions is different, This is also the approach
inputJoutput function but also the internal parameters (either assumed or taken by us [Anderson et Al. 19871. 'Me block diagram of this system is
estimated). Therefore, the focus of this section is how to model the shown in Figure.. In the feedback we control the similarity criterion of the
interaction of what we refer to as local models, i.e., global models. region growing procedure. The stopping rule is satisfied by a close value of
Therefore, the Global Models must be able to: GOODNESS MEASURE. (GOODNESS = Number of edge-border

confirmed pixels - 0.5 unconfirmed border pixels and constant 0.5 is bias ,
1. evaluate the results obtained from local models in the context toward oversegmentation made by us based on experience) Figure 3 is an
~example of a rejected partition segmentation as oversegmentation. Figures

i.of the Global expectations or consistency rules;, and, 4 a) is the original image and 4b) is the best segmentation complying to the
~~goodness measure. An alternative approach has been developed by Mallat,.

1 19871 in that having all the power of two scales available simultaneously. 1:.IM,
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The effect of this is for every edge point we have a vector representation of researchers to turn to a priori contextual knowledge in order to cope with

zero-crossings at several scales. Then the segmentation is formulated as a the complexity problem of segmentaton (as an example), and hence,
problem of local aggregation based on the distance measure between constrain the nondeterminism of the process which can be resolved by an

vectors. We have tested this approach so far only on few examples, which opposite approach that the Active Perception paradigm offers, that is, to get

seem to gave promise. more data which can resolve the multiplicity of interpretations.

Global Models for Segmentation This point has recently been presented in a paper at the First

International Conference on Computer Vision by Aloimonos and

The most popular approach in this domain is the cooperative network Badyopadhyay [Aloimonos & Badyopadhyay 19871 with the tile: "Active

or relaxation approach where the global model is the continuity or some Vision." They argue that: "problems that are ill-posed, nonlinear or

other consistency principle. This is represented by various workers, notably unstable for a passive observer become well-posed, linear or stable for an

Rosenfeld, Zucker, & Faugeras, [Rosenfeld et al 1987, Faugeras & Berthod active observer." They investigated five typical computer vision problems:

1981]. Another recently popular global model is the Random Markow shape from shading, shape from contour, shape from texture, structure from

Fields model, used by several researchers [Geman & Geman 1984, Derin & motion and optic flow (area based). The principal assumption that they

Won 1987, Cross & Jain 1983]. These models have been used for texture make is that the active observer moves with a known motion, and of course,

and image segmentation in general. The principle of this model is that the has available more than one view, i.e., more data. Hence, it is not surprising

effects of members of the field upon each other are limited to local

interaction as defined by the neighborhood. This is also the weakness of the that with more measurements taken in a controlled fashion, ill-posed

model. This basically assumes that we a priori know the spatial problems get converted into well-posed problems.

arrangements, their surface properties and illumination of objects. This Model for 3D Shape

assumption is too strong and applicable only in a few, highly controlled Local Models
experiments. The important point here is at which level one chooses
models. We advocate spatially (especially positionally) invariant models, As with the problem of segmentation, the local models for 3D shape
i.e., topological models together with several and different surface/region are primarily surface and/or silhouette models. Given the three dimensional
models. [Anderson et al 1987] data points (obtained by various means: laser range finder, stereo, range

from focus, range from motion, etc.) There are several ways in the
A very interesting global model has been inspired by the influence of literature (see the overview, BesI & Jain 1987) how one can estimate local

the Gestalt psychological models implemented in Reynolds and Beveridge surface properties and classify them into planar, curved with different
[Reynolds & Beveridge 1987]. The global model is a geometric grouping curvature characteristics. The problem with local methods is that they are
system based on similarity and spatial proximity of geometrical tokens, frequently too noise sensitive. .

Examples for lines are: colinearity, rectangularity, and so on. We think
that this is a promising approach, but what is missing is evaluation criterion Global Models
and robustness studies. This cannot be avoided especially with such vague
notions as similarity and spatial (or other) proximity relations. One global model can be and is in this example an analytic function,

Ir

The group at the University of Massachusetts [Kohl et al 1987] have superquadric defined below:
been advocating, for some time, that one must be goal directed in order to
do low level image processing and/or segmentation. They argue that the -L

failure of general segmentation techniques can be traced to: F (x,y z) a

1. the image is too complex because of the physical situation

Expanding this formula for general position and orientation, one can
from which the image was derived and/or the nature of the use fitting procedures to estimate from the data the parameters that in this

scene; or, case represent: position, orientation of the object, its main dimensions,
(a1 ,a2 ,a3 ) and so called shape parameters (El, E2), i.e., the roundness or
squareness of the edges. Adding some global deformations to the model,

2. there is a problem of evaluating different region/line parameters along some principle axis, such as bending, tapering and
twisting parameters can be recovered too. This problem of fitting in a

segmentations. seventeen-parameter space has been investigated by F.Solina in his Ph.D.

dissertation [Solina 1987]. The appeal of this work is not only that it
They say: "...it has been our experience that no low-level evaluation provides parameters that have a natural mapping to shape descriptors and %

measure restricted to making measurements on the segmentation can that it covers a large class of objects, but also that the evaluation function,
provide a useful comparative metric. Rather the quality of segmentation can which in this case is the least squares estimation, gives us a numerical value
be measured only with respect to the goals of an interpretation..." of how well the data has been explained via this model.

We agree that the images are complex, but some of the image A similar methodology is the use of variational calculus for
acquisition process can be modeled, and hence, one can account for the estimating a given geometric surface or volumetric model. Examples of this
variability of the acquisition process as shown by Krotkov [Krotkov 87]. work are Grimson and Hom.
Of course, one cannot predict the spatial arrangement of objects, (their
surface properties) but we can have models that are somewhat invariant to The conclusive message of this section is clear The evaluation
these variables. We also agree with the authors that there are no good criterion is necessary in order to have a predictive theory. In turn, we
segmentation evaluation functions. It is known that segmentation process is cannot have an evaluation criterion without a global model.
not unique given any number of parameters. But we wish to argue with the
authors that the only thing that can determine the segmentation is the goal INTEGRATION OF STRATEGIES
of its interpretation. If this would be so, then we cannot ever have a general
(or even semi-general) purpose system which can bootstrap itself and adapt It is not so difficult to see that any reasonable 3D shape recognition ^,"

to an a priori unknown environment. We hypothesis that there are several system will have to have at least three representations: volume, surface and
levels of global models going from more general, context-independent to silhouette or boundary. The volume representation will give us the global ,

more specific, context- and domain-dependent. In reality, they do present information while the surface and contour will give us more the details of '

an intermediate system called GOLDIE which indeed has several syntactic the shape. Hence what one wants is a system which will have all these " "

(context-independent) evaluation functions. This is quite encouraging processes work simultaneously and integrate the results! The heart of this
although it still must be tested in a variety of domains. (It was tested only in problem is: to identify the purpose/goal of the process, have explicit model
one domain, sofar). Perhaps this is a good place to point out the need by the (as described above) of all the volume extraction, the surface and silueht or

boundary extraction, and evaluate which of the processes
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(volume,surface,boundary) is fitting (the best, fastest or other optimization
criterion) the goal. We are building such a system in the GRASP laboratory 0. Faugeras and M. Berthold, "Improving consistency and reducing
at the University of Pennsylvania. Since all our models are being evaluated ambiguity in stochastic labeling: An optimization approach", IEEE Trans.
via fitting procedures, we have an explicit measure of how well each Pattern Anal. Machine Intell., vol. PAMI-3, p. 245, 1981.
process explains the data. This measure in turn will be used as the
confidence measure for the integration process. Geman, S. and Geman, D., "Stochastic Relaxation, Gibbs Distributing

A very simple and preliminary example of this kind of interaction is and the Bayesian Restoration of Images," IEEE Trans. PAMI Vol. 6, pp.

shown in Figure 5. Figure 6 shows the segmented range image of an 721-741, (November 1984).

envelope and estimated its surface and contour, simultaneously fitted Haralick, R.M. and Shapiro, L. G., "Image Segmentation
Techniques," Computer, Vision, Graphics, and Image Processing, 29(1),

surerquadric model. pp.100-13 3 (January 1985).

CONCLUSIONS Kohl, Ch. A, Hanson, A. R. and Riseman, E. M. "Goal Directed
Control of Low-Level Processes for Image Interpretation," IU Proceedings

In conclusion we have defined active perception as a problem of an DARPA, Vol. 2, pp. 538-551, (February 1987).
intelligent data acquisition process. For that, one needs to define and ES
measure parameters and errors from the scene which in turn can be fed back Krotkov, E. "Exploratory Visual Sensing for Determining Spatial
to control the data acquisition process. This is a difficult though important Layout with an Agile Stereo Camera System," University of Pennsylvania
problem. Why? The difficulty is in the fact that many of the feedback Ph.D. Dissertation also available as a Technical Report MS-CIS-87-29•

parameters are context and scene dependent. The precise definition of thee (April 1987).

parameters depends on thorough understanding of the data acquisitiondevices (camera parameters, luiainadrfetneprmtr) Kuno, Y., Numagami H., Ishikawa, M., Hoshino, H. and Kidode, M.,
ev.llumination and reflectance parameters). "Three-Dimensional Vision Techniques for an Advanced Robot System,"

algorithms (edge detectors, region growers, 3D recovery procedures) as IEEE Conference on Robotics and Automation, pp. 11-16, St. Louis,
well as the goal of the visual processing. The importance however of this
understanding is that one does not spend time on processing and artificially (March, 1985).
improving imperfect data but rather on accepting imperfect, noisy data as a Leclerc, Y. G. and Zucker, S. W. "The Local Structure of Image
matter of fact and incorporating it into the overall processing strategy. Discontinuities in One Dimension," IEEE Trans. PAMI, Vol. 9, Num. 3,

Why has it not been pursued earlier? The usual answers one gets are: pp. 341-355, (May 1987).
Lack of understanding of static images, the need to solve simpler problems Mallat, S.G., A Theory for Multiresolution Signal Decomposition:
first, less data, etc. This of course is a misconception. One view lacks the Wavelet Representation", Technical Report, MS-CIS-87-22, University
information which is laborously recovered when more measurements, i.e., of Pennsylvania, May 1987.
more views can resolve the problem easier. More views, adds a new
dimension, time which requires new understanding, new techniques and Nalwa, V. S. and Binford, T. 0., "On Detecting Edges," IEEE Trans.
new paradigms. PAMI-8, No. 6, pp. 699-714, (November 1986).
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Qualitative Motion Detection and Tracking of Targets
from a Mobile Platform

Bir Bhanu and Wilhelm Burger

Honeywell Systems and Research Center
3660 Technology Drive, Minneapolis, MN 55418

ABSTRACT Recently, Nagel" t gave an excellent review. The most corn-
mon approach is to estimate 3D structure and motion in one

The problem of understanding scene dynamics is to find computational ste by solving a system of linear or non-
consistent and plausible 3-D interpretations for any change linear equations., 17 This technique is characterized by
observed in the 2-D image sequence. Due to the motion of several severe limitations.
the Autonomous Land Vehicle (ALV), stationary objects in First, it is known for its notorious noise-sensitivity. To
the scene generally do not appear stationary in the image, overcome this problem, some researchers have extended this
whereas moving objects are not necessarily seen in motion. technique to cover multiple frames.3, 7 Secondly, it is
The three main tasks of our novel approach for target motion designed to analyze the relative motion and 3D structure of a
detection and tracking are: (a) to estimate the vehicle's single rigid object. To estimate the ALV's egomotion and
motion, (b) to derive the 3-D structure of the stationary the scene structure, the environment would have to be treated
environment, and (c) to detect and classify the motion of as a large rigid object. However, rigidness of the environ-
individual targets in the scene. These three tasks strongly ment cannot be guaranteed due to the possible presence of
depend on each other. The direction of heading (i.e. transla- moving objects in the scene. But what is the consequence of
tion) and rotation of the vehicle are estimated with respect to accidentally including a moving 3D point into the system of
stationary locations in the scene. The focus of expansion equations? In the best case, the solution (in terms of motion
(FOE) is not determined as a particular image location, but as and structure) would exhibit a large residual error, indicating
a region of possible FOE-locations called the Fuzzy FOE. some non-rigid behavior. The point in motion, however, can-
We present a qualitative strategy of reasoning and modeling not be immediately identified from this solution alone. In the
for the perception of 3D space from motion information. worst case (for some forms of motion), the system may con-
Instead of refining a single quantitative description of the verge towards a rigid solution (with small error) in spite of
observed environment over time, multiple qualitative the actual movement in the point set. This again shows
interpretations are maintained simultaneously. This offers another (third) limitation: there is no suitable means of
superior robustness and flexibility over traditional numerical expressing the ambiguity and uncertainty inherent to dynamic
techniques which are often ill-conditioned and noise- scene analysis.
sensitive. A rule-based implementation of this approach isdiscussed and results on real ALV imagery are presented. The approach that we propose is novel in two important

aspects. First, scene structure is not treated as a mere by-

product of the motion computation but as a valuable means
1. INTRODUCTION to overcome some of the ambiguities of dynamic scene

analysis. The key idea is to use the description of the
Visual information is an indispensable clue for the suc- scene's 3D structure as a link between motion analysis and

cessful operation of an Autonomous Land Vehicle (ALV). other processes that deal with spatial perception, such as
Even with the use of sophisticated inertial navigation sys- shape-from-occlusion, stereo, spatial reasoning, etc. A 3D
tems, the accumulation of position errors requires periodic interpretation of a moving scene can only be correct if it is
corrections. Operation in unknown environments or mission acceptable by all the processes involved.
tasks involving search, rescue, or manipulation critically Secondly, numerical techniques have been largely
depend upon visual feedback. rep!?ced by a qualitative strategy of reasoning and modeling.

Assessment of scene dynamics becomes vital when The use of qualitative technicues in computer vision has been
moving objects may be encountered, e.g., when the ALV fol- of growing interest recently. I , I Basically, instead of having
lows a convoy, approaches other vehicles, or has to detect a system of equations approach a single rigid (but possibly
moving threats. For the given case of a moving camera, incorrect) numerical solution, we maintain multiple qualita-
image motion can also supply important information about tive interpretations of the scene. All the existing interpreta-
the spatial layout of the environment ("motion stereo") and tions are kept consistent with the observations made in the
the actual movements of the ALV. This is a valuable input past. The main advantage of this approach is that a new
for navigation and vehicle control, i.e., steering, accelerating, interpretation can be supplied immediately when the currently
and braking. favored interpretation turns out to be unplausible.

Previous work in motion analysis has mainly concen- These interpretations are built in three separate steps
trated on numerical approaches for the recovery of 3D (see Figure 1). First, significant features (points, boundaries,
motion and scene structure from 2D image sequences. corners, etc.) are extracted from the image and the 2D dis-
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resulting from vehicle rotation. For this purpose, we discuss
the changes upon the image that are caused by individual
application of the "pure" motion components.

-DENE 2.1 Viewing Geometry

It is well-known that any rigid motion of an object in

space between two points in time can be decomposed into a
combination of translation and rotation. While many
researchers 13, 15 have used a velocity-based formulation of
the problem, the following treatment views motion in discrete

MODL MMDIATE 3-D time steps.
LUSIONS Given the world coordinate sstem (X Y Z) shown in

Figure 2, a translation T = (U V W) applied to a point in 3D
X = (X Y Z)T is accomplished through vector addition:

X' =T+[X L = + (I)

A 3D rotation R about an arbitrary axis through the origin of
DEROTATION the coordinate system can be described by successive rota-

tions about its three axes:

R = Ro R0 R, (2)
FEATURE EXTRACTION where

& TRACKING 1 0 0
F= R 0 cos 0 -sin 01 rotation about the X-axis, (3a)

Lo sin 0 cos J

cosO 0 sine
Re= 0 1 0 rotation about the Y-axis, (3b) % %

D IM AGE%

[j .. J DATA -sinO 0 cosOJ

cost/ -sinI 0

Figure 1. Main steps of the Qualitative Motion Detection and RV = siny cosW 0 rotation about the Z-axis. (3c)
Tracking approach. 0 0 1

A general rigid motion in space consisting of translation

placement vectors are computed for this set of features. For and rotation is described by the transformation
the examples shown here, points were selected and tracked M: X -- X' = Ro Re R. (T+X) (4) •
between individual frames. Automatic techniques suitable for Its six degrees of freedom are U, V, W, 0, 0 and W
this task can be found elsewhere. 2, 10 In the second step, the
vehicle's direction of translation, i.e. the Focus of Expansion This decomposition is not unique because the translation
(FOE), and the amount of rotation in space are determined, could be as well applied after the rotation. Also, since the
The effects of vehicle motion on the FOE computation is multiplication of the rotation matrices is not commutative, a
described in section 2. Almost all the necessary numerical different order of rotations would result in different amounts
computation is performed in the FOE computation stage, of rotation for each axis. For a fixed order of application,
which is described in section 3. The third step (2D Change however, this motion decomposition is unique. S
Analysis) constructs an internal 3D model of the scene. Sec- o model the movements of the vehicle, the camera is,.
tion 4 outlines the concepts and operation of this Qualitative consi de be sonr an the virnet aseig
Scene Model. Experiments with our approach on real considered as being stationary and the environment as being
imagery taken from the moving ALV are discussed in section moving as one single rigid object relative to the camera. The
5. Finally, section 6 presents the conclusions of the qualita- origin of the coordinate system is located in the lens center
tive motion detection and tracking system. of the camera.

2.2 Image Effects of 3D Camera Motion

The given task is to reconstruct the vehicle's egomotion
2. EFFECTS OF VEHICLE MOTION from visual information. It is therefore necessary to know

The first step of our approach is to estimate the the effects of different kinds of vehicle motion upon the cam-
vehicle's motion relative to the stationary environment using era image.
visual information. Arbitrary movement of an object in 3D Under perspective imaging, a point in space
space and thus the movement of the vehicle itself can be X = (X Y Z)T is projected onto a location on the image plane
described as a combination of translation and rotation. While x = (x y)T such that
knowledge about the composite vehicle motion is essential
for control purposes, only translation can supply information x fy=f (5)
about the spatial layout of the 3D scene (motion stereo). Z Z
This, however, requires the removal of all image effects where f is the focal length of the camera (see Figure 2). A
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* (X.Y.Z) under camera rotation ROR (i.e., a particular sequence of
pan and tilt) is given by

RR (X) X -- X" -,

rore (x) : x = (x y) - x' = (x'y')(X,y) y

,IMAGE x case +fsinO (9a)

PLANE -x coso sin0 + y sin0 + f coso cos0

= x sino sin0 + y coso - f sino coso
-x coso sinO + y sino + f coso cosO (_b

It is important to notice that this transformation contains no
3D variables and is therefore a mapping of the image onto
itself. This demonstrates that no additional information about

LENS O0 the 3D structure of the scene can be obtained under pure
cFSEr X camera rotation. e

An interesting property of this mapping should be men-
tioned at this point, which might not be obvious. Moving an
image point on a diagonal passing through the center of the
image at 450 by only rotating the camera does not result in
equal amounts of rotation about the X- and the Y-axis. This

Figure 2: Camera Model showing the coordinate system, lens is again a consequen..:e of the successive application of the
center, image plane and angles of rotation. The origin of the two rotations Re and R,, since the first rotation about the Y-
coordinate system is located at the lens center. The focal axis also changes the orientation of the camera's X-axis in
length f is the distance between the lens center and the image 3D space. It also explains why the pair of equations in (7) is
plane. not symmetric with respect to 0 and .

2.2.1 Effects of Pure Camera Rotation 2.2.2 Measuring the Amount of Camera Rotation

When the camera is rotated around its lens cen'er, the The problem to be solved is the following: Given are
acquired image changes but no new views of the env ronment two image locations x0 and xl , which are the observations of
are obtained. Camera rotation merely maps the imige into the same 3D point at time to and time ti . What is the %
itself, amount of rotation RO and R0 which applied to the camera

between time to and time t l , would move image point x0 ont,
The most intuitive effect results from pure roation xt assuming that no camera translation occurred at the same

about the Z-axis of the camera-centered coordinate system, time?
which is also the optica axis. Any point in the image m-wes Io
along a circle centered at the image location x = (0 0). If R0 and Re are applied to the camera separately, the

points in the image move along hyperbolic paths. 12 If pure
In practice, however, the amount of rotation of the vehi- horizontal rotation were applied to the camera, a given image

cle about the Z-axis is small. Therefore, vehicle rotation is point x0 would move on a path described by
confined to the X- and Y-axis, where significant amounts of 2 wu mv o
rotation occur. r (): y2 =Yf2 -+ X

2
(r 6x) Yo 2+0 (10)

The vehicle undergoing rotation about the X-axis by an
angle -0 and the Y-axis by an angle -0 moves each 3D point Similarly pure vertical camera rotation would move an image
X to point X' relative to the camera. point x, along

X X' = R.R.X (6)

cosO 0 sin' L x I P + (II)

= [sinO sine cosO -sin, cos0"
-coso sine sino coso cos0 Since the 3D rotation of the camera is modeled as being

performed in two separate steps ( R0 followed by R0 ), the
Consequently x, the image point of X, moves to x' given by rotation mapping rore can also be separated into rg followed

X cose + Z sine by r,. In the first step, applying pure (horizontal) rotation
x' =f (7a) around the Y-axis re, point x0 is moved to an intermediate-X coso sin0 + Y sino + Z coso cos0 image location x. The second step, applying pure (vertical)

X sino sine + Y coso - Z sino cose rotation around the X-axis rb, takes point x, to the final
Y =f - sin + Y sinO + Z cosO cos (7b) image location x, . This can be expressed as

r 0 Ire ,where (12)
Inverting the perspective transformation for the original
image point x yields ro: x0=(x0 Y0) -+ x,=(x, Y,)

I f
The 2D rotation mapping r~re which moves each image As shown in Figure 3, the image point x, = (x, Yc) is the
point x (x y) into the corresponding image point x' = (x'y') intersection point of the hyperbola passing through x0 result-
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ing from horizontal camera rotation (10) with the hyperbola r

passing through x, resulting from vertical camera rotation
image plane (11). Intersecting the two hyperbolae gives the image point" ~ ~x, with j

I A

-_ jr 2 + X0 + Y6 1a
..X0- -  Xc= f x, (f2I+ X2) (f 2 + y) -X

2 
I (3a

Y f Yof2 Y (13b)Yc= fO (f2+x2)(f2+y2)_ yo •

'04

The amount of camera rotation necessary to map x0  %
onto x, by applying Re followed by R. is finally obtained as

f1 1 0,q
Xc X0

0 = tan
-  tan- (14) Z .

lens centerff

= tan -  - 1 Ytan-  (15)
Figure 3: Successive Application of Horizontal and Vertical ff
Rotation. The image point x0 is to be moved to location x, .

by pure horizontal and vertical camera rotation. Horizontal 2.23 Effects of Pure Camera Translation
rotation (about the Y-axis) is applied first, moving x0 to xC, Wiso
which is the intersection point of the two hyperbolic paths for When the vehicle undergoes pure translation between

horizontal and vertical rotation. In a second step xc is taken time t and time t', every point on the vehicle is moved by the
.Then the two rotation angles e and are found same 3D vector T = (U V W)T. Again, the same effect is

t. achieved by keeping the camera fixed and moving everydirectly. point Xi in the environment to Xi' by applying -T .

Since every stationary point in the environment under-
goes the same translation relative to the camera, the
imaginary lines between corresponding points XiXi' are paral-
lel in 3D space. S

It is a fundamental result from perspective geometry4

A that the images of parallel lines pass through a single point in ,, ,,
the image plane called a vanishing point. When the camera %,.
moves along a straight line, every (stationary) image point
seems to expand from this vanishing point or contract

A' 0 B towards it when the camera moves backwards. This particu-
_______,'____ lar image location is therefore commonly referred to as the

______________Focus of Expansion (FOE) or the Focus of Contraction

IMAGE -- (F(I). Each displacement vectors passes through the FOEPLAE - creating the typical radial expansion pattern shown in Figure
4 4.

o As can be seen in Figure 4, the straight line passing %
through the lens center of the camera and the FOE is also
parallel to the 3D displacement vectors. Therefore, the 3D

,b y vector OF points in the lirection of camera translation in A

space. Knowing the internal geometry of the camera (i.e.,0131 -the focal length), the direction of vehicle translation can be
determined by locating the FOE in the image. The actual
translatiop vector T applied to the camera is a multiple of the '. ,
vector OF which supplies only the direction of camera trans-

Y ,lation but not its magnitude. Therefore,
T= O X 0 lIxf yfI r ,I" f. (16) 0

cetrSince most previous work incorporated a velocity-based ,

model of 3D motion, the Focus of Expansion has commodly
been in', -reted as the direction of instantaneoi.s heading,
i.e.. the direction of vehicle translation during an infinitely %

Figure 4: Location of the focus of expansion. (1.OE). With short period in time. When images are given as "snapshots"
pure vehicle translation, points in the env,.onment (A, B) taken at discrete instances of time, the movements of the
move along 31) vectors parallel to the vector pointing from vehicle must be modeled accordingly as discrete movements
the lens center to the FOE in the camera plane. These vectors from one position in space to the next. 4.

form parallel lines in space which have a common vanishing Therefore, the FOE cannot he interpreted as the momen-
point (the FOE) in the perspective image. Tefr te

.9 2 '4d
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0a tary direction of translation at a certain point in time, but
rather as the direction of accumulated vehicle translation over
a period of time. 

N

. Figure 5 shows the top view of a vehicle traveling along
- - a curved path at two instances in time to and t1 . The position

of the vehicle in space is given by the position of a reference
point on the vehicle P and the orientation of the vehicle Q.

0 Figure 5 also displays the adopted scheme of 3D motion
decomposition: First the translation T is applied which shifts
the vehicle's reference point (i.e., the lens center of the cam-
era) from posidon P0 to position P without changing the

FoE vehicle's orientation CIo. The 3D translation vector intersects
- athe image plane at FOEa. In the second step the vehicle is

rotated by o) to the new orientation fi1. Translation T

transforms image 10 into image Ii', which again is

Po transformed into I, by rotation co. The important fact is that
FOE, is observed at the transition from image I0 to image
Ii', which is obtained by derotating image I, by -o.
Throughout the rest of this work, this scheme (Figure 5) is
used as a model for vehicle motion.

2.2.4 Measuring the Amount of Camera Translation

Figure 6 shows the geometric relationships for the 2D
case. It can be considered as a top view of the camera, i.e.,
a projection onto the X/Z-plane of the camera-centered coor-
dinate system. The cross section of the image plane is
shown as a straight line. The camera is translating from left

Figure 5: Concept of the FOE for discrete time steps. The to right in the direction given by T = (Xf f )T.
vehicle's motion between two points in time can be decom- A
posed into a translation followed by a rotation: the image time stationar 3D point is observed at two instances oftmwhich moves in space relative to the camera from X to
effects of pure translation (FOE,,) are observed in image l0. X', resulting in two images x and x'.
This scheme is used throughout this work.

Using the inverse perspective (8) transformation yields

z=Lx and (18)
X

Z=Z-AZ=.Lx'=L (X -AX)

From similar triangles (shaded in Figure 6)
AX _ AZx, ,xj "7 ' (19)

% and therefore

Z = AZ x-x-f =AZ + (20)x" X,-x Xx'-XJ

X OThus, the rate of expansion of image points from the
f DRECTION FOE contains direct information about the distance of theOF VEM CLE.'

TRANSLATION corresponding 3D points from the camera. Consequently, if
the vehicle is moving along a straight line and the FOE has

z, been located, the 3D structure of the scene can be determined
z from the expansion pattern in the image. However, the dis-

MAC tance Z of a 3D point from the camera can only be obtained
PL.AN z up to the scale factor AZ, which is the distance that the vehi-

cle advanced along the Z-axis during the elapsed time.
When the velocity of the vehicle (AZ / t) in space is

known, the absolute range of any stationary point can be
Figure 6: Amount of expansion from the FOE for discrete computed. Alternatively, the velocity of the vehicle can be
time steps. The camera moves by a vector T in 3D space, obtained if the actual range of a point in the scene is known
which passes through the lens center and the FOE in the (e.g., from laser range data). In practice, of course, any such
camera plane. The 3D Z-axis is also the optical axis of the technique requires that
camera.
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(a) (b) .

Figure 7: Simulated displacement field caused by a combination of horizontal and vert-
ical rotation and vehicle translation. (a) The rectangle marks the area of search for the
FOE. (b) The derotated displacement with the FOE marked by a circle.

" the FOE can be located in a small area, and t= (xi, xi') e x" I xi' = xi + g i (xi - x-), (23)

" the observed image points exhibit significant expansion r R V 0
away from the FOE. R

As will be shown in the following section, imaging noise and
camera distortion pose serious problems in the attempt to 2.25 Combined Effects of Translation and Rotation
assure that both of the above criteria are met. When the vehicle is not undergoing pure translation or

If a set of stationary 3D points {(X X,')) is observed, rotation but combined 3D motion of the form Ro Re T, the
then of course the translation in the Z-direction is the same effects in the image are described by a transformation d (for
for every point, displacement) which is a combination of ro, re and t:

Zi - Z' = Zj - Zj' = AZ for all ij. (21) d: I - I' = ro r t (I) , (24) V

Therefore, the range of every point is proportional to the where I = { xi ), I'= { xi' ) are the two sets of correspond-
observed amount of expansion of its image away from the ing image points.
FOE Figure 7 shows a typical displacement field for a camera

undergoing horizontal and vertical rotation as well as transla- %
Zi= , (22) tion. The points xi e I are marked with small circles.

xi'ix i  By decomposing a composite displacement field d into

which renders the relative 3D structure of the set of points, its three components ro, re, and 1, the vehicle's rotation and
direction of translation in space can be computed from the

The effects of camera translation T can be formulated as information available in the image. This problem is
a mapping t of a set of image locations (xi} into another set addressed in the following section. W.b

of image locations {xi'}. Unlike in the case of pure camera 6^
rotation, this mapping not only depends upon the 3D transla-
tion vector but also upon the actual 3D location of each indi-
vidual point observed. Therefore, in general, t is not simply 3. DECOMPOSITION OF IMAGE MOTION
a mapping of the image onto itself.

However, one important property of t can be described 3.1 Problem Statement
exclusively in the image plane, namely that each point mu:st As discussed in the previous section, the 3D motion M
map onto a straight line passing through the original point of the vehicle is modeled by a translation T followed by aand one unique location in the image (the FOE). This means rotation Re about the Y-axi- and a rotation R, about the X-
that if the vehicle is undergoing pure translation, then there axis:
must exist an image location xf such that the mapping t
satisfies the condition M=R, ReT. (25) .

e

radial-mapping t (xf, I, 1') : 1
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This results in a mapping d from the original image Io at Although there have been a number of suggestions for _".time to into the new image I1 at time t1. FOE-algorithms in the past, , 2,15 no results of implementa- p-

d : I o -+ I, = ro r0 t I0 = ro r0 10" . (26) tions have been demonstrated on real outdoor imagery. One
reason for the absence of useful results might be that most
researchers have tried to locate the FOE in terms of a single,

The intermediate image I0d in (26) is the result of the distinct image location. In practice, however, the noise gen-
translation component of the vehicle's motion and has the crated by merely digitizing a perfect translation displacement
property of being a radial mapping (23). Unlike the two field may keep the resulting vectors from passing through a
images I0 and I ,, which are actually given, the image 1 ' is single pixel. Even for human observers it seems to be
generally not observed, except when the camera rotation is difficult to determine the exact direction of heading (i.e., the
zero. It serves as an intermediate result to be reached during location of the FOE on the retina). Average deviation of
the separation of translational and rotational motion com- human judgement from the real direction has been reported 14

ponents. to be as large as 100 and up to 200 in the presence of large
The question at this point is whether there exists more rotations.

than one combination of rotation mappings r, and re which It was, therefore, an important premise in this work that
would satisfy this requirement, i.e., if the solution is unique, the final algorithm should determine an area of potential *

It has been pointed out in the previous section that the FOE-locations (called the Fuzzy FOE) instead of a single (but
decomposition of 3D motion into R0, R, Rj, and T is probably incorrect) point. %
unique for a fixed order of application. This does not imply,
however, that the effects of 3D motion upon the perspective
image are unique as well. 3.2 FOE from Rotation

Tsai and Huang t 7 have shown that seven points in two In this method, the image motion is decomposed in two

perspective views suffice to obtain a unique interpretation in steps. First, the rotational components are estimated and
terms of rigid body motion and structure, except for a few their inverses are applied to the image, thus partially "derotat-
cases where points are arrangef  in some very special ing" the image. If the rotation estimate was accurate, the
configuration in space. Ullman reports computer experi- resulting displacement field after derotation would diverge
ments which suggest that six points are sufficient in many from a single image location (the FOE). The second step .
cases and seven or eight points yield unique interpretations in verifies that the displacement field is actually radial and
most cases. determines the location of the FOE. For this purpose, two

Due to its design and the application, however, the problems have to be solved:

motion of the ALV in space is quite restricted. The vehicle (1) how to estimate the rotational motion components
can only travel upright on a surface and its large wheelbase without knowing the exact location of the FOE,
allows for only relatively small changes in orientation. It is (2) how to measure the "goodness of derotation" and locate
also heavy and thus exhibits considerable inertia. Therefore, the FOE.
the final motion parameters must lie within a certain narrow 'W.7
range and it can be expected that a unique solution can be 3.2.1 Estimating the rotational components
found even in cases when the number of points is near the Each vector in the displacement field is the sum of vec-
above minimum. tor components caused by camera rotation and camera trans-

The fact that lation. Since the displacement caused by translation depends
on the depth of the corresponding points in 3D space (equa-

I0 '= r r I t  tI 0  (27) tion 18), points located at a large distance from the camera

sugge , different strategies for separating the motion are not significantly affected by camera translation. There-
compon, fore, one way of estimating vehicle rotation is to compute 0

and 0 from displacement vectors which are known to belong
(1) FOE from Aotation: Successively apply combinations of to points at far distance. Under the assumption that those

inverse rotation mappings r 1 ro, re2 ro,.... rg, r to displacement vectors are only caused by rotation, equations
the second image I, until the resulting image I' is a 14 and 15 can be applied to find the two angles. In some
radial mapping with respect to the original image 1

0.  situations, distant points are selected easily. For example,
Then locate the FOE xf in 10. points on the horizon are often located at a sufficient distance

from the vehicle. Image points close to the axis of translation
(2) Rotation from FOE: Successively select FOE-locations would be preferred because they expand from the FOE

(different directions of vehicle translation) Xf, Xfe.... Xf1  slower than other points at the same depth.
in the original image 10 and then determine the inverse -
rotation mapping i'6- tj, that yields a radial mapping However, points at far distances may not always be

available or may not be known to exist in the image. In "'-
with respect to the given FOE in the original image those cases, the following method for estimating the rota- %'A
I0. tional components can be used. The design of the ALV (and
Both alternatives were investigated under the assumption most other mobile robots) does not allow rapid changes in -

of restricted, but realistic vehicle motion, as stated earlier. It the direction of vehicle heading. Therefore, it can be %
turned out that the major problem in the FOE-from-Rotation assumed that the motion of the camera between two frames is
approach is to determine if a mapping of image points is (or constrained, such that the FOE can change its location only -
is close to being) radial when the location of the FOE is unk- within a certain range. If the FOE was located in one frame,
nown. Of course, in the presence of noise, this problem the FOE in the subsequent frame must lie in a certain image ,V'
becomes even more difficult. The second approach was region around the previous FOE location. Zle
examined after it appeared that any method which extends Figure 8(a) illustrates this situation. The FOE of the &
the given set of displacement vectors backwards to find the previous frame was located at the center of the square, thus
FOE is inherently sensitive to image degradations. the FOE in the given frame must be inside this square.
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I-age PIne Rotation Space

Io ~ - .aF3'.

(a) (b)

Figure 8: Image Plane and Potation Space. The displacement field in the Image Plane
(a) contains three vectors (P1--Pl , P2--P2', P3---PY). The previous FOE was
observed at the center of the square, which outlines the region of search for the current
FOE. The translational displacement components (P1--*Q1, P2--->Q2, P3--->Q3) andA
the current location of the FOE are unknown but marked in this picture. The initial
range of possible camera rotations is ±100 in either direction, indicated by a square in
Rotation Space (b).

IMAGE PLANE ROTATION SPACE
Three displacement vectors are shown
(PIJ-PI', P2--P2', P3--PY). The translational components -
(P1--Q1, P2---Q2, P3--Q3) of those displacement vectors
and the FOE (inside the square) are not known at this point Y
in time.

The main idea of this technique is to determine the pos-
sible range of camera rotations which would be consistent -. ----------
with the FOE lying inside the marked region. Since the cam- 6
era rotates about two axes, the resulting range of rotations
can be described as a region in a 2D space. Figure 8(b)
shows this Rotation Space with the two axes theta and phi - - - -
corresponding to the amount of camera rotation around the _ _--------- X (a)
Y-axis and the X-axis respectively. The initial rotation esti-
mate is a range of ±10 ° in both directions whic:n is indicated
by a square in rotation space. - .- -

In general, the range of possible rotations is described ................... .
by a closed, convex polygon in rotation space. A particular ----------
rotation (0',') is possible if its application to every displace- .: % %
ment vector (i.e., to its endpoint) yields a new vector which '- --- "_-
lies on a straight line passing through the maximal FOE-
region. The region of possible rotations is successively con-
strained by applying the following steps for every displace-
ment vector (Figure 9): P
(a) Apply the rotation mapping defined by the vertices of X (b)

the rotation polygon to the endpoint P of the displace-
ment vector. This yields a set of image points Pi. Figure 9: Successively constraining the range of possible 1.

(b) Connect the points Pi to a closed polygon in the image. camera rotations. (a) The rotation mappings corresponding
This polygon is similar to the rotation polygon but dis- to the vertices of the current rotation polygon are applied to
tored by the nonlinear rotation mapping (Figure 9(a)). every displacement vector (P--P'). This yields a similar but

distorted polygon in the image plane. (b) The polygon in the
(c) Intersect the polygon in the image with the open triangle image is intersected with the open triangle defined by the

formed by the starting point P of the displacement vec- tangents to the maximal FOE-region. Rotations that would S
tor and the two tangents onto the FOE-region. The bring the endpoint of the displacement vector outside this tri-
result is a new (possibly empty) polygon in the image angle are not feasible. The new vertices on the polygon are
plane. mapped back into rotation space. ,
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(d) Map the new polygon from the image plane back into
the rotation space (Figure 9(b)). MiN-FEASIBLE (sub-region-n, min-size,

(e) If the rotation polygon is empty (number of vertices is else return pni))(einde) o cnanteFE
zero), then stop. No camera rotation is possible that
would make all displacement vectors intersect the given
FOE-region. Repeat the process using a larger FOE- This algorithm searches for the smallest feasible FOE-
region. region by systematically discarding subregions from further

consideration. For the case that the shape oi the original
Figures l0(a-c) show the changing shape of the rotation region is a square, subregions can be obtained by splitting the

polygon during the application of this process to the three region into four subsquares of equal size.
displacement vectors in Figure 8. The simple version shown here performs a depth-first

Since the mapping from rotation space to the image search down to the smallest subregion (limited by the param-
* plane is nonlinear (equation 9), the straight lines between eter "~min-size"), which is neither the most elegant nor the

vertices in the rotation polygon do not correspond to straight most efficient approach. The algorithm can be significantly
lines in the image. They are, however, approximated as improved by applying a more sophisticated strategy, for

*straight lines in order to simplify the intersection with the example, by trying to discard subregions around the perime-
open triangle. The dotted lines in the image plane show the ter first before examining the interior of a regici.
actual mapping of the rotation polygon onto the image. ItTw mao prbes eeenutrdwth hi
can be seen that the deviations from straight lines are small mTo Firstoth e grtms eeco uteroaed expentsiv
and can be neglected.mehdFisteagrtmi opainflexniv

since the process of computing feasible rotations must be
Figure 10(c) shows the final rotation polygon after exa- repeated for every subregion. Second, a small region is more

mining the three displacement vectors. The amount of actual likely to be discarded than a larger one. However, when the
*camera rotation (O-2.00A= -5.00 ) is marked with a small cir- size of the region becomes too small, errors induced by

cle (arrow). noise, distortion, or point-tracking may prohibit displacement
Of course, increasing the number of displacement vec- vectors from passing though a region which actually contains

tors improves the rotation estimate. In practice, the amount the FOE.
of camera rotation can be constrained to a range of below 10 Although this algorithm is not employed in the further
in both directions. It is interesting, although not surprising, treatment, it suggests an interesting alternative which departs
that rotation can be estimated more accurately when the dis- significantly from traditional FOE-algorithms. Its main
placement vectors are short, i.e., when the amount of camera attractiveness is that it is inherently region-oriented in con-
translation is small. This is in contrast to estimating camera trast to most other techniques which search for a single
translation which is easier with long displacement vectors. FOE-location. For the purpose of estimating the amount of

The situation when the rotation polygon becomes empty rotation, the method using points at far distance mentioned
requires some additional considerations. As mentioned ear- earlier is probably more practical. Two other alternatives for
lier, in such a case no camera rotation is possible that would locating the FOE once the rotation components have been
make all displacement vectors pass through the given FOE- estimated are discussed in the following.
region. This could indicate one of the two alternatives:
* At least one of the displacement vectors belongs to a 3.22 Locating the FOE in a partially derotated imiage

moving object. After applying a particular derotation mapping to the
* The given FOE-region does not contain the actual loca- displacement field, the question is how close the new

tion of the FOE, i.e., the region is not feasible. displacement field to a radial mapping, where all vectors
The attr cse i ofpariculr iporance Ifa rgio diverge from one image location. If the displacement field is

cane deterine nso atcntaiothece FOE the thegFoE really radial, then the image is completely derotated and onlycan e dterine notto ontin he FE, hentheFOE the components due to camera translation remain. Two
must necessarily lie outside this region. Therefore, the above different methods for measuring this property are discussed.
method can not only be used to estimate the amount of cam- One method uses the Variance of Intersection at imaginary "

*era rotation, but also to search for the location of the FOE, horizontal and vertical lines. The second method computes
Unfortunately, if the rotation polygon does not become the Linear Correlation Coefficient to measure how "radial"
empty, this does not imply that the FOE is actually inside the the displacement field is.
given region. It only means that all displacement vectors
would pass through this region, not that they have a common A. Variance of Intersection, Prazdnyt 2 suggests to esti-
intersection inside this region. However, if not all vectors mate the disturbance of the displacement field by computing
pass through a certain region, then this region cannot possi- the variance of intersections ot one displacement vector with
bly contain the FOE. The following recursive algorithm al other vectors. If the intersections lie in a small neighbor-
searches a given region for the FOE by splitting it into hood, then the variance is small, which indicates that the dis-
smaller pieces (divide-and-conquer): placement field is almost radial.

The problem can be simplified by using an imaginary %5,
MIN-FFEASIBLE (region, min-size, disp-voctors): horizontal and vertical line instead, whose orientation is not

if SIZE (region) < min-size then return (region) affected by different camera rotations. Figure 11I shows 5
else displacement vectors P1-+Pl' ... 1 5-WP5' intersecting a verti-

if FEASIBLE (region, disp-vectors) then cal line at x at Y~..5. Moving the vertical line from x
return (union ( towards x0 will bring the points of intersection closer together

MIN-FEASIBLE (sub-region-I, min-size, and will thus result in a smaller variance. The point of inter-
disp-vectors), section of a displacement vector P1-*P1 ' with a vertical line

MIN-FEASIBLE (sub-region-2, min-size, at x is given by
disp-vectors).
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Figure 10: Changing rotation polygon, (a) The rotation polygon after examining dis-
placement vector P1-4Pl'. Any camera rotation inside the polygon would move the
endpoint of the displacement vector (Pl) into the open triangle formed by the tangents
through P1 to the maximal FOE-region given by the square in the image plane. The
actual mapping of the rotation polygon into the image plane is shown with a dotted
outline.

pla. otation So*a

Figure 10: Changing rotation polygon. (b) The rotation polygon after examining dis-
placement vectors PI--P1' and P2-P2'.
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Figure 10: Changing rotation polygon. (c) The rotation polygon after examining dis-
placement vector (P1--+PI', P2--P2', and P3.--P3'). PI-WP1' P2-)P2' and P3-*P3'.
The amount of actual camera rotation is marked with a small circle (arrow).

298

% %i



YiYi i ii(28)

.4 - -- Xi" -

P i- xi

c3 The variance of intersection of all displacement vectors with
P4P2 the vertical line at position x is

I. N N , 1 1  (951 1 22 (29)

To find the vertical cross section with minimum intersection
variance, the first derivative of (29) with respect to x is set to

Y zero. The location x 0 of minimum intersection variance is
then obtained. 1 Similarly, the position of a horizontal cross
section with minimal intersection variance can be obtained.

The square root of the variance of intersection (standard
P5  deviation) at a vertical line was evaluated on the synthetic

displacement field shown in Figure 12. The actual FOE is

located in the center of the image. The square around the
51 center (±100 pixels in both directions) marks the region over

which the error functions are evaluated.

' xFigure 13 shows the distribution of the intersection stan-
x0  dard deviation for increasing residual rotations in vertical

direction in the absence of noise. Locations of displacement
vectors are represented by real numbers (not rounded to

Figure 11: Intersecting the displacement vectors with a verti- integer values).
cal line at x. When the vertical line is moved towards x0 the In Figure 13(a), no residual rotation exists, i.e., the dis-
points of intersection move closer together and therefore the placement field is perfectly radial. The value of the horizon- N.
variance of intersection decreases. tal position of the cross section varies ±100 pixels around the

actual FOE. The standard deviation is zero for x = x - (the x-
coordinate of the FOE) and increases linearly on both sides "m.
of the FOE. In Figures 13(b-d), the residual vertical rotation
is increased from 0.20 to 1.00. The bold vertical bar marks
the horizontal position of minimum standard deviation, the
thin bar marks the location of the FOE. It can be seen that
the amount of minimum standard deviation rises with increas-
ing disturbance by rotation, but that the location of minimum
standard deviation does not necessarily move away from the

Image Plane FOE.
Figures 14-16 show the same function under the

influence of noise. In Figure 14, noise was applied by
merely rounding the locations of displacement vectors to their

\ nearest integer values. Uniform noise of ±1 and ±2 pixels
was added to image locations in Figures 15 and 16. It can
be seen that the effects of noise are similar to the effects
caused by residual rotation components. The purpose of this
error function is to determine (a) where the FOE is located,
and (b) how "radial" the current displacement field is.

If the displacement field is already perfectly derotated,
then the location of minimum intersection standard deviation
is, of course, the location of the FOE. Ideally all vectors
pass through the FOE, such that a cross section through the
FOE yields zero standard deviation. The question is how
well the FOE can be located in an image which is not per-
fectly derotated.

Figure 17 plots the location of minimum intersection _
standard deviation under varying horizontal rotation. The
vertical rotation is kept fixed for each plot. Horizontal cam-

Figure 12: Displacement field used to evaluate various error era rotations from -1° to +10 are shown on the abscissa (rot).
functions. The square (±100 pixels in both directions) marks The ordinate (xO) gives the location of minimum standard

deviation in the range of ±100 pixels around the FOE
the region of evaluation. (marked xf). It is not surprising that the location of

minimum standard deviation depends strongly on the amount
of horizontal rotation.

The problem is, however, that the location of minimum
standard deviation is not necessarily closer to the FOE when
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s(Y) 5(y) 5(y) 5(Y)a9
00/ too

X 'p

-100 xf #100 -100 -if .100 -100 if 100 -100 rf .100

rotation error: 0.0 / 0.0 deg rotation error: 0.0 / 0.2 deg rotation error: 0.0 / 0.5 deg rotation error: 0.0 / 1.0 dcj

(a) (b) (c) (d)

Figure 13: Standard deviation of intersection at a vertical cross section at position x for
different amounts of vertical rotation. (a) Without vertical rotation, (b) with 0.20 verti-
cal rotation, (c) 0.50 and (d) 1.0". The horizontal rotation is 0" in all cases. No noise
was applied and image positions were not rounded to integers. The error values are S
shown for ±100 pixels around the x-coordinate of the FOE (xf), which is marked with
a thin bar. The location of minimum standard deviation is marked with a thick bar.

&

s(y) s(y) S(y) S(y)

100 100 0\10 \, /0\" / .,,-

*10 740 - -if 100 -100 xf 100 -100 Xf .100

rotation error: 0.0 / 0.0 deg rotation error. 0.0 0.2 deg rotation error: 0.0 / 0.5 deg rotation error. 0.0 IC deg

(a) (b) (c) (d) ,

Figure 14: Standard deviation of intersection (square root) at a vertical cross section at -
position x for different amounts of vertical rotation with no horizontal rotation. (a)
Without vertical rotation, (b) with 0.2° vertical rotation, (c) 0.5', and (d) 1.00. No
noise was applied and image positions were rounded to the closest integer values.

-0

10 10 10too

-100 sf .t0 -100 .-i o -100 f .0o0 -100 -if .100
rotation error* 00 / 00 deg rotation error: 00 I 02 deg rotation error 00 / O5 deg rotation error. 00 I 10 teg

(a) (b) (c) (d) "

Figure 15: Standard deviation of intersection (square root) at a vertical cross section at
position x for different amounts of vertical rotation with no horizontal rotation. (a)
Without vertical rotation, (b) with 0.2' vertical rotation, (c) 0.5° , and (d) 1.00. Uni-
form noise of ±1 pixels was applied to the image locations.
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S(Y) Y
((y) sy) cy)

/ ,

0 ,c Io 4., I

-to x 1 00to xf .lo -100 xl 200 -100 /f .10,0
rotation error: 0.0 / 0.0 degl rot at on error: 0.0 / 0.2 degl rotaion e? rror: 0.0 / 0.5 degl rotatieon error: 0.0 / 1.0 deglh

(a) (b) (c) (d)

Figure 16: Standard deviation of intersection (square root) at a vertical cross section at
position x for different amounts of vertical rotation with no horizontal rotation. (a)
Without vertical rotation, (b) with 0.20 vertical rotation, (c) 0.50, and (d) 1.00. Uni-
form noise of ±2 pixels was applied to the image locations.

xO xOi xO xOi

ffA

_____xf _____Xf _xl ______

rot 0 rot - rot
-. 0 .1.0 1 .0 .1.0 -1.0 .1.0 .10
vertical rotation: 0.00 deg vertical rotation: 0.20 deg vertical rotation: 0.50 dog vertical rotation: 1.00 deg

(a) (b) (c) (d)

Figure 17: Location of minimum intersection standard deviation under varying horizon-
tal rotation. The amount of vertical rotation is kept fixed in each plot. (a) Without
vertical rotation, (b) with 0.2' vertical rotation, (c) 0.5", and (d) 1.00. Image locations
were digitized but no noise was added. The horizontal location of the FOE is marked

"4.

the amount of rotation is less. The function is only well vectors are intersected by two vertical lines, both of which lie
behaved in a narrow range around zero rotation, which means on the same side of the FOE. Since the location of the FOE
that the estimate of the camera rotation must be very accurate is not known, the two lines are simply located at a sufficient
to successfully locate the FOE. distance from any possible FOE-location. This results in two

The second purpose of this error function is to measure sets of intersection points ((x,yli)) and {(x2,y2j)).
how "radial" the displacement field is after partial derotation. If all displacement vectors emanate from one single
This should be possible by computing the amount of image location, then the distances between corresponding
minimum intersection standard deviation. Intuitively, a intersection points in the two sets must be proportional, i.e.,
smaller amount of minimum intersection standard deviation
should indicate that the displacement field is less disturbed by Yl - Ylj = Y j - Ylk for all ij,k. (30)
rotation. Figure 18 and 19 show that this is generally true. Y2i - Y2j Y2j - Y2C

For the noise-free case in Figure 18, the amount of Therefore, a linear relationship exists between the verti-
minimum intersection standard deviation becomes zero in the cal coordinates of intersection points on these two lines. The
absence of horizontal and vertical rotations (a), indicating "goodness" of this linear relationship is easily measured by
that the derotation is perfect. Unfortunately, the function is computing the correlation coefficient for the y-coordinates of
not well behaved even in this relatively small range of rota- the two sets of points.t

tions (±1.00). The curve exhibits some sharp local minima ts s

where an algorithm searching for an optimal derotation would The resulting coefficient is a r. number in the range
get trapped easily. Figure 19 shows the same function in the from -1.0 to +1.0. If both vertical lines are on the same side
presence of noise. of the FOE, then the optimal value is +1.0. Otherwise, if the

FOE lies between the two lines, the optimal coefficient isB. Linear Correlation. The second method of measur- -1.0. The horizontal position of the two vertical lines is of
ing how close a displacement field is to a radial pattern again noilnimportance, as long as one of these conditions is satisfied.
uses the points of intersection at vertical (or horizontal) lines. For example, the left and right border lines of the image can
The basic idea is illustrated in Figure 20. The displacement be used.
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t(xo) s(xo) s(Xo) s(x0)

/ 'oI

Lo - tot ' ot '0 ot1j

-1.0 .1.0 -1.0 .1.0 -1.0 -1,0 -1.0 10

vertical rotation: 0.00 deg vertical rotation: 0.20 deg vertical rotation 0.50 deg vertical rotation: 1.00 deg

(a) (b) (c) (d)

Figure 18: Amount of minimum intersection standard deviation under varying horizon-
tal rotation. The amount of vertical rotation is kept fixed in each plot. (a) Without
vertical rotation, (b) with 0.20 vertical rotation, (c) 0.5°, and (d) 1.00. Image locations
were digitized but no noise was added.

Oxo) S(XO) so) ,{xo)
200 200 200

0,00I 100

rot - rot • rot r.- !

-1.0 10 -1.0 01.0 -1.0 .1.0 -1.0 0

vertical rotation: 000 deg wltcal rotation: 0.20 deg wrtlcal rotation: 0.50 dg wrtlical rotation: I o0dg

(a) (b) (c) (d)

Figure 19: Amount of minimum intersection standard deviation under varying horizon-
tal rotation as in Figure 18. (a) Without vertical rotation, (b) with 0.2' vertical rota-
tion, (c) 0.50, and (d) 1.0°. Uniform noise of ±2 pixels was added to image locations.
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Figure 20: Intersecting displacement vectors with two vertical lines, both of which lie
on the same side of the FOE.
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cop? car? Corr Corr, .9

-1.0 . 0.0 -10 1.0 -. 1.0 0

Vericlc rotation: 0.00 deg ver tical rotation. 0.20 deg vertical 'oration: 0OS0 deg vertical rotation 1 00 deg

(a) (b) (c) (d)

Figure 21 Correlation coefficient for the intersection of displacement vectors at two
vertical lines under varying horizontal rotations in the noise-free case. (a) Without
vertical rotation, (b) with 0.20 vertical rotation, (c) 0.50, and (d) 1.0'. The optimal
coefficient is +1.0 (horizontal axis).

o gc o re C o rC o rr C o rr _ P

ot rot -ott
-1.0 ,.0 -0 4,0 -10 I .0 -. 0 ,10

WtCal rotation: 0,00 deg wt;cl rotation: 0.20 deg wrtlical rotation: 0.50 deg vertical rotation: 100 deg

(a) (b) (c) (d)

Figure 22 Correlation coefficient for the intersection of displacement vectors at two ,
vertical lines under varying horizontal rotations. Uniform noise of ±2 pixels was
added to image locations. Without vertical rotation (a), with 0.20 vertical rotation (b),
0.50 (c) and 1.00 (d). The optimal coefficient is +1.0 (horizontal axis).

Figures 21 and 22 show plots for this correlation (2) Determine the derotation mapping r-1 r-1 which would 6
coefficient under the same conditions as in Figures 18 and transform image I, into an image I such that the map-
19. No noise was applied for Figure 21. The shapes of the ping (x!P,1o,li') deviates from a radial mapping (23)
curves are similar to those for the minimum standard devia- with minimum error E(i

).
tions shown earlier, with peaks at the same locations. It is
apparent, however, that each curve has several locations (3) Repeat steps (1) and (2) until an FOE-location ud) with
where the coefficient is close to the optimum value (+1.0), the lowest minimum error E(k) is found.
i.e., no distinct global optimum exists which is not only the An initial guess for the FOE-location is obtained from
case in the presence of noise (Figure 22). This fact makes knowledge about the orientation of the camera with respect to S
the method of maximizing the correlation coefficient useless the vehicle. For subsequent pairs of frames, the FOE-
for computing the FOE. location computed from the previous pair can be used as a

starting point.

3.3 Rotation from FOE Once a particular xf has been selected, the problem is to

The main problem encountered in computing the FOE in compute the rotation mappings r91 and r-1 which, when

section 3.2 was that none of the functions examined was well applied to the image [1, will result in an optimal radial map-
behaved, making the search for an optimal derotation and the ping with respect to T0 and xf
location of the FOE difficult. Disturbances induced by noise To measure how close a given mapping is to a radial
and residual rotation components are amplified by extending mapping, the perpendicular distances between points in the
short displacement to straight lines and computing their inter- second image (xi') and the "ideal" displacement vectors is
sections. The method described below avoids this problem measured. The "ideal" displacement vectors lie on straight ,.'
by guessing an FOE-location first and estimating the optimal lines passing through the the FOE xf and the points in the
derotation for this particular FOE in the second step. first image xi (Figure 23). The sum of the squared perpen-

Given the two images o and 11 of corresponding points, dicular distances di is the final error measure. For each set
the main algorithmic steps of this approach are: of corresponding image points (xi E 1, xi' e I'), the error

measure is defined as
(1) Guess an FOE-location x in image I0 (for the current

iteration i).
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where points move on horizontal and vertical hyperbolic
paths, can be approximated by a horizontal and vertical shift

,> 
with constant length over the entire image.

2 Under this condition, the inverse rotation mapping

.. 1 r r 1 can be approximated by a adding a constant vector
3 2 s = (s, sy) which is independent of the image location:

x' / 11' = re1rol I, = s + 1, (32)

- /" Given two images I and I' the error measure (31) becomes

"[' -. E (xfs) = E xi:i x (xi + s) (33)

fwhere xi e I and x' c 1'. For a given FOE-location xp the
problem is to minimize E with respect to the two unknowns

Figure 23: Measuring the perpendicular distance di between s. and sy. To reduce this problem to a one-dimensional

lines from xf through points xi and points xi' in the second search, one point x , called the Guiding Point, is selected in

image. image I which is orced to maintain zero error (Figure 24).
Therefore, the corresponding point x g must lie on a straight

0 line passing through xf and xg Any shift s applied to the
image I' must keep xg' on this straight line, so

0 Xg + S = Xf+ X (Xg Xf) for all s, (34a)

0 a and thus,

0 o 3 , S = X 8- xg + X (xg - xf) (XrER). (34b)

/ X'4  o x -' For ?,=1, s=x -x' which is the vector x '--+x This
Z means that the image 1' is shifted such that Y and x ' over-

.'4 lap. This leaves X as the only free variable and the error
4 , function (33) is obtained as

" E (X) X 
A i + B i 

- C (35) .

,FOE ". with

'"if = X X
f + 

(Y - yf )

1 •
Ai = I

Bi = (Yi -Y ) (xi, - xg')
li

Ci = - (xi - xf) yi' - YO)-

Figure 24: One vector xg.is selected from the set of displace- Differentiating 35 with respect to X and forcing the resulting
ment vectors to determine the optimum 2-D shift to be equation to zero yields the parameter for the optimal shift so,,,
applied to points xi', given_ a FOE-location xf. First xg is as

forced onto the line xtxg and then the entire image ACi-. AB i  ".

I' = (x1', x2' -...1 is translated in the direction of this line 2otI = (36)

until the error value reaches a minimum. zA 2

The optimal shift s , and the resulting minimum error
E().,,,) for the given FOE'-location xf is obtained by inserting

d -4 x / (31) Xop? into equations (34b) and (35) respectively, giving
=E1 = , , i Exx

5  ((x/) = O, A?+2 yp (YAiBi - YAjC (37)

In the following, it is assumed that the amount of resi-
dual image rotation in horizontal and vertical direction is -2 _B5 Ci + .B2 + XC

2 . -v

moderately small (less than 4o). In most practical cases, this ,.
condition is satisfied, provided that the time interval between The normalized error En shown in the following results (Fig-

frames is sufficiently small. However, should the amount of ures 26-31) is defined as

vehicle rotation be very large for some reason, a coarse
estimate of the actual rotation can be found (as described ear- E (xf) = - E,,. (xf) (38)

lier) and applied to the image before the FOE computation. N

With small aiaounts of rotation, the actual rotation mapping, where N is the number of displacement vectors used for com-
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. DEROTATED OPTIMAL 3.4 Experiments on Synthetic Data
3 DISPLACEMENT SHIFT The first set of experiments was conducted on synthetic

x' /2 2imagery to investigate the behavior of the error measure

x 2 under various conditions, namely

* the average length of the displacement vectors (longer
% ORIGINAL displacement vectors lead to a more accurate estimate of

DISPLACEMENT the FOE),
SORIGIALisplthe amount of residual rotation components in the

image, and
f 0 the amount of noise applied to the location of image

,'FOE -- points.
Figure 26 shows the distribution of the normalized error

-s E, (x) for a sparse and relatively short displacement field
/ t containing 7 vectors. Residual rotation components of ±2 in

horizontal and vertical direction are present in (b)-(d) to visu-
5 alize their effects upon the image. This displacement field

was used with different average vector lengths (indicated as

Fgr 2 S opt length-factor) for the other experiments on synthetic data.
5 The displacement vector through the Guiding Point is marked

with a heavy line. The choice of this point is not critical, but
Figure 25: FOE-locations are prohibited if the displacement it should be located at a considerable distance from the FOEfield resulting from the application of the optimal shift sOpt  toreduce the effects of noise upon the direction of the vector
contains vectors pointing towards the FOE. This is the case Xftg. ,.-
at point x1. In Figure 26, the error function is sampled in a grid

with a width of 10 pixels over an area of 200 by 200 pixels
around the actual FOE, which is marked by a small square.

puting the FOE. At each grid point, the amount of error is indicated by thesize of the circle. Heavy circles indicate error values which
Since in a displacement field caused by pure camera are above a certain threshold. Those FOE-locations that

translation all vectors must point away from the FOE, this would result in displacement vectors which point towards the
restriction must hold for any candidate FOE-location (Figure FOE (as described earlier) are marked as prohibited (+). It
24). If after applying s0P,(xt) to the second image I', the can be seen that the shape of the 2D error function changes
resulting displacement field contains vectors pointing towards smoothly with different residual rotations over a wide area
the hypothesized xj, then this FOE-location is prohibited and and exhibits its minimum close to the actual location of the
can be discarded from further consideration. Figure 25 FOE.
shows a field of 5 displacement vectors. The optimal shift
soar for the given xf is shown as a vector in the lower right- Figures 27 to 32 show the effects of various conditions r
hand corner. When sopt is applied to point x1', the resulting upon the behavior of this error function in the same 200x200
displacement vector (shown fat) does not point away from pixel square around the actual FOE as in Figure 26.
the FOE. Since its projection onto the line xfxi points Figure 27 shows how the shape of the error function
towards the FOE, it is certainly not consistent with a radial depends upon the average length of the displacement vectors
expansion pattern. in the absence of any residual rotation or noise (except

The final algorithm for determining the direction of digitization noise). Clearly, the minimum of the error func-
heading as well as horizontal and vertical camera rotations is tion becomes more distinct with increasing amounts of dis-
the following: placement.
Find-FOE: Figure 28 shows the effect of increasing residual rota-

tion in horizontal direction upon the shape of the error func- N
(.) Guess an initial FOE xf, for example the FOE-locationobtained from the previous pair of frames.tin( obStatine from the prearchsfoir of la. wFigure 29 shows the effect of residual rotation in verti-0 ot

(2)EStaringis a .search for a location x were cal rirection. Here, it is important to notice that the displace-
saminimum. A tcnmen' fitld used is extremely nonsymmetric along the Y-axis

cent is used, where the search proceeds in the direction of ,'. image plane. This is motivated by the fact that in real
of least error. ALI images, long displacement vectors are most likely to be(3) Determine a region around x t in which the error is found from points on the ground, which are located in the
below some threshold, lower portion of the image. Therefore, positive and negativevertical rotations have been applied in Figure 29.
The search for this FOE-area is conducted at FOE- In"

locations lying on a grid of fixed width. In the examples Figure 30, residual rotations in both horizontal and
shown, the grid spacing is 10 pixels on both x- and y vertical direction are present. It can be seen (Figure 30(a-e))
directions, that the eiror function is quite robust against rotational com-ponents in the image. Figure 30(f-j) shows the amounts of

The error function E(xf) is computed in time propor- optimal linear shift Sp, under the same conditions.
tional to the number of displacement vectors N. The final The result in Figure 30(e) shows the effect of large
size of the FOE-area depends on the local shape of the error combined rotation of 4.00 / 4.00 in both directions. Here, the.%
function and can be constrained not to exceed a certain max-
imum M. Therefore, the time complexity is O(MN). minimum of the error function is considerably off the actual
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Figure 26: Displacement field and minimum error at selected FOE-locations. The
shape of the error function is plotted over an area of ±100 pixels around the actual
FOE, which is marked with a small square. The diameter of the circle drawn at each
hypothesized FOE-location indicates the amount of normalized error (equation 40), •
large circles are locations of large error. Heavy circles indicate error values above a
certain threshold (4.0), prohibited locations (as defined earlier) are marked "+". (a) No
residual rotation. (b) 2.00 of horizontal camera rotation (camera rotated to the left). (c)
2.00 vertical rotation (camera rotated upwards). (d) -2.0' vertical rotation (camera
rotated downwards).
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Figure 27 (a-e): Effects of increasing the average length of displacement vectors upon
thL_ shape of the erroi function. Length factors vary from I to 15. The error function
was evaluated over the same image area of 200x200 pixels around the actual FOL
(square) as in Figure 26. No rotation or noise was applied. l a.
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Figure 28 (a-e): Effects of increasing residual rotation in horizontal direction upon the
shape of the error function for relatively short vectors (length-factor 2.0). No noise
was applied.
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Figure 29 (a-e): Effects of increasing residual rotation in vertical direction upon the cnr
shape of the error function for relatively short vectors (length-factor 2.0). No noisewas applied. "

I
location of the FOE because of the error induced by usin a the shorter displacement field (length-factor 2.0) in Figure 0.

linear shift to apprvimate the nonlinear derotation mappng. 32(a), the shape of the error function changes dramatically
In such a case, it would be necessary to actually derotat' the under the same amount of noise (compare Figure 30(a)). A
d of displacement field by the amount of rotation equivale t to search for the minimum error would inevitably converge

found at the minimum of this error function and repeat towards a point indicated by the small arrow, far off the.
theprocess with the derotated displacement. actual FOE. For the image with length-factor 5.0 (Figure

Them effcto f varpis ambots zofl nsecare s n 32(b)), the minimum of the error function coincides with the 'Ithe 3 forcts a ando with f actual location of the FOE (a). The different result for thepfat

efiget 31. imgFortise Tis awrand reuimot (wit niver Th-efrmneoti O agrtm sson n

herdistut o the absolute mipu e arou same constellation of points in the Figure 31(d) is caused by
amdisiutin of isplaeent wth a e ad the oreiilicof- the different random numbers (noise) obtained in each expen-tinuous) image location and then rounded to integer pixel me so h t s e am o

c inthe Rn o displacement e i ranehic i nt a k fient a n tefomor0.5ato.0 pixels dinsbothhorintwal anpd rica rnes placement between consecutive frames is essential for reli- ~~
eably determining the FOE and thus, the direction of vehicle

i ion. Since the displacement field contains only vectors, translation. im
the results do not provide information about the statistical
effects of image noise. This would require more extensive The performance of this FOE algorithm is shown in sec-modeling and simulation. However, what can be observed tion 5.1 on a sequence of real images taken from the moving +

dispamnt fieldsength differenispav cemen vectors gts anFlotrfte eilteasouedsac ro aea

n.,amoutnt ofanose. Th canusho erhe aislacnt ctors rthe, voc int the ice can be estimated ter theqationo

the more difficult it is to locate the FOE correctly in the pres- (20).
ence of noise. Figure 32 shows the error functions for two -,
displacement fields with different average vector lengths. For
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Figure 30 (a-e): Effects of increasing residual rotation in horizontal and vertical direc-
tion upon the shape of the error function for relatively short vectors (length-factor 2.0).
No noise was applied.
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Figure 30 (f-j): The amount of optimal linear shift obtained under the same conditions .
as in Figure 30 (a-e).
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Figure 31 (a-e): The effects of uniform noise applied to image point coordinates for a ,'.'
constant average vector length. The shape of the error function become flat around the ,.,local minimum of the FOE with increasing levels of noise. % % .'
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FOE. The same amount of noise applied to the longer displacement field has much
less dramatic effects.

3.4 Computing Velocity Over Ground 1r -tan .L (39)
After the FOE has been computed following the steps f

outlined in the previous section, the direction of vehicle f 1
translation and the amount of rotation are known. From the (40)tnI~f ., /derotated displacement field and the location of the FOE, the r!(+x _~.hj.
3D layout of the scene can be obtained up to a common scale I

factor (20). As pointed out earlier, this scale factor and, con- The two angles Of and f represent the orientation of the
sequently, the velocity of the vehicle can be determined if the camera in 3D with respect to the new coordinate system.
3D position of one point in space is known. Furthermore, it This allows us to determine the 3D orientation of the project- ,
is easy to show6 '4 that it is sufficient to know only one coor- ing rays passing through image points by use of the inverse
dinate value of a point in space to reconstruct its position in perspective transformation. A 3D point X in the environment , e

space from its location in the image. whose image x- (x y ) is given, lies on a straight line in '

Since the ALV travels on a fairly flat surface, the road space defined by .',.
can be approximated as a plane which lies parallel to the r] os sine! sintf -sinef cos~, 1 ]
vehicle's direction of translation (see Figure 33). Thisri cot

*approximation holds at least for a good part of the road in X = = K: 0 cos / sintf Iy(41) I
*the field of view of the camera. I_- ,'.

'-- Since the absolute height of the camera above the sine 1 -co00 1sin~f cosefrcos~fj
.. ground is constant and known, it should be possible to esti- For points on the road surface, the Y-coordinate is -h which 'a
" ~mate the positions of points on the road surface with respect is the height of the camera above ground. Therefore, ther,

to the vehicle in absolute terms. From the changing dis- value of K5s for a point on the road surface (x5 Y5) can be .-
tances between these points and the camera, the actual estimated asI lr

advancement and speed can be determined. -h
First, a new coordinate system is introduced which has Ks Yscsffsnf(2

its origin in the lens center of the camera. The Z-axis of the y5 ,(2
new system passes through the FOE in the image plane and and its 3D distance is found by inserting v5 into equation 41,.
points, therefore, in the direction of translation. The original as ,
camera-centered coordinate system (X Y Z) is transformedx sn -Yco(/sif- oscsf ,
into the new frame (X' Y' Z') merely by applying horizontal Zs = -h ~5 sn 1 -~~sn) o~ ~ (43) ,'
and vertical rotation until the Z-axis lines-up with the FOE. Ys c°Ss5 + f sin~s

The horizontal and vertical orientation in terms of pan If a point on the ground is observed at two instances of
and tilt are obtained by "rotating' the FOE (x1.Yf ) into the time, x5 at time tand x5' at t', the resulting distances from the
center of the image (0 0) using equations (14) and (15): vehicle Z5 at tand Z5' at r' yield the amount of advancement
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YMAGE tation of the scene that is built incrementally from visual
PLANE information gathered over time. The nature of this model,

however, is qualitative rather than a precise geometric
description of the scene. The basic building blocks of the I

Z QSM are entities, which are the 3D counterparts of the 2D
features observed in the image. For example, the point
feature A located in the image at xy at time t

h Yo ( Point-Feature A t x y )
-. OPTICAL has its 3D counterpart in the model as

AXIS ( PointEntity A ).

Since the model is camera-centered ("retinocentric"), the
GROUND image locations and 2D movements of features are implicitly

::::.:..:.:..:: .part (i.e., known facts) of the model. Additional entries are
. ...........:................................................................... ........ .. . the properties of entities (e.g., "stationary" or "m obile") and

Z trelationships between entities (e.g. "closer"), which are not
' _ _, given facts but hypotheses about the real scene. This is

0 expressed in the model as either

Figure 33: Side view of the camera traveling parallel to a flat (Stationary entity) or (Mobile entity).
surface. The camera advanced in direction Z, such that a 3D It is one of the key features of the QSM that it generally
point on the ground moves relative to the camera from Z0 to contains not only one interpretation of the scene, but a (pos-
Zt. The depression angle 0 can be found from the location sibly empty) set of interpretations which are all pursued
of the FOE in the image. The height of the camera above simultaneously. At any point in time, a hypothesis is said to
the ground is given, be "feasible" if it exists in the QSM and is not in conflict

with some observation made since it was established.

Interpretations are structured as an inheritance network
of partial hypotheses. Individual scene interpretations are

AZ, (t,t6 and estimated velocity V, (tt) in this period as treated as "closed worlds", i.e., a new conclusion only holds
within an interpretation where all the required premises are L

AZ (t,t') = Z, -Z."  (44) true. Interpretations are also checked for internal con-
sistency, e.g., entities cannot be both stationary and mobile

V5 (t,t) = 41 within the same interpretation.
, - t (45The QSM is maintained through a generate-and-test pro-

cess as the core of a rule-based blackboard system. The two
Of course, image noise and tracking errors have a large major groups of rules are: Generation Rules and Verification

impact upon the quality of the final velocity estimate. There- Rules.
fore, the longest available displacement vectors are generally
selected for this measurement, i.e., those vectors which are Rue
relatively close to the vehicle. Also, in violation of the initial Generation Rules
assumption, the ground surface is never perfectly flat. In Generation rules examine the (derotated) image
order to partially compensate these errors and to make the sequence for significant changes and modify each interpreta- "
velocity estimate more reliable, the results of the measure- tion in the QSM. Some of these observations have uncondi-
ments on individual vectors are combined. The length of tional effects upon the model. For example, if an image
each displacement vector lxi - xi'l in the image is used as the feature is found to be moving towards the Fuzzy FOE
weight for its contribution to the final result. Given a set of (instead of diverging away from it), then it belongs to a mov-
suitable displacement vectors S = { xi - xi' }, the estimate of ing entity in 3D space. The actual rule contains only one
the distance traveled by the vehicle is taken as the weighed premise and asserts (MOBILE ?x) as a global fact (i.e., it is
average of the measurements AZi on individual vectors true in every interpretation):

Yt (1x5 - x' AZ) (46) (defrule DEFINITE MOTION
e JXi- xi'l (MOVINGTOWARDSFOE ?x ?t)

=> :
and the final estimate for the vehicle velocity is (at ROOT (assert (MOBILE ?x)))) /*a global fact*/

(47) The directive "at ROOT" places the new fact at the root of
- t the interpretation graph, i.e., it is inherited by all existing

This computation was applied to a sequence of real images interpretations.
which is described in section 5. Other observations depend upon the facts that are

currently true in a "world" and, therefore, may have only
local consequences inside particular interpretations. For

4. THE QUALITATIVE SCENE MODEL example, if two image features A and B lie on opposite sides
of the Fuzzy FOE and they are getting closer to each other,

The choice of a suitable scheme for the internal then they must be in relative motion in 3D space. If an
representation of the scene is of great importance. The Qual- interpretation exists that considers at least one of the two
itative Scene Model (QSM) is a 3D camera-centered interpre- entities (x,y) stationary, then (at least) the other entity cannot
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be stationary (i.e., it must be mobile). The following rule hopefully correct) scene interpretation, this mechanism is
"fires within" each interpretation that considers the first entity important for pruning the search tree.
(x) stationary: Verification rules are typically based on image observa- U

(defrule RELATIVEMOTION tions that, used as generators, would produce a large number
(OPPOSITEFOE ?x ?y ?t) /* first observation */ of unnecessary conclusions. For example, the general layout
(CONVERGING ?x ?y ?t) /* second observation */ of the scene seen from the top of a land-based vehicle sug-
(STATIONARY ?x) /* true inside an interpretation */ gest the rule of thumb that things which are lower in the
=> image are generally closer to the camera. Although this rule
(assert (MOBILE ?y))) /* local to this interpretation */ is not strong enough to draw direct conclusions, it may be

used to verify existing hypotheses:
While some image observations allow direct conclusions (defrule LOWER IS_CLOSERHEURISTIC

about motion in the scene, other observations hold cues about (CLOSER ?x ?y) (BELOW_THE_HORIZON ?x ?t)
the stationary 3D structure. If the exact location of the FOE (BELOWTHEHORIZON ?y ?t) (BELOW ?y ?x ?t)
is known, then the depth of each stationary point (i.e., its 3D => _

distance from the camera) is proportional to the rate of /*mark this interpretation as conflicting*/
expansion (from the FOE) of its image (Equation 7). Conse- (assert (CONFLICT LOWER/CLOSER ?x ?y))).
quently, for the Fuzzy FOE, where a set of potential FOE
locations is given, the distance Z(A) of a stationary point A is Whenever an existing hypothesis (CLOSER ?x ?y)
determined as an interval instead of one single number: violates the above rule of thumb, this rule fires and marks the

zmin(A) 5 Z(A) < Zm-(A). interpretation as conflicting. How the conflict is eventually
resolved depends upon the global state of the QSM. Simply
removing the afflicted interpretation would create an empty

Therefore, a point A is closer in 3D than another point model if this interpretation was the only one. This task is
B, if the corresponding ranges of depth do not overlap, i.e., handled by a set of dedicated conflict resolution rules.1

Zm "(A) < Zmn(B) -- (CLOSER A B). The kind of rules described up to this point are mainly
based upon the geometry of the imaging process, i.e., per-

Since this conclusion only holds if both features are spective projection. Other important visual clues are avail-

actually stationary, the following rule fires only within a suit- able from occlusion analysis, perceptual grouping, and

able interpretation (if it exists): semantic interpretation. Occlusion becomes an interesting
phenomenon when features of higher dimensionality than

(defrule CLOSERFROMEXPANSION points are employed, such as lines and regions. Similarities
(STATIONARY ?x) /*interpretation where */ in form and motion found by perceptual grouping allow us to
(STATIONARY ?y) /*both are stationary */ assemble simple features into complex objects. Finally, as an
(< (Zmax ?x) (Znin ?y)) /*no overlap in range */ outcome of the recognition process, semantic information
=> may help to disambiguate the scene interpretation. If an
(assert (CLOSER ?x ?y))). object has been recognized as a building, for example, it
To compare the ranges of 3D points, another criterion makes every interpretation obsolete that considers this object

mobile. For all these various lines of reasoning, the QSM
can be used which does not require the rate of expansion serves as a common platform.
from the FOE. Instead, the change of distances between cer-
tain pairs of features is observed. If two stationary points lie
on the same side of the FOE and the distance between them Meta Rules
is becoming smaller, then the inner feature (i.e., the one In summary, the construction of the QSM and the search
which is nearer to the FOE) is also closer in 3D space. This for the most plausible scene interpretation are guided by the
is a valuable test for features that are relatively near to each following meta rules:
other in the image. It can be employed even if the image is
not derotated and the location of the FOE is either only * Always tend towards the "most stationary" (i.e. most
known very roughly or is completely outside the field of conservative) solution. By default all new entities are
view (i.e., for a side-looking camera): considered stationary.

(defrule CLOSER FROMCHANGINGDISTANCE * Assume that an interpretation is feasible unless it can be
(STATIONARY ?x) /*interpretation where */ proved to be false ( the principle of "lack of conflict").(STATIONARY ?y) /both are stationary, %''
(SATIEORY ?y) ?y) /*both a e a, */ * If a new conclusion causes a conflict in one but not in
(SAMESIDEOF FOE ?x ?y) /*both on the right, another current interpretation, then remove the '.

(CONVERGING ?x ?y) /*dist. is shrinking */ conflicting interpretation.
(INSIDE ?x ?y) /*x is nearer to FOE */ c'-.
=>* If a new conclusion cannot be accommodated by any
(CLOSER ?x ?y). current interpretation, then create a new, feasible

interpretation and remove the conflicting ones.

Verification Rules

While the purpose of the generation rules is to establish 5. EXPERIMENTAL RESULTS USING QSM
new hypotheses and conclusions, the purpose of verification
rules is to review interpretations after they have been created 5.1 Fuzzy FOE Results
and, if possible, prove that they are false. When a hypothesis In the following, the results of the FOE-algorithm and
is found to be inconsistent with some new observation, it is in f the esult ove Fo-arethownusaly emve fo te SM Ay ntrreatontht s computation of the vehicle's velocity over ground are shown -usually removed from the QSM . Any interpretation that is on a r ali a e.eu n e a efo-h m vn A V h

based on such a hypothesis is removed simultaneously. on a real image sequence taken from the moving ALV. The 
Since we are always trying to come up with a single (and original sequence was provided on standard video tape with a
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frame-rate of 30 per second. Out of this original sequence, region is limited, i.e., E/E ra  = p' pre (see equation
images were taken in 0.5 second intervals, i.e., at a frame 40 for the definition of the error function E,,). No
rate of 2 per second in order to reduce the amount of storage FOE-location for which the error ratio p' exceeds the
and computation. The images were digitized to a spatial limit pl" is joined to the region. Thus the final size of
resolution of 512x512, using only the Y-component (lumi- the region depends on the shape of the error function.
nance) of the original color signal. In this example, the ratio plim was set at 4.0. Similarly,

Figure 34 shows the edge images of 16 frames with the no prohibited locations (Figure 25) are considered.
points being tracked labeled with ascending numbers. We * The maximum size of the region M is given, he given
have developed an adaptive windowing technique as an FOE-region. region regardless of their error values.
extension of relaxation labeling disparitV' analysis for the The resulting error ratio pmaX= max(p') for the points
selection and matching of tracked points. The actual image inside the region indicates the shape of the error func-
location of each point is the lower left comer of :he tion for this area. A low value for the ratio pmax indi-
corresponding mark. The resulting data structure consisted of cates a flat error function. The value for pm" is shown
a list of point observations for each image (time), e.g., as FOE-RATIO in every image.

time to: ( (PI to x1 Y) (P2 to x 2 Y2) (P3 to X3 Y3) ... ) For the computation of absolute vehicle velocity, only a
few prominent displacement vectors were selected in each

time t1: ( (PI it Xl Y) (P2 tl X2 Y2) (P3 tl X3 Y3) ... ) frame pair. The criterion was that the vectors are located
below the FOE and their length is more than 20 pixels. The S
endpoints of the selected (derotated) vectors are marked with
dark dots. The parameter used for the computation of abso-

Points are given a unique label when they are encoun- lute advancement is the height of the camera above the
tered for the first time. After the tracking of a point has ground, which is 3.3 meters (11 feet).
started, its label remains unchanged until this point is no
longer tracked. When no correspondence is found in the sub-
sequent framc for a point being tracked, either because of 5.2 Motion Detection and Tracking
occlusion, or the feature left the field of view, or because it Following the computation of the FOE locations in each
could not be identified, tracking of this point is discontinued, of the frames in the sequence, the QSM processes the images
Should the same point reappear again, it is treated as a new and determines the motion of the moving objects and builds a
item and given a new label. Approximately 25 points per 3D representation of the environment as described in section %
image have been selected in the sequence shown in Figure 4. Figures 36 (a-f) show the complete scene interpretations
34. starting at frame 183 up to frame 197. Interpretations are

In the search for the Focus of Expansion, the optimal ranked by their number of stationary entities, i.e., "Interpreta-
FOE-location from the previous pair of frames is taken its the tion 1' is ranked higher than "Interpretation 2" if both exist.
initial guess. For the very first pair of frames (when no pre- During this run, the maximum number of concurrent interpre-
vious result is available), the location of the FOE is guessed tations was two. Whenever two interpretations exist at the
from the known camera setup relative to the vehicle. The same time, they are lined-up horizontally in Figure 36. Oth-
points which are tracked on the two cars (24 and 33) are erwise, interpretations are displaced to indicate that they refer
assumed to be known as moving and are not used as refer- to different points in time. Entities are marked as stationary
ence points to compute the FOE, vehicle rotation, and velo- or mobile. Entities which carry no mark (just the label) are
city. This information is eventually supplied by the reason- stationary and have not been found to be closer than any
ing processes in conjunction with the Qualitative Scene other entity in the scene. A square without a pointer in any
Model. direction means that this entity is considered mobile, but that

the direction of movement could not be determined for the
Figure 35 shows the results of computing the vehicle's current frame interval.

motion for the same sequence as in the previous figure. Each Tnga
frame t displays the motion estimates for the period between The scene contains two moving objects, a car (24)
t and the previous frame t-1. Therefore, no estimate is avail- which has passed the ALV and is moving away throughout
able at the first frame (182). Starting from the given initial the sequence and another vehicle (33), approaching the ALV
guess, the FOE-algorithm first searches for the image loca- on the same road, which appears in frame 185.
tion, which is not prohibited and where the error function After the first pair of frames (frame 183), two interpreta-(equation 35) has a minimum. tions are created due to the movement of point 24 (the reced-

The optimal horizontal and vertical shift resulting at this ing car). Interpretation 1 is preferred because it contains 23
FOE-location is used to estimate the vehicle's rotations stationary entities instead of 18 in interpretation 2. The latter
around the X- and Y-axis. This point, which is the initial interpretation is discarded due to inconsistent expansion of
guess for the subsequent frame, is marked as a small circle the points considered moving downwards.
inside the shaded area. The equivalent rotation components A single interpretation is pursued from frame 184 until
are shown graphically on a ± 10 scale. They are relatively frame 194. In this period, no object motion other than the %
small throughout the sequence such that it was never neces- one caused by point 24 is observed. However, the perception
sary to apply intermediate derotation and iteration of the of the 3D structure of the stationary part of the scene is con-
FOE-search. Along with the original displacement vectors tinuously refined by adding new closer-relationships between
(solid lines), the vectors obtained after derotation are shown entities. Point 24 is always considered mobile, although the
with dashed lines. direction of its movement cannot be identified between every

After the location with minimum error has been found, pair of frames.
it is used as the seed for growing a region of potential FOE- After framne 195, two interpretations again become feasi- S
locations. The growth of the region is limited by two restric- ble, this time caused by the movement of the approaching car
tions: (point 33). Again, the (correct) alternative 1 was ranked
• The ratio of maximum to minimum error inside the higher due to the larger number of stationary entities.
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Figure 34(b): Frames 191-197 of the original image sequence after edge detection and
point selection.
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Figure 36: Scene interpretations for image sequence in Figure 34. (a) Frames 183-190. .

After the first pair of frames two interpretations are created due to the movement of
point 24 (the receding car). Interpretation I is ranked higher because it contains 23
stationary entities instead of 18 in interpretation 2. The latter interpretation is dis-
carded after frame 184 due to inconsistent expansion of the points considered moving
downwards. The single interpretation from frame 184 is pursued, because no object
motion other than the one caused by point 24 is observed in this period.
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The two interpretations are pursued simultaneously until 2. B. Bhanu and W. Burger, "Approximation of Displace-
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point 33 and 76 in interpretation 2 is resolved. Point 76 is puter Vision, Graphics and Image Processing, (March
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start or goal region. jacent orientation regions. In path execution. we cross

Because we minimize the compass difference front LPBs by tracking landmarks of the boundary LPBs be-
the original (not previous) step from start or goal as we tween adjacent orientation regions. If we see landmarks

propagate a path, there is a straight path propagating from further along our plan, we jump ahead to cross through
each region adjacent to the start or goal node. Because them, thereby short-cutting the path following process op-
there is more than one region adjacent to the start and portunistically.

goal modes, there are at least four paths, not all of which
can be parallel. If a path hits a boundary node of visual VISION-BASED PATH EXECUTION

memory, the path is repropagated to all regions adjacent Orientation-headings are conjunctions of specifiers
to the boundary node. It follows that at least two of these for crossing LPBs. An orientation-destination-goal is a

paths, one from the start, one from tle goal, must cross conjunction of LPB crossing specifiers, with no more than
in visual memory. (This call be made a rigorous proof.) one crossing specifier per LPB in the conjunction. The
We check for crossing at each step by checking (but not termination condition corresponding to an orientation-

propagating a path from) each adjacent region to see if a heading is that all crossings have occurred. Termination

start or goal path has already crossed there, can also occur if it is impossible to proceed without re-
This algorithn is illustrated in figure 3. Figure crossing ait already crossed LPB, or if none of the LPBs

3(a) shows tire visual memory representation of large-scale can be located. A typical desired behavior for choosing

space, with start and goal nodes, figure 3(b) shows tle ad- an orientation heading is to steer for the angular bisector

jacent regions propagated to. Figure 3(c) and (d) shows between the pair of landmarks that are output from the
the choice front each adjacent region to one that minimizes productioni system. It can be shown that the path is a

the heading difference from the initial step. Figure 3(e) hyperbola, whose foci are the pair of landmarks. This is
shows propagation until path crossing is detected. Figure pictured in figure 4. Under this scheme for robot guid-
3(f) shows the inferred path through adjacent orientation ance, the path of execution of a LPB plan is piecewise
regions. This algorithm is clearly order linear in the graph- hyperbolic.
diameter of visual memory of large-scale space.

This path can be iteratively refined numerous ways,
such as estimating the heading between start and goal and L, - - A L2

replanning using this knowledge. Due to space limitations, ..

we (10 ttot explore those possibilities htere.
A plan in visual memory is now a sequence of ad-

o Figure 4: Hyperbolic LPB Crossing

LPB The case when we are already on the goal side of an

LPB requires more invol'edi laSollilg. \Ve waitt to cross

certain LPBs without crossing the ones we are already ott
the correct side of. Without (implicit or explicit) ratige
information. we cannot tell which LPB we will cioss first

(oit anty heading). If we c-ait estimiate ithe (list ance until we K
;- are perpeidicular to a tracked landiark relative to our

... "direction of (Iinear) ltotiolt, then Iw inak, estimates for

L each landmark in an LPB. we (an ec-oer tit(e approximnate
.0distanice to all LP13 crossintg ats shownl iii fignre .5. Here<. .'

0* aI(d 3 are obso'r'e( anigh's. If dl. (12. v, and v2 can
1. 0 be estitimated, tltei the distance to tlo' LP13. d. cat li e

conpuitteil as slownt itt lthe figrei. Tlhe folluwing results of

Lawton JLaw83] are usdto recover (11. 12. yi an;od y2.
For pure translationtal motjolt iage-di sploenio-t,

K..)paths are determined by thei intersectioll of tie transla-

tional axis with t li iittage plaite. If the translational axis

intersects thei intage plaite oni tite positive half of tie axis.

ie point of intersection is called a foe us of erj)iu . ",

0 0. (FOE) and the itiage motion is along s raight liites ra-

diating front it. This corresltonds to sel sor iotio toward

the FOC. This corresponds to camiera lnotit a wl;i'" flol
Figure 3: (Qualitative Platnning Algorithm (a-f) oiscircd lamldtarks. The imirsei tions ,f axes parallel to

.1

K
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Figure 5: Distance to LPB Crossing

the image plane are points at infinity and thus may be
considered to be either an FOE or ani FOC in opposite

directions. N
Given the direction of translation and the image SIMULATOR

displacements of a set of environmental points, the relative Figure 6: Logical QUALNAV Components

depths of these points can be computed by solving the
inverse perspective transform jRA76. Relative depth can are translated to grid locations at the simulator level, and

also be inferred from the position of a feature and the the robot move is executed. Then the new line of sight

extent of its displacement relative to an FOE or an FOC. landmark sightings are returned to the planning level be-

This relation is expressed as fore control is returned to the execution level. Parameters

d i such as landmark locations at the simulator level, maxi- -_

- mum visual resolution at the planning level, and step-size
Ad Ai for robot motion at the execution level, can all be interac-

where d is the distance from the sensor focal plane of an tively adjusted. For experiments, start and goal locations,

environmental point at time t + 1. Ad is the extent of location of landmarks, choice of displays and other control

environimental displacement along the d axis from time t options, are all graphically selectable.

to time t + 1, i is the distance from th2 corresponding The QUALNAV displays are pictured in figure 7.

image point from the FOE or FOC at time t, and Ai is Figure 7(a) shows the full display capability. The right

the displactment of the image point from time t to time most window allows miein, selection of processing andI also

t + 1. '1 hus, the d value of an environmental point call displays incremental vision, planning and motion results.

be recovered from intage measurentents in units of Ad, or The four topmost windows show the 36 0 ' rol)ot's eye per-
what has bten terited tlic-tntil-contact by Lee (Leeo80 .  sjctive view of the world. Figure 7(b) shws this view to •

the north only from a point in visual nlnilorv. The world

QUALNAV SIMULATOR RESULTS consists of an elevation grid with landtmarks, indicated b x-

The QUALNAV molel has four logical eivironnoin- ilitbers, pla(od oit it. The lower left window, and figiri'

tal c(Outi,onnts, pictured in figure 6, The simulator levl 7(c) show an overhead world view including, elevation co-

has a gid-based elevation map in whiclh it keeps track ,f tottr liri's' itarkns anit patlIs froti '1iiv Ill. t]anii lgan~l exciin Th oerrgt,,-oan iuc )i
atil lan itnark locations anl perforis line of sight cal- ( ,x(,'Itit. Tht lower right wildow .- il figiri 7(1) iS
i-lations to simulate the r)bot's ,isiual -ys:nt, . The plan- a shad-d oth r lgratlhi( view If thl w ,orhl. with i iot "vohi-

Ring level o( curs over the roiot's visual mentorv. Menmory lie icons showing the points in the world that the rol ot hias '%

of Vislial evtints are recorded with simulated ratg' and all- iiassed through and recorded views of in visil iteno try.

guhar orror factored in for landmark sightings as the robot Figure 8 slows a tv)ical rut if thli QUALNA\ ,

itovs throigh thc worltl. Actual robot motion and vision simulator. Figure 8(a) shows the start, awl goal lota- 

is simulate-l at, the executin level. Headings at this level tioS. Figuri' 8(b) shows the path already r'cor{d',i in vi

ar (ontiitt(d relative to visual sightings. These halings s ial imitior y. Note that btcause of the path iakon earlir, -r

323

* - %'-- -"A~ ,--2' ," ,' :'Y".%



''A

I
rJ '

1W

(d) Shaded z-buffer World View

(a) Full Display Figure 7: QUALNAV Environment (d)(cont.)

the robot does not plan a more direct route to its goal, but
instead, computes the viewframe plan of figure 8(c).

Figure 8(d) shows both the LPBs planned and ob-
served and crossed in the course of executing the plan of

figure 8(c). Notice that because landmarks 54 and 55 are
not visible from the same viewfraine as the goal location

(near landmark 50), the plan did not cross LPB (54,55).

However, in plan execution, the robot opportunistically
observed that it would have to be on the 154,551 side of
LPB (54,55) to be at its goal location, because the last
viewframe in the ulan was on that side of the LPB.

After the robot crosses LPB (54,55), it happens
that its goal location is visible, so it heads directly toward

it. Figure 8(e) shows the vision-based short-cut between
the planned and executed paths.

(b) Robot's-Eye Perspective View,

0 1.

S S .., [: I,[."

a 27
CO 6. 59 5. 8537.6

G. -4 15 A5

(OerheadWorh ie (a) Start and Coad

Figure 7: QUALNAV Environent (a-t) Figure 8: QUALNAV Ielsult (it)

324 4



If.

(1)) Path of Observation Stored ini Visual Memory (e) \isiol-7i15( Short-cut1 to (oTI

Figure 8: QI A LN A\' Pesilits (c)(coolt.

FIt EFIKI{INCTS

*i Bl.17.861 11. llajcsy, E. Krotkov. andl M\. M\initz. M4odels
of Erors (17d A4istakcs in Afach.7nix 1 7

Trc~tiOni.

(omtputeor andl Iiformiation Scicc ech((Illj(t
Repo~rt MS-CIS-86-26, GRA :SP LAB 6(4, Uni-%
versitv of IP(ll!svIvanlja, 1986.

]IE\851 1R. IFasi and Aol. \\Sxiiaii. JDispaiit fuc-0
tiol als and) st ereo vision1. III !17orc('d777q. 177((q)'yl
Ulnd('-.uidm 14(7ks/op. pares 2,15 25.1 Nli-
aioi BeatlI, Florida, D~ecembeir 1985.

90 S1 N. F'ori ia and1 1R. Stevents. Ru7latioltshipjs be7-

(c) Path Plan ned in Visual M emory I0(1al17tioSu c, 0 I 10 151, March

III K85] M. Ilehert and TI. lKile. First ousults onI
mdtoor scen aina)ilyllsis ulsing rang)' dlmta. Ili

I 7 o(77(1
17s JIntay' (17) (i '77 (d):))7,/ IVOkshI p.

paiges 22.1 2.31, Miamii llea71z. H'orila, Dct'7'io
ber 1985,

I1K(11771 l_. TI. IKo',ws iio ndK. .1. Ilrv~ii. Ss',ne df di-NN
i7'7tiA)I1. 51)7t1ia (7riltilti~n1 and' colg17inv iS') 01175

.1 ,rOUTl of FL~rp7i77 77171.1 Vsi 7717,)f 11timov)
l'7c77Iptim, wi7 ,71 o m mc 3:.7177 7 71911 --%i. P' 77.,

( oqimilo St.,( flu-' ': 129 1 '3' 1I 71i.

I N i 821 It.I1. Kili j7i5 11i' it, i I

11(2)(:202 220). Mimoit 1982.

(d ) 1,111" P1'ltIlm'7 \'.'rsls I13s (l'rsc'7 IDilitii lNii8j 13..1. iKhil(rs. 'The A1070-Id7777; Cr71lT '1,' t1%1
Ex'.( 111l Ii(j aI I61ml17'I~i .IINeI. Alioni,I'sI

01'~~~ ~~~~ ~ A JA'.slts()')(,1

325

40

5%

V7 S
v V VA'.'~RV%~%"~ ''~ '.':.*~-~~' *j**~*p 2_



[Law83] D. T. Lawton. Processing translational motion [Schi841 H. Schone. Spatial orientation - the spatial con-
sequences. Computer Vision, Graphics. and trol of behavior in animals and mali. InI R.
Im-age Processing, 22:116-144, 1983. Capranica, P. Marler, and N. Adler. editors,

[Lee801 D. N. Lee. The optical flow field: the founda- Princeton Series in Nearo biology and Behavior,IA
tion of vision. Philosophical ransactions of the 1984.
Royal Society, (B 208):385-397, 1980.

I Lev87[ T. Levitt. Visual nmemory structure for a mobile
robot. In Proceedings of the IEEE Workshop
on Spatial Reasoning and Maltisensor Fasion,
Morgan Kaufmiann Publishers, Los Altos. CA,
October 1987.

[LlK84] 13. Lucas aisd T. IKanade. Optical navigation by
the method of differences. InI Proceedings Image
Understanding Workshop, pages 272 -281, New
Orleans, Louisiana, October 1984.

[LLCIK] T. Levitt, D. Lawton, D. Chelberg. and K.
Koitzscli. Qualitative navigation of large scale
spacc. to appear.

jLLCN87] T. Levitt, D. Lawton, D. Chelberg, andl P. Nel-
son. Qualitative navigation. InI Proceedings of
the DARPA Image Understanding Workshop.
Los Angeles. CA. February 1987.

[.Nor8O] H. Moravec. Obstacle Avoidance and Naviga-
tion in the Real World by a Seeing Robot Rover.

PhD thesis, Stanford Universi ty. Sept ember

1980).

[NIS86] L. Matthics anmd S. Shafer. Error Modeling in
Stereo Navigation. Technical Report ('MU-CS-

86-140. 1986.A

Pen S5} A. Pent land. .Anew senise for ilcepth of
field. III Pr0ceedingsq o] the Ninth In1ternaU-

tional Joint Conference on Artificial In1telli-

grance, pages 988-994, I.ICAI-85, Los Angeles.
California. August 1983.

Pl-11 WV. Pylvslin. Compuatation and Cognition: to-

ivard a FoandatiOll fam CoqnitilIe SciceT. M IT
Press. Cambridge. Mlassachusetts, 1984.

P A761 D. F. Rogers and .1..Adams. Matheimtical

Elements of C.onipatcr Graphics . MeG raw%-Mill.
1976.

SC82[ RI. N. Shiepard aind L.. A. Cooper. Mental Ito-
niyes and thecir Tean sfar7 a timns. NI IT Prcnss.

1982.

SC85 R111. S mithI and P. CheIn maii 0n1the R~ 1 uscii-
tq ti non and Estimati an. (If Slaiall [71?iCetain t/.,

Technical Paper Grant ECS-S20f31Ti Se,1itk-m
tier 198.

326

% N, % %
a. a ~.%%'\\ N



.0

Cooperative Methods For
Road Tracking In Aerial Imagery

David M. McKeown, Jr.
Jerry L. Denlinger

Digital Mapping Laboratory
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA. 15213

Abstract thread control structures even though they integrate multiple lines of
This paper describes research in digital mapping and image sequential image processing.

understanding in the area of automated feature extraction from
aerial imagery. We discuss a system for road tracking, ARF (A Road ARF (A Road Follower), is the first system to utilize multiple
Follower), that uses multiple cooperative methods for extracting independent control structures resulting ir multiple lines of analysis
information about road location and structure from complex aerial and the generation of alternative intermediate representations. It is
imagery. This system is a multi-level architecture for image analysis also unique in that it explicitely uses a cooperative method to allow
that allows for cooperation among low-level processes and for single point failures to be overcome by using an alternative
aggregation of information by high-level analysis components. (successful) tracking method. In this paper we report on:

Two low-level methods have been implemented; road surface 1. An investigatation on the use of multiple sources of
texture correlation and road edge following. Each low level method knowledge in low-level and intermediate level vision.
works independently to establish a model of the center line of the 2. Measuring the effectivness of combining knowledge
road, its width, and other local properties. Intermediate-level sources whose failure modalities are presumed to be
processes monitor the state of the low-level feature extraction independent.
methods and make evaluations concerning the success of each 3. A discussion of general purpose techniques for road
method. They also extract various road properties such as width 3.acun at gnl o e techniqus tarsrad
changes, surface material changes, and overpasses. As a result of tracking that would not make assumptions at scale,
these evaluations one tracking method may be suspended due to sensor, or road construction techniques.
apparent failure and restarted from the model generated by other 4. The generation of symbolic descriptions of the road
successful trackers. Finally a high-level module generates a path, detectable events on the surface, and structural S
symbolic description of the road in terms of various attributes of the changes in the topology of the road.
road such as center line, road width, surface material, overpasses, .",,%

and an indication of potential vehicles on the road. This description In Section 2 we present a brief discussion of previous work in the %

is available in both map and image coordinate systems, and can be automated extraction of roads from remotely sensed imagery. %

used to generate a textual description of the road. Section 3 describes the two low-level tracking methods. Section 4
focuses on the nature of cooperation in ARF. Sections 6 and 7 %
discuss some tracking examples and a set of experiments

1. Introduction performed to establish performance Of ARF run using individual
Ra tractin trackers, and both trackers in cooperative mode. Finally, section 8Road track inea remotely sensed imagery has often been brietly discussessametuturework.

equated with linear feature extrac#Hon Tl- , -,- .... -' that findirq bify icsessm utr ok

linear features in imagery either by regioi exractlui or hue tinoing
was equavalent to finding roads. Further, it also worked for other
types of linear features such as drainage, bridges and railroads. 2. Background and Previous Work
This view was appropriate considering the very low resilution In this section we survey five research systems over the last ten
imagery, LANDSAT 1.11 that was available at the time. How( it is years that were developed specifically for road tracking, or were
no longer appropriate given that the research community n as developed as linear feature detectors and were demonstrated within
access to large scale, high resolution aerial mapping imagery the context of road delineation. For each system we outline several 0
allowing for the structural analysis of the road surface. In fact, for of the major assumptions based upon reading the published
practical mapping applications such detailed analysis must be literature and give some subjective indication of performance based
performed in order for a road extraction system to be a useful upon published examples. The types of "road knowledge" used by
component in a digital mapping environment, each method is described when appropriate.

A second development is the emergence of computer vision
systems that perform integration of image processing results, 2.1. BaJcsy and Tavakoll's road follower
notably edge-based and region-based techniques, to generate more Bajcsy and Tavakoli[1] used low resolution imagery from
robust intermediate representations [5, 6, 21. These systems can be LANDSAT-1 where each pixel had a ground resolution of
contrasted with traditional image processing systems that exhibited approximately 57 meters by 79 meters. Due to this low resolution,
a single line of sequential processing without much effort in the only very major roads of three or more lanes could be tound. This
construction of intermediate intepretation structures or high-level system utilized the knowledge that roads are made of concrete or ,,,.
analysis. However, even these innovative approaches exhibit single asphalt to directly determine the approximate intensity range to

This research was partially sponsored by the U.S. Army Topographic Laboratory Research Institute Fort
Belvoir, VA, under Contract DACA72-84-C-0002 and by the Defense Advanced Research Projects
Agency (DOD), ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract
F33615-84-K-1520. The views and conclusions contained in this document are those of the authors and S
should not be interpreted as representing the official policies, either expressed or implied, of the U S
Army Topographic Laboratory Research Institute, of the Defense Advanced Research Projects Agency,
or the US Government. N -N.
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expect in MSS band 2 of the LANDSAT-1 images. The paper does 2.3. Quam's road tracker
not say whether concrete and asphalt surfaces are processed At SRI, Quam[12] used high resolution imagery, with ground .9
separately or whether the results are merged at some point in the resolution of approximately 1 to 3 meters. Quam's road tracker was
processing; possibly both materials look the same in LANDSAT-I part of the SRI road expert, the HAWKEYE system. It uses an :
MSS band 2. It first performs a threshold operation, setting all algorithm based on correlation of the road surface pattern or
points within some range of the expected road intensity to 1 and all intensity profile in the forward direction along the road. It must be
other points to 0. Then it finds likely road points by scanning the given an initial starting point plus direction and width. This is
entire image looking for points with the right intensity profile -- that expected to be supplied either by a user or a road finding program.
is, points which match one of a number of templates indicating that It keeps a model of the road to use in finding the road points. The
there is a line point there. The templates are constructed so as to road model contains a surface model and a path model. The path
accept points that locally look like roads of width 1, 2 or 3 points, a model is a list of recent road points used for parabolic extrapolation
total of 52 templates are used. Vertical, horizontal and diagonal of the path, the surface model is an array of intensity values
roads and points where the road width changes by one point are sampled from the image in the direction perpendicular to the road.
accepted. It then grows the road by linking connected road points, The surface model is allowed to change gradually as the road is
using constraints on curvature and distance between road points. It followed.
then thins the road points so that the road is only one point wide. It
then eliminates short segments as noise since short roads are not The program first uses the path model to predict the position of
expected. It also labels intersections although the reason for doing the next road point one step ahead. It then extracts a cross-section
this is not clear. from the image at the predicted point and performs cross-correlation

with the road surface model to compute an error in the predicted
The program seems to find some of the roads in the imagery position. The actual road position is computed from the correlation

used although it also finds some spurious roads. The quality of the offset. If the correlation peak is poor, the program uses the path S
roads found is difficult to judge since photographs are not included model to guess ahead another step and try to re-acquire the
in the paper. One obvious limitation of this work is that roads are surface. It will continue to guess ahead until it finds a good match
expected to exhibit very specific spectral signatures. This or until it has gone further than the length of the longest expected
assumption may work if the "right* mufti spectral scanner (MSS) anomaly. If there are a large number of anomaly points, it then
bands from LANDSAT-1 images are used but it will not work for hypothesizes a surface change and extracts a new surface model.
images from many sources since different materials and lighting If it can follow the road successfully with the new surface model it
conditions can cause roads to be of any grey value. Also, it does continues, otherwise it quits.
not use much road-specific knowledge. The road knowledge used
is knowledge about expected width for the given type of roads and The road knowledge used is the assumption that roads have a
imagery and knowledge about curvature and length. It is claimed consistent surface wear pattern but with possible anomaly points, an
that the program will find rivers, blood vessels and bubble chamber assumption of constant width and the possibility of a change in
tracks as well as roads. This may be an indication of too little surface material. However, it does not use any high-level
specialization for the task of finding roads since it is clear that rivers, knowledge about roads. For example, road width changes can
blood vessels and bubble chamber tracks are similar only at the cause problems due to gradually changing surface patterns that
coarses level of description, ie., linear 2D shape. However, many of often occur at places where a new lane is added or one is deleted.
the features that distinguish roads from other linear objects are not Gradually changing surface patterns can also occur at intersections.
visible at the resolution used so a general purpose line finder could This is a problem that does not occur with some of the techniques
be sufficient for the data. using lower resolution imagery. This makes it clear that althoughmore information is available in higher resolution imagery, much

more processing is required to take full advantage of it. WI

2.2. SRI low resolution road tracker
The SRI low resolution road tracker 13, 4] used low resolution

imagery (ground resolution is not reported). It looks for line features 2.4. Nevatla and Babu's road finder
using some weak high level constraints on the shape of the road Nevatia and Babu [11, 10] used medium resolution imagery
path. First an area of the image to search is designated, (ground resolution is not reported). Their program first runs an edge
presumably by a user or a higher level program. It computes scores operator over the entire image to compute an edge magnitude and
for several operators over the area designated, under the angle for each point. It then selects edge points based on three
assumption that a combination of operators can do better than a criteria:
single one. A distinction is made between object detection 1. The edge magnitude is greater than a fixed threshold.
operators and object analysis operators. Object detection operators 2. The point is a local maximum in the direction
are binary operators which detect whether the object is definitely perpendicular to the edge.
present or not. These operators are designed to detect only points 3. The edge angles of the neighboring pixels are within
which are very reliable, at the possible expense of a large number of 30 degrees of the central pixel.
omission errors. Object analysis operators are designed to give
some quantitative measure of the quality of the object point once it It then links the edge points together and fits piecewise linear 5
is found. The object detection operalors are first used to find all approximations to the connected edges. Finally, it groups the line
reliable road points. Then a cost array is generated for each object segments together into antiparallel pairs -- that is, pairs with
analysis operator. The cost arrays contain 0 for reliable road points opposite directions -- under the assumption that the road is of
and a function of the object analysis score for all other points. The approximately uniform intensity and the background material is the
function used can be designed to favor paths of a particular shape.
A path optimization is then applied to each cost array and the path same on both sides of the road. B,-

with the lowest score is chosen as the final road path. The road information used by this method is the assumption of

Road knowledge used by the program is very weak. Some uniform road intensity and uniform background material, and
limitations in this approach are that both the road start and end assumptions of minimum length and straightness of roads. One
points must be known at least approximately before tracking. In problem is that it is difficult to group antiparallel lines properly,
addition the results of the object analysis operators must be used in especially in the case where there are more than two lines. Another
areas where roads have not been clearly detected in order to find a problem is that it is not always the case that the background
path between the points found by the object detection operators material is the same on both sides of the road, for example, in the
However, the object analysis operators were designed to give case where the road is one lane of a multilane highway and there is
reliable results only when the object is already known to exist. If it is a median strip of another material separating it from the other lane. -

really the case that the object analysis operators are only valid at Finally, from a pragmatic standpoint, the edge test may be too strict
points where the object is known to exist, it seems that they are to find many roads.
completely superfluous.
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Figure 3-1: Surface and Edge Tracking

2.5. Kestner's road follower All of these methods use a single local tracking strategy to find

Kestner [71 used medium resolution imagery where roads were roads. Therefor a major problem with previous work is that if the iN..

on the average 3 or 4 pixels wide. It uses two methods to track method fails at some point it is very difficult to recover. Further, it is

roads -- a correlation follower and a region based follower. The often difficult to automatically recognize when the tracking method

program is started by a human or an automatic road finder with the has failed since the local nature of these methods assumes that the

road position and direction. The correlation follower looks in the local maximum, no matter how poor, is its best guess for the

direction of the expected road path for points with the expected position of the road. As a side note, it is difficult to compare the
intensity profile of the road against the background, that is, light on
dark or dark on light. Where the correlation follower fails to find an performance of the different trackers against each other since they
acceptable path, a region based method is used to re-acquire the all use different resolution imagery from different sources and there

road. The region based method extracts a two-dimensional area is no consistent method for reporting results.

from the image and searches the entire area for points with the

expected intensity profile, marking each point with a score which We believe that the main way to improve road tracking is to J.

indicates how well it matches the expected profile. It then develop multiple methods to extract more information about the road

eliminates all but the best points and links them together using and to use cooperative techniques to allow a failed method to be

constraints on road Lurvature to find the most likely road path. detected and restarted using an alternative technique, In the

According to Kestner, the two correlation and region based trackers following section we describe two tracking methods in sufficient S

complement each other perfectly although it is not clear exactly how detail that others should be able to implement similar road trackers.

they are used together. A third method, called the binarizing In section 4 we discuss the cooperative architecture within which

method, is also described. This method first binarizes the section of these trackers are imbedded, and the use of feature specific

the image which contains the road by setting all points within some detectors for road events

range of the expected road intensity to 1 and all other points to 0. It

then eliminates regions that are too wide to be part of the road and

links the remaining thin regions together. It is not clear whether the 3. Road Tracking Using Surface and Edge Models
binarizing me.thod was implemented or how it was used in the In this section we describe the two tracking methods currently

system. used by ARF, a surface correlation tracker and a road edge tracker.

Each tracker makes assumptions and uses road specific knowledge ,
The primary road knowledge utilized concerns road shape and in its image analysis. The surface tracker makes the following ..

the assumption that roads will be of approximately constant assumptions: e

intensity. An implicit assumption of this method is that the

background is of approximately constant intensity. This assumption - a constant width

of constant intensity is a disadvantage since it cannot accomodate * a surface intensity profile which changes either very %

major surface changes or large changes in background intensity, gradually or suddenly
* a path that is well modelled locally by a parabola
* slowly changing direction

2.6. Summary of Previous Road Trackers
One can categorize road finder/follow,;,,. .ito one of three major The edge tracker makes the following assumptions:

types; correlation trackers, region based followers, and edge linkers * road edges will be fairly straight

N
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* a path that is well modelled locally by a parabola [ONE]: Extrapolate the position of the road one step forward.
. slowly changing direction We represent the road path parametrically as two separate

Figure 3-1 gives an pictoral description of each of the tracking functions x(t) and y(f) where t is the total length in steps that we
methods. These methods will be described in detail in the following have traversed along the road's path. We use multiple regression
sections. [13] with t and t2 as the independent variables to fit parabolas tox(t) and y(t), getting approximate functions:

3.1. Correlatlon-Based Road Tracking sf1t) - a + bt + ct2
This section describes a correlation-based road tracker for y'(t) - d + et + ft

2

medium to high resolution images. It uses techniques first It can be shown, by eliminating t from these equations, that the
described in 112] with several improvements. All correlation-based fitted curve is a parabola in the x-y plane as well as in the x-t and
techniques are based on the assumption that there is a discemable y-t planes. Further, the parabola in the x-y plane can have
intensity pattern or texture on the road surface. For example, there arbitrary orientation, having an equation of the form:
is usually a light colored line down the middle of multiple-lane roads
and there are usually darker wear patterns in the lanes themselves. Ax

2 
+ Bxy + Cy2 + Dx + Ey + F. 0

We do not look for any such specific pattern but rather look for a We do not actually use this equation since the parametric form is
pattern that is known to be on the road at some starting point, more convenient for our purposes.
Provisions for slowly changing road surfaces and for sudden
changes in road material (from asphalt to concrete, for example) are The position of the road is predicted by computing x'(t+l) and
made. y'(t+l). Since this does not guarantee equal step sizes, due to

nonlinearity of the fitted curves, we must adjust the predicted
The correlation tracker takes as input parameters the starting position so that the length of the step taken is equal to the step

coordinates of the road, its initial direction and its width. In normal size we intended. The problem is that we are using t to predict
operation these parameters will be supplied interactively by a position and t has only an implicit, and not necessarily constant,
human or provided by a higher level program, perhaps by using relation to the length traversed along the road. The error for any
information in a database to determine where a road might exist or point is normally fairly small, the main concern is that these errors
by using some sort of road finding operator. A road is followed by do not accumulate. We first find the tangent to the fitted parabola
extracting a cross-section perpendicular to the road from the image near the current point by taking the slope of the line connecting
at points predicted by a road trajectory model and using cross- the fitted points for t and t+l. This gives an average tangent
correlation with a cross-section model to determine the actual between the two points. We then project the previous road point
position of the road. If the correspondence is poor, or if the offset onto the tangent line by finding the intersection of the tangent line
(the shift between cross-sections) is greater than expected, we and the line which is perpendicular to the tangent and goes
continue guessing the road position until we find a good through the previous point. The predicted road point is then
correspondence or we have gone so far that it is unlikely we will found by taking one step forward along the tangent line from this
re-acquire the road. In the latter case, we assume the road surface intersection.
has changed and attempt to find a new surface model.

The cross-section model is an array of intensity values taken from [TWO]: Extract road cross section.

the image. The trajectory model is the coefficients of a parabola We take a cross section perpendicular to the road at the point
fitted to the most recent points on the road. predicted in step [ONE], using a linear interpolation to get multiple

sample points per pixel. To allow for cross-correlation, we take a
cross-section wider than the road itself. We take a straight cross-

3.1.1. Prediction: Taking A Small Step Forward section as opposed to a circular one as suggested for low
We predict the position of the road one step ahead by fitting a resolution images in [7] both for simplicity and because it is not

parabola to the most recent road points. We store a list of about clear what radius of curvature to use or how to match circular
twenty road coordinates to use for curve fitting. In addition to the cross-sections when we are looking for a pattern on the road
points themselves we also store a correlation score, which is a itself.
relative measure of the quality of the cross-correlation, for each
point. When we fit a curve to the points, we ignore those with the The linear interpolation used is a weighted average of the four
worst scores to get a correspondence with higher confidence. pixels around the floating point image coordinates desired. We

imagine the pixels as being squares with their integer coordinates
In determining the number of points to use for correlation, several representing the point in the center of the square. To determine

things must be taken into consideration. In order to get reasonable the weight used for each neighboring pixel, we draw a square of
.t accuracy, we need to use enough points so that the fit is not too area one pixel around the point requested. The weight used for %

dependent on any one point. However, we cannot use too many each pixel is the area of overlap between the square and the ,%
points because the road may not be well suited for modeling with a pixel. The advantage of this interpolation method over non-linear
parabola over long distances. In addition, the maximum number of methods, such as that described in 14], is speed. We need a lot
points we can use for curve-fitting is dependent on the size of the of prints to get a good correlation and we can perform several A,

steps we take since the number of steps that can be modeled well linear interpolations in the time it takes to do a single non-linear
by a parabola will be 'smaller for larger steps. Thus, for greater interpolation. .

accuracy in trajectory prediction we need to take smaller steps. -

However, with very short steps the acceptable correlation shift [THREE]: Cross-correlation.
between successive cross-sections (corresponding to a maximum We do a simple valley finding correlation to determine the best
acceptable change in road direction over a small distance) becomes match between the cross-section model and the new cross- .
very small and nearly impossible to achieve. The selection of the section. We look for the offset that gives the smallest value for
best number of points to use is therefore a tradeoff between the sum of the squares of the differences between corresponding
accuracy of road prediction and confidence in the road positions elements. We compare the cross-section from the model with a
found. window on the new cross-section -- shifting the window to get the

score for different offsets. The correlation is done only over the
To take a single step along the road, we use the following eight width of the road. To reduce the number of sums we need to

steps, which are identical in form to those described in [12]. The compute, we stop as soon as we have a valley. In doing this, we
initial trajectory model is generated by extrapolating backwards are assuming that the point we are looking for will be close to the
along the initial angle given and storing the necessary number of center -- using the first valley we find reduces the chances of
points. In this way, we start out looking straight ahead without finding a good correspondence that is not what we are looking for
otherwise treating the first points as a special case. The initial (for example, a different lane of the road that happens to yield a
cross-section model is created by taking the average of several better correspondence).
cross-sections extrapolated forward from the initial point.
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actually tolerate. If we lind a good correlation along the guessed
[FOUR]: Generate a mask indicating the positions of noise trajectory, we test to make sure we have really found the road byelements. requiring that more than one consecutive cross-section give a

Using the correlation computed in step (THREE], we create a reasonable match. If we have been guessing the road for only a
mask of the elements which differ from their corresponding points few steps, we only require that one point give good correspondence.
in the surface model by a significant amount. These are noise If we find a good correspondence, we backtrack and do road track
elements which wil! be ignored in a second, more accurate ana anomaly output for the points we skipped over, starting from the
correlation. last successful point. We then continue following the road from the

[FIVE]: Re-correlate over the unmasked elements. newly found position.

To get a better match we re-correlate using only the unmasked When we are guessing, i we find a point with good
elements. The basic correlation used is the same as in step correspondence we add it to a temporary road model (for both the
(THREE]. To get a sub-element match we fit a parabola to the road surface and the trajectory). In subsequent extrapolations we J.e
three points closest to the valley and take its minimum. We use the temporary models under the assumption that we are .1

check several things to see if the correspondence is good actually following the road. This allows us to guess the road
enough. We check the magnitude of the offset of the position based on all the information we have and makes
correspondence, the sum of the squares of the differences backtracking easier if we decide we have found the road. If we
(correlation score) and the number of points marked as noise eventually decide the points added to the temporary road model are
points. By using three different measures, we need not be so really on the road, we backtrack, adding the intermediate points to
strict on any single one. If any one of these is too large, we will the permanent model.
not accept the correspondence. If the correspondence is not
good, we guess the position of the mad on successive steps until If we decide the points are not good, we throw out the temporary
we find a good correlation and then backtrack to output the road model and make a new temporary model out of the old permanent
points, model. When we create the new temporary model, we do not go all

the way back to where we started guessing, we just get rid of the

[SIX]: Update the cross-section model. new points we added and continue from where we are.

f the correspondence was good, we create a new surface I a fs b pn w
cross-section model from a weighted average of the old surface If we have rot found a reasonable correspondence with the
model and the matched cross-section. This essentially results in current model by extrapolating forward we presume the road, .,

moelan te athe cos-scton Tisesenialyreuls n surface has changed. We then try to start a new model by retrieving •

an exponentially decaying model. A large weight is used for the sufane crssctingd a thenlastsuccessfulpintmtoeserverasreng
model and a small weight for the new cross-section to prevent the a new cross-section at the last successful point to serve as the .

model fro chan igto frpidl. tmodel. if we find a good correspondence with the new model, we
model from changing too rapidly. backtrack over any points we skipped, then begin following again. If

we do not find a good correspondence, we use the cross-section
[SEVEN]: Adjust the position of the road center. where the new correspondence failed as the model and try again.

Using the offset from the correlation, we generate the road We continue doing this until we find a good correspondence or we
point. We store this in the output and also add it to the list of have gone so far that it is unlikely that the road will be re-acquired.
points used to predict the road position, and delete the oldest
point from the list.

3.2. Edge-Based Road Tracking
[EIGHT]: Anomaly detection. The edge tracker is based on the road finding method of Nevatia

Anomalies are found in the same way the mask elements were and Babu. It tracks the edges of the road by linking points with high

found in step [FOUR] except a greater difference is tolerated. We gradient and orientation in the direction expected for the road. The
are more restrictive for detecting anomalies than we are for gradient and orientation are computed by a 5 X 5 Sobel gradient
iqnoring noise and random fluctuations. In the current version, operator. We use the Sobel gradient rather than the Nevatia-Babu
the step size is greater than one pixel so we must do multiple operator because we found that the 12 value grain of the Nevatia-
lines of anomaly detection for each step. Babu operator was too course for accurate angle comparisons.

During tracking, the position of the next road point is predicted by

3.1.2. Following, Guessing and Backtracking parabolic extrapolation from the recent path the same way as is

At each step along the road, we check if the correspondence is done in the surface tracker. The Sobel is then computed for the

acceptable (in step [FIVE]). It it is. we update the surface and points along the line perpendicular to the road direction at the
trajectory models and try to advance another step. If predicted point. A score based on the weighted sum of several
correspondence is poor we must figure out why and try to find component scores is computed from the Sobel values for each
where the road really is. Poor correspondence can be caused by point. Each of the components is a linear function between 0.0 and

two things: 1.0 in the range between some minimum and maximum, 0.0 outside

1. There is something occluding most or all of the road. the range at one end and 1.0 outside the range at the other end.
This could be a vehicle, an overpass, a shadow, etc. The component scores are edge strength, orientation, difference in

magnitude from each of the neighboring points and difference in

2. The road surface has changed. For example, i we angle from each of the neighboring points. The edge strength score

are going over a bridge and the surface has chanced is high for edges of greater magnitude, the orientation score is high
from asphalt to concrete, for angles of the expected orientation. The difference in edge

We treat these two cases differently. In the first case, we skip over magnitude score is high for larger differences, selecting for points

the occluded section until we can re-acquire the road. We use the whose neighbor points have relatively small edge strengths. The

backtracking as suggested in (12) to avoid outputting false difference in angle gives high score to points whose neighbors have

anomalies. In the second case, we construct a new cross section similar angles, selecting for points in areas of consistently linear

model and continue following, texture.

The final score for each point is taken as the sum of all 0f the
Believing that occlusions are more common than surface components. The point with the highest score is then chosen as the

changes, we check for occlusions first. We look ahead along the edge point. If no points have a score higher than some minimum
extrapolated road position and try to find a cross-section with a high threshold, no point is selected as the edge point. If edges are found %
correlation with the current model. When we are guessing the on both sides, the center line point is marked as the point in the
position of the road, we allow a greater absolute deviation from the middle. If only one edge is found, it is assumed that the width has
expected position it we have been guessing for a while (that is, the remained constant and the center line point is marked as hall of the 0
acceptable position of the road spreads out as we guess for a width from the one edge found. If no edges are found, guessing
greater distance). A linear function of the number of guessed steps ahead is done the same way as for the surace tracker As with thA
is added to the normal acceptable offset to get the offset we will surface tracker, if guessing ahead goes too far without finding a

good point, the tracker quits
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Figure 4-1: ARF System Organization

To decrease the possibility of finding an edge point that has a completed a step forward, feature detection is performed by

high score locally but is not part of the road edge, edge linking is invoking each of the intermediate level detecters with access to the

done between points where possible. We use the same method as internal path model of both trackers. These detector modules and

Nevatia and Babu, looking ahead in the direction of the edge and the type of state information that they require is described in Section

accepting the next point it it is a maximum in edge magnitude and 5. Finally the control queries whether a path divergence has
occured. Such a divergence is currently a difference of 7.5 meters.

has the correct direction. It no divergence is detected the basic control cycle continues.

Upon detection of a divergence, the high-level invokes each
4. Cooperative Road Tracking tracker to advance 5 additional units. The path history and

In this section we discuss the organization Of ARF, an Automatic confidence values are used to evaluate the relative goodness of
Road Follower. ARF is organized into three processing and analysis each tracker, both in terms of its history, and in terms of the 5
levels. The low-level is composed of two independent low-level additional units. The high-level can then decide to terminate the
road trackers that generate an estimation of the center line ot th3 overall run, it the confidence in both trackers is sufficiently low. or
road and produce various tracker dependent features such as width, can decide to restart one tracker from the path model of the other.
surface material change, and anomaly detection. These trackers
have been described in detail in Sections 3.1 and 3.2. The The process of restarting is made straightforward since the
intermediate-level is composed of several modules that detect and internal data structure representation of the path history for each
report road features such as overpasses, road width changes and tracker is identical. Thus an edge tracker path history can be
vehicle detection. The high-level provides overall control and user loaded directly from the surface tracker, and edge values and
interface. It detects situations where one low-level tracker must be
restarted from the other and allows users to interact to start or confidence can be computed without search. Similarily the
restart the system. Figure 4-1 gives a description of the overall correlation tracker can be forced to assume a new path model, and
organization of the cooperative road tracker system. rebuild its weighted decay cross section.

The basic control cycle in ARF is to invoke each of the road
trackers independently and allow them to track asynchonously until_
each has generated a step forward. This step might require several ,%
advance, fail, guess, and prediction steps within each of the road
trackers as described in Section 3. Once both trackers have
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5. Detection of Road Features section. This is exactly what causes the generation of anomaly
There are six types of road features which ARF attempts to detect points along one edge, usually the edge that is expanding or

and delimit -- intersections, width changes, overpasses, surface contracting. As a result of a road width change the model width is
material changes, vehicles, and occlusions. Any of these conditions updated and i is necessary to re-acquire a surface model using the
can cause simple tracking schemes to fail. Multiple conditions, such path model of the edge tracker.
as occlusions on a sharp curve, width changes followed by a
surface material change require multiple sources of road estimates
in order to be robust. Each of the intermediate level feature 5.3. Overpasses
detectors has access to each of the trackers internal road history Overpasses exhibit properties similar to intersections at the low-
data structure. This data structure contains an entry for each path level path history. The major distinguishing feature is that we
point tracked on the road including center position, match should expect some changes in the average surface intensity, more
confidence, edge confidei"-e, width estimate, left/right edge track, so than in an intersection. Generally we detect lack of consistent
and model history. The results of each feature detector is combined road edges conincident with a series of bad surface correlation
with the original tracker information to form a composite path model. scores. Overpasses are likely to have shadows that precede or
For each point in the composite path model we store follow the previously mentioned features, and these shadows are

" edge quality usually detected as anomalies. Verification can be perfromed by
" correlation quality finding leading and trailing edges of the overpass, usually also
" road width detected with anomalies..
" number of anomaly points
" location of anomaly points in the cross section (mean, %-,

std. dev.) 5.4. Surface material changes
" difference between edge and surface centers Surface material changes are relatively easy to detect, since the
* type of any feature detected (overpass, vehicle, etc.) pavement changes causing a large, abrupt change in average
* average surface intensity surface intensity along with poor surface correlation but possibly
* intensity of anomaly points (mean. std. dev.) good edges. Often surface material changes coincide with bridgedecks, and two closely spaced changes can be detected. Short

In the following sections we summarize how each feature changes due to patching are detected as anomalies. In this case

detector determines that a feature event has occured, how it is the path history is re-acquired using several consecutive matching

verified, and what actions (if any) should be taken by the high level cross-sections.
control. The major problem for most feature detectors is ir the 0
generation of hypotheses about continuous features that occur over 5.5. Vehicles
several path points only using pointwise information as above. Vehicles can be detected by looking for patches of anomaly
There role is to survey and combine the noisy pointwise into the points of approximately uniform intensity. Since the path history
occurance of a discrete event. A second problem is in the information stores the number of anomaly points, their average
determinization of the actual location of the feature. For example, in intensity, and their location in the cross-section, the vehicles feature
the case of width changes, the actual feature occurs, usually slowly detector performs simple grouping.. Since vehicles can appear at
over many road points. This localization is important since we rely any point on a road but there should be some rules about where
on reasonably accurate positions for overpasses and intersections they can be with respect to each other and rules about which lanes
in order to skip over them. they are likely to be in.

5.1. Intersections 5.6. Occlusions
To detect intersections, we detect cases where there are several Occlusions are detected initially by looking for irregular patches of

consecutive road points with bad edges and possibly with poor anomalies along the side of the road. Such irregular patches can be
correlation scores. We also expect no significant change in average caused by buildings and trees. They are too long and irregular to be
pixel value over the cross-section. On roads in residential and vehicles, tend to not cause bad correlations but may coincide with
urban areas, we might expect intersections to appear at fairly intermittent edges on one side of the road.,
regular intervals. The history then must contain a measure of the
quality of the edges and a measure of the quality of the corre!ation
scores. Verification can be accomplished by adding the intersection .am
location to an agenda of possible new road starting points and Photographs 6-1, 6-2, and 6-3 are three typical examples of the
invoking the tracker using the intersection width and direction1 . To ARF cooperative road tracker. Photographs 6-1 and 6-2 are of the
skip over, look ahead past the predicted width of the intersecting cooprative ra tracker Photogra 6-t ande6- a .
road. It is generally not necessary to flush portions of the surface continuations of the same tracker run on a limited access highway
model, with a ground sample of about 1 meter per pixel. Figure 6-3 shows 4, V

a similar road at more about 3.5 meters per pixel.

ARF generates a real-time display with four display windows. The
5.2. Road width change 'edge tracker' window shows the independent progress of the edge

The detection of road width changes requires the integration of tracker including centerline, edge points and predictions and
several clues. During a width change we expect to find good edges, guesses. The same information is displayed in the 'surface tracker'
possibly poor surface correlation, and there should be anomaly window, except that only the anomalies replace the edge points. ,
points along one side of the road. We use the path history to The 'cooperative output' window displays the result of the high-level %
determine the number of anomaly points for each road point and integration of centerline paths and the superposition of road feature
their location on the cross-section. In addition, there should be events. The text window gives a running interpretation of the
some disagreement between edge center and correlation center if feature symbols superimposed on the cooperative output. The
both trackers give good scores. Significant width changes can be three image windows scroll independently as edge and surface
detected directly if a long enough history of the edge points is tracking proceed. The cooperative output usually lags the output of
maintained. Since width changes often occur on highways near the trackers since it often must wait for delayed events from the
overpasses, if an overpass has already been detected we increase feature detectors.
the possibility of width change. These types of interactions argue 1.
for a tightly coupled path history accessible to all feature detectors. ,.
In this case, verification is not necessary since the width can be
detected directly.

The most important implication of a road width change is the
eventual breakdown of the surface tracking model because its 'This really becomes a road finding problem, not addressed in this paper, but ,
correlation cross section no longer models the actual road cross addressed in related work on road network generaion
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Figure 6-1: PHOTO 1 '4

Photographs 6-1 and 6-2 show several examples of road width capability allows for reasoning about image features in metric
changes, surface material changes and overpass detection. distances as opposed to pixel units and is used to represent .
Anomaly detection is particularily visible in photograph 6-2 in the distances in each of the intermediate-level feature detectors..
area of the overpass. While initially this area is marked as an
anomaly, the cooperative output correctly identifies it as an
overpass (12). 7. Performance Evaluation

Our input data consists primarily of aerial photographs of the
Photograph 6-3 shows an example of nearly complete failure by Washington D.C. area from two different sources. We selected 35

the edge tracker in a low resolution road at the point where several roads for tuning and initial debugging and 35 for testing, attempting
roads merge and the road direction changes. However, the surface to select fairly difficult data so as to allow for future improvements to
tracker correctly tracks the direction change and the cooperative be reflected in tests on the same input. We adjusted the
output reflects the use of each trackers confidence scores to parameters of the program to obtain the best overall performance
correctly weight the final output. (measured subjectively) when run on the tuning roads and then ran

if on the tesi roads also. We intend to run future versions Of ARF on
this input and use the numbers given above as benchmarks,

6.1. Textual Description From Road Extraction Performance data for tuning and test roads are given in Figures 7-1,
Figure 6-4 illustrates the symbolic descriptions that are produced 7-3, and 7-5 for the "training" data and Figures 7-2, 7-4, and 7-6 for

by ARF during a tracking session. All imagery used by ARF is the blind "test" data. For each table road Width and Length are in
maintained in the MAPS database [8, 9]. The MAPS database pixels [meters]. Time given are system and user time, respectively, 4'

provides a digital elevation model and a camera model that allows in seconds. Under Subjective Reason for Sfopping, A indicates
for image-to-map and map-to-image correspondence. ARF uses automatic stopping, M indicates - the program was stopped
these image-to-map correspondence equations to transform sub- manually by the operator.
pixel road centerline positions into geographic coordinates, and then
uses the geographic coordinate to index into a digital elevation When ARF does not follow a road to the edge of the image, it
databae to calculate an interpolated terrain elevation. This usually fails for one of the following reasons
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Figure 6-2: PHOTO 2 i

The curvature of the road is too great. This is usually This is rare but it does occur.,..

only a problem when there is some sort of obstruction Additionally, in some cases the road path generated is not veryon the road at the curve. smooth or does not slay on the center of the road. This usually
The material beside the road is the same intensity as happens in fuzzy images or on roads with little texture. -

tetr nthe road sl . Thiso sa problem als ocure s atl Speed is usually between 7 and 14 pixels of road length per ,.=.
itextrectons he r w road h s pofblem aso matrsial second of CPU time on a VAX 11-785. Timings depend mostly on,., ,

intesectons wher tworoas ofthe ame mateialthe road width, the number of anomalies and the amount of .,meet and in fuzzy images. guessing and backtracking necessary. About 35 percent of program ,
A severe and sudden road width change. This is fairlyti essp nin ixlac saditroain. .,
uncommon on highways in urban scenes. Addition of a Figure 7-7 gives the relative performance of the each tracker vs,

lan dos nt uualy cuseprolem bu loinga lnethe other method and vs. the combined tracker. These resultscauses false anomaly output in some cases and indicate that the surface tracker is of significantly higher quality than ,,e .,complete failure due to a large number of detected the edge tracker. The surface tracker produces a longer track for Vnoise pixels in other cases. nearly all of the runs. ,=,,
"The road does not curve smoothly or its path is not It is important to note that the combined tracker is better than -'%
suitable for modelling with a parabola for other reasons either tracker alone in a significant number of cases. Although the
(for example it might be S shaped, curving left and then individual trackers are better than the combined tracker in some-

imme iatey c rvin rig t),cases, improvements to the mechanism which measures the qualityimeitl urigrgt.of the path could increase the overall quality of the combined
"There is no co niz,,stent pattern on the road surface. tracker. =l
That is to say that successive cross-sections along the
road path do noi how a high degree of correlation. .,, J
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Figure 6-3: PHOTO 3 , #:

,he focus of road finding. Road network extraction then becomes ' =

8. Conclusions the integration of various search strategies for invocation of road

In this paper we have presented a complete system for road finding and road tracking.
• .tracking and feature detectin in high resolution aerial imagery. The%

system has been tested on a large number and variety of complex D
;,-aerial imagery. We believe that its performance would in many 9. Bibliography
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Road 32 begins at lat N 38 50 51 (696) ton V 77 3 32 (889)
(elevation: 30.90 meters [101.38 ft])

L-intersection 0 begins at lat N 38 50 51 (665) ion W 77 3 31 (614)
(elevation: 31.66 meters [103.87 ft])L-intersection 0 ends at lat N 38 50 51 (665) ion IF 77 3 31 (614)
(elevation: 31.66 meters [103.87 ft])

Total distance over last L-intersection is 3.12 meters [10.23 ft]R-intersection 1 begins at lat N 38 50 51 (646) lon W 77 3 31 (401)
(elevation: 31.66 meters [103.87 ft])R-intersection 1 ends at lat N 38 50 51 (646) Ion W 77 3 31 (401)
(elevation: 31.66 meters [103.87 ft])Total distance over last R-intersection is 2.28 meters [7.47 ft]

Road 32 ends at lat N 38 50 51 (639) ion W 77 3 29 (859)
(elevation: 31.64 meters (103.81 ft])Total distance is 48.58 meters [159.38 ft]

Total Elevation change is 0.740000 meters [2.43 ft]Road 36 begins at lat N 38 50 54 (224) lon W 77 3 33 (121)
(elevation: 36.08 meters [118.37 ft])

L-intersection 2 begins at lat N 38 50 54 (266) Ion i 77 3 33 (67)
(elevation: 36.29 meters [119.06 ft])

L-intersection 2 ends at lat N 38 50 54 (266) ion W 77 3 33 (67)
(elevation: 36.29 meters [119.06 ft])Total distance over last L-intersection is 4.38 meters (14.37 ft]

L-intersection 3 begins at lat N 38 50 54 (242) ion i 77 3 31 (73)
(elevation: 35.38 meters (116.08 ft])L-intersection 3 ends at lat N 38 50 54 (242) Ion N 77 3 31 (73)
(elevation: 35.38 meters [116.08 ft]) 0Total distance over last L-intersection is 7.15 meters [23.46 ft]

width 8 begins at lat N 38 50 54 (228) ion W 77 3 30 (249)
(elevation: 34.27 meters [112.43 ft])

X-intersection 4 begins at 1at N 38 50 54 (208) ion W 77 3 30 (143)
(elevation: 34.04 meters [111.68 ft])

road-split 5 at lat N 38 50 54 (230) lon W 77 3 30 (36)
(elevation: 33.95 meters [111.38 ft])X-intersection 7 begins at lt N 38 50 54 (254) ion W 77 3 29 (717)
(elevation: 33.56 meters [110.10 ft])X-intersection 4 ends at lat N 38 50 54 (208) ion W 77 3 30 (143)
(elevation: 34.04 meters (111.68 ft])

Total distance over last X-intersection is 7.08 meters r23.22 ft]
X-intersection 7 ends at 1st N 38 50 54 (254) lon W 77 3 29 (717)

(elevation: 33.56 meters [110.10 ft])Total distance over last X-intersection is 3.37 meters [11.04 ft]width 8 ends at lt N 38 50 54 (228) ion N 77 3 30 (249)
(elevation: 34,27 meters [112.43 ft]) 

Total distance over last width is 13.07 meters [42.87 ft] .VChanged from 3.85 meters [12.64 ft] to 5.17 meters [16.96 ft] ,R-intersection 6 begins at lt N 38 50 54 (277) ion W 77 3 27 (137)
(elevation: 31.49 meters [103.31 ft])R-intersection 6 ends at lat N 38 50 54 (277) ion W 77 3 27 (137) N
(elevation: 31.49 meters [103.31 ft])

Total aistance over last R-intersection is 4.83 meters [15.83 ft]Road 38 ends at lat N 38 50 54 (471) lon W 77 3 24 (101) 5
(elevation: 31.20 meters [102.36 ft])

Total distance is 147.91 meters [485.27 ft]
Total Elevation change is -4.880000 meters [-16.01 ft] %

Figure 6-4: Textual Description From AnfFProceedings: Image Understanding Workshop pp. 87-100, [7 Kestner, Dr.-Ing. W. and Prof. Dr-Ing. H. Kazmierczak.November 1979. Semiautomatic Extraction of Roads From Aerial
151 Huertas, A. and Nevatia, R. Photographs.

Defection of buildings in aerial images using shape and Final Technical Report, Research Institute for Information
shadows. Processing and Pattern Recognition, FIM, Karlsruhe, %In Proceedings of Eighth International Joint Conference on West Germany, June, 1978.Artificial Intelligence, pages 951-1099. IJCAI83, August,1983. [8] McKeown, D.M.

MAPS: The Organization of a Spatial Database System[61 Huertas, A., Cole, W. and Nevatia, R. Using Imagery, Terrain, and Map Data.Detecting Runways in Aerial Images. In Proceedings: DARPA Image Understanding Workshop, •In Proceedings of Sixth National Conference on Artificial pages 105-127. June, 1983.Intelligence, pages 712-717. AAAI, July, 1987. Also available as Technical Report CMU-CS-83-136.
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Image Width Length Time Subjective Reason for Stopping

dC1523 10 [32] 186 (596] 4+22 A Curve / intersection
dc1523 6 [19] 171 [5481 4+30 A Poor edge strength
dc1418 5 [16] 220 [702] 5+31 K Road splits
dc38006 5 [5] 385 [408] 9+46 A Poor edge strength
dc1420 8 (26] 188 (608] 3+26 A Road splits
dc1419 5 [16] 31 [97] 1+7 A Poor edge strength
dc39206 10 [10] 182 [183] 5+25 K Found edges not on road
dc39206 8 (8] 385 [388] 6+45 & Anomaly
dc1522 15 [48] 1066 [3432] 21+12 A Cloverleaf ramps
dcl012 5 [25] 212 [1067] 3+28 K Shoulder widens
belvl 8 [8] 36 [36] 1+8 A Wrong edge followed
belv4 6 [6] 20 [20] 0+5 A Poor edges
belv4 6 [6] 132 [1321 3+19 A Poor edge strength
dc38OC6 8 [8] 36 [38] 1+8 A Poor edge strength
dc1421 6 [19] 111 [355] 2+15 A Intersection / poor edges
dc38617 8 [9] 115 (126] 2+12 A Edge of image
dc36809 12 [13] 82 [88] 1+12 A Curve in road / vehicles
dc1419 6 [19] 184 (576] 3+23 M Wrong edge followed / ramp
dc38008 12 (13] 464 [488] 8+56 K Road splits
dc1013 9 [46] 193 [998] 3+26 A Surface material change
dc38614 15 [17] 26 (29] 1+6 A Vehicles
dc1422 8 [25] 46 (143] 1+10 A Poor edges
dc36810 9 [10] 205 [217] 4+28 K Wrong edges followed
dc38617 7 [8] 158 (173] 2+21 A Poor edge strength / vehicles
dc38617 14 [15] 70 [77] 1+12 A Occlusions / vehicles
dc1014 6 [30] 20 [99] 1+5 A Poor edges
dc38006 7 [7] 128 [136] 2+18 A vehicle
dc38617 8 [9] 43 [47] 1+8 A Unknown
dc37401 35 [36] 1004 [1058] 19+114 A Edge of image 4%

dc1522 14 [45] 35 [112] 1+7 A Poor edge strength
dc38011 7 [7] 49 (52] 1+8 A Vehicle / occlusion / poor edge
dclOll 5 [26] 20 [105] 0+5 A Poor edges
dc1418 12 [38] 22 [70] 0+5 A Poor edges
dc37406 6 (6] 306 (313] 4+36 A Occlusion
dc38013 11 [11] 58 [60] 1+12 A Poor edges

FIgure 7-1: Using Edge Tracking As A Single Method (Training)

"it

191 McKeown, D.M. Computer Graphics and Image Processing vol. 13:pp.
The Role of Artificial Intelligence in the Integration of 257-269, July, 1980. V

Remotely Sensed Data with Geographic Information (12] Quam, Lynn H.Systems.Tsctns oRoad Tracking and Anomaly Detection in Aerial Imagery.IEEE Transactions on Geosene and Remote Sensing Proceedings: Image Understanding Workshop pp. 51-55,GE-25(3):330-348, May, 1987. My 98
Also available as Technical Report CMU-CS-86-174. May, 1978.

[101 R. Nevatia and K. E. Price. [13] Snedecor, George W. and William G. Cochran.
Statistical Methods, Sixth Edition.L,;ating Structures in Aerial Images. The Iowa State University Press, Ames, Iowa, U.S.A., 1967.IEEE Transactions on Pattern Analysis and Machine

Intelligence vol. PAMI-4(5):pp. 476-484, September, [14] Vocar, J. M. and R. 0. Faiss.
1982. Image Magnification: Elementary With Staran.

[11] R. Nevatia and K, R. Babu. Goodyear Aerospace Report GER-16342, Goodyear
Linear Feature Extraction and Description. Aerospace, August, 1976.
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image Width Leangth TIM sub3octive Fteason zor utOpng

dc1322 8 £241 32 11011 1+7 A Poor edges

dC1417 10 311 190 15961 3+31 A Poor edge:

dc1417 5 £161 20 [62] 1+5 A Poor edges
dc1417 5 £161 50 £156] 2+11 A Intersection / poor edges

dc1419 5 161 20 (621 1+5 A Poor edges

dc1419 7 [221 26 £81 1+6 A Poor edges
dc1419 15 £471 30 [931 1+6 A Surface change / poor edges
dc1420 8 (26] 20 £641 1+5 A Poor edges
dc1420 6 C19] 20 £641 1+5 A Fuszy image

dc1421 6 [191 22 £701 0+5 A Poor edges
dc1422 8 [251 58 E1801 1+9 A Poor edges
dc1522 7 £221 204 £6571 4+27 A Width change

dc1522 7 £221 170 [5471 3+26 A Road curve / poor edges
dc1522 6 £191 57 £1831 1+9 A Intersection / road curves

dc1523 7 £221 46 £1471 2+10 M Intersection /wrong edges followed .

dc1524 7 [221 20 [631 1+5 A Unknown

dc1524 6 £191 20 [631 1+5 A Poor edge. .- )

dc1625 7 [221 23 £721 1+6 A Poor edge:
dc1625 6 £191 20 £631 1+5 A Poor edges
dc1625 6 [191 20 [631 0+5 A Poor edges
dc1625 7 £221 24 (76] 1+6 A Poor edges
dc36808 8 191 184 £1951 3+24 A Vehicle

dc36808 7 £71 34 £361 1+7 A edges not constant width

dc36810 14 £151 148 £1561 4+20 A Poor edges / road turns

dc36810 13 E141 44 £461 1+8 A Poor edges
dc36810 13 £141 24 £251 1+6 A Poor edges
dcS810 11 £121 20 £211 1+5 A Poor edges
dc38012 7 E71 35 £361 1+9 A Road turns
dc38612 10 £11] 186 £1951 4+30 A Parked vehicles 9

dc39203 8 [8] 644 [6681 13+86 A Vehicles

dc39204 8 £81 112 [111 2+16 A Intersection
dc39206 8 £81 51 £511 1+8 A Poor edges
dc39200 11 £11] 185 £1841 4+22 K Wrong edge followed
dc39208 15 £151 117 £1161 2+16 A Turn too sharp

dc39208 8 [81 49 £481 2+12 A Poor edges

Figure 7-2: Using Edge Tracking As A Single Method (Test)

Image Width Langth Tie Subjective Reason for Stopping

dc1523 10 £321 337 £10801 6+36 34 Guess ahead found other lane
dc1523 6 £191 1539 [49761 28+198 A edge of image ?

dcl4lS 5 £161 413 E13191 7+38 N Unknown
dc38006 5 £51 2025 £21451 41+148 K Image fuzzy at edge
dc1420 8 £261 315 £10191 8+65 N Surface change / poor contrast S
dc1419 5 £161 317 £996] 6+28 M Poor surface pattern / turn

dc39206 10 [101 2128 [22211 73+287 34 Surface change / vehicles
dc39206 8 £8] 2045 £21311 62+238 A Edge of image
dc1522 15 £481 1303 £41701 33+205 A edge of image

dcl012 5 (251 65 £3261 3+17 K Poor surface pattern
belvl 8 £81 432 £4321 11+51 A Edge of image
belv4 6 [61 161 £1611 5+29 A Poor surface pattern
belv4 6 £61 121 £1211 6+34 A Poor surface pattern
dc38006 8 [8] 166 £6671 5+31 A Overpass •
dc1421 6 [191 117 £17311 3+17 N Poor contrast: road/background
dc38617 8 [9] 113 £6871 6+37 A Edqe of image
dc36809 12 [131 624 [50261 18+98 A Edge of image
dc1419 6 [191 548 [1681 11+56 3 Poor surface pattern
dc38008 12 £131 652 (2901 37+107 X Road splits
dcl013 9 [461 954 £12231 40+136 M Overpass

dc38614 15 £171 153 £3131 15+38 K Intersection -%

dc1422 8 £251 93 £2861 4+20 34 Shadow / S-turn %-
do36810 9 [101 1157 £12231 59+189 A Intersection / surface change
dc38617 7 [81 288 £3131 13+63 A Overpass

dc38617 14 [151 262 [2861 27+104 X Intersection
dco14 6 £301 72 £3561 5+29 A Poor surface pattern

dc38006 7 [71 32 £341 3+9 4 Curvature too great
dc38617 8 [9] 150 [1641 5+24 k Overpass

dc37401 35 £36 1006 £10601 112+482 A edge of image 0
dc122 14 £451 556 [17981 34+108 N End of road .,f
dc38011 7 £71 126 [1351 8+32 X Poor surface pattern
dclOll 5 £261 1581 [83121 29+119 M Road splits

dc1418 12 [381 1066 £34241 26+139 X Road splits 0

dc37406 6 £61 1277 £13081 33+129 N Shadows from trees
dc38013 11 [111 1642 £17441 38+193 A edge of image

Figure 7-3: Using Surface Tracking As A Single Method (Training)
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Image Width Length Tim Subjective Reason for Stopping

dc1322 8 [24] 197 [624] 5+30 N Poor surface pattern
dc1417 10 [31] 1446 14734] 34+176 U Background material same road
dc1417 5 [16] 294 [926] 8+36 U Intersection
dcl417 5 [16] 93 [292] 2+11 K Poor contrast in image
dc1419 5 [16] 62 [1943 2+12 A Poor contrast in image
dc14619 7 [22] 873 [2778] 16+78 A Road splits '
dc1419 15 [47] 490 [1545] 18+110 U Surface markings (runway)
dc1420 8 [26] 243 1786] 8+50 U Poor surface pattern
dc1420 6 [19] 57 [184] 3+15 K Image fuzzy
dc1421 6 [19] 405 (1294] 8+42 X Shadow
dc1422 8 (25] 265 (828] 5+38 N Background material sarn road
dc1522 7 [22] 537 [1737] 17+66 K Background material name road
dc1522 7 (221 135 (435] 3+19 A Overpass
dc1522 6 (19] 165 [532] 6+23 K Poor surface pattern / shadows
dc1523 7 (22] 117 [375] 4+20 M Poor surface pattern
dc1524 7 122] 769 (2458] 13+75 N Overpass
dc1524 6 [19] 131 [4161 3+18 M Background material same road
dc1625 7 [22] 49 [155] 2+14 A Low contrast / edge width vary%
dc1625 6 [19] 115 [365] 2+13 X Road widens
dc1625 6 E19] 934 (2984] 13+76 U Edge of image
dc1625 7 E22] 169 (537] 2+17 K Poor surface pattern
dc36808 8 [9] 741 [789] 12+68 A edge of imageP
dc36808 7 [7] 165 [176] 2+18 U Intersection / width change
dc36810 14 [15] 1107 [1170] 41+216 U Low contrast on road
dc36810 13 [14] 348 C368] 19+76 U Poor surface pattern / turn
dc36810 13 [141 285 (3013 16+58 A Poor surface pattern / turn
dc36810 11 [12] 1735 [1833] 57+263 A Overpass
dc38012 7 [7] 74 [77] 2+15 U Width ChangeN
dc38612 10 [11] 263 [275] 5+40 U Low contrast on road
dc39203 8 [8] 2227 [2310] 70+271 A vehicles / intersection
dc39204 8 [8] 410 [414] 18+63 U Poor surface pattern
dc39206 8 [8] 344 (346] 16+59 U Road widens
dc39208 11 [11] 1289 [1321] 51+183 x Intersection
dc39208 15 [15] 108 (107] 5+23 U Road turns
dc39208 8 [8] 1174 [1200] 28+126 A Overpass

Figure 7-4: Using Surface Tracking As A Single Method JTest)

image Width Length Tim Subjective Reason for Stopping

dc1523 10 (32] 582 [1868] 46+348 U Road widens
pdc1523 6 [19] 1497 [4838] 93+725 U Road splits

dc1418 5 [16] 841 [2696] 46+288 U Poor edges / low contrast
dc38006 5 CS] 2140 [2267] 104+621 U Image fuzzy at edge
dc1420 8 [26] 228 (737] 26+102 M Road splits
dc1419 5 [16] 351 [1103] 48+328 X Road turns and widens
dc39206 10 (10] 2130 (2223] 142+770 X Surface Change / width Change
dc39206 8 [8] 2037 [2122] 138+826 A Edge of image
dc1522 15 [48] 1300 [4161] 81+464 A Edge of image
dcl0l2 5 [25] 212 [1067] 16+82 X Road shoulder widens
helvi 8 [8] 423 [423] 53+232 A Edge of image
belv4 6 [6] 83 [83] 26+158 U Poor edges /surface pattern
belv4 6 [6] 132 [132] 11+63 A Poor edges /surface pattern
dc38006 8 [8] 166 [176] 11+103 A Overpass
dc1421 6 [19] 177 [566] 11+80 U Intersection
dc38617 8 [9] 115 [126] 7+50 A Edge of image
dc36809 12 [13] 624 [667] 36+277 A edge of image
dc1419 6 [19] 1076 [34401 64+495 U Overpass
dc38008 12 [13] 514 [541] 27+149 U Road splits
dc10l3 9 [46] 953 (50201 53+409 U Overpass / turn ..

dc08614 1S [17] 186 [204] 38+254 U Intersection I parked vehicles
dcl422 8 [25] 107 [334] 12+76 U Shadow from trees / turn
dc36810 9 [10] 749 [791] 55+395 U Intersection
dc39617 7 [8] 288 [314] 20+158 A Overpass
dc38617 14 [15] 262 [286] 36+213 U Intersection / vehicles
dcl0l4 6 [30] 90 [446] 29+200 Ug Poor contrast in image
dc38006 7 [7] 58 [61] 10+42 U Turn too sharp
dc39617 8 [9] 150 [164] 8+59 A Overpass
dc37401 35 [36] 1004 [1058] 106+672 & Edge of image
dc1522 14 [45] 567 [1834] 60+422 A End of road (runway)%
dc38011 7 [7] 128 [1371 14+87 x Surface pattern / width change
dclOlI 5 [26] 67 [352] 8+82 U Poor edges
dc1418 12 [38] 1075 [3454] 123+730 U Road splits
dc37406 6 [6] 1254 [1284] 128+432 u Shadow on road
dc38013 11 (111 1642 [1743] 100+857 A Edge, of image

Figure 7-5: Using Contined Edge And Surface Tracking (Training)

340 .

% %
:S pL'P %C AA, la A P



Image Width Length Time Subjective Reason for Stopping

dc1322 8 [24] 460 [1457] 48+388 A Poor contrast in imagei
dc1417 10 [31] 1501 [4851] 113+925 M Background sae as road '

dc1417 5 [16] 298 1938] 25+233 M Intersection
dc1417 5 [16] 121 [380] 9+79 M Poor surface pattern/contrast ,'
dc1419 5 [161 62 [194] 6+44 A Poor surface pattern/intersection
dc1419 7 [22] 865 [27521 61+590 X Road splits
dc1419 15 I47g 494 [1558 44+420 M Surface markings runway)

dc1420 8 [26] 281 [909] 41+289 M Poor surface pattern/varied width
dc1420 6 (19] 57 (184] 7+51 M Poor contrast in image
dc1421 6 [191] 417 [1332] 42+308 Shadow
dc1422 8 (251] 259 [809] 24+202 N Median widens
dc1522 7 [221] 688 [2225] 48+403 A Road turns/poor surface pattern/cnrs
dc1522 7 [221] 591 [1912] 44+308 A Road turns/poor surface pattern

dc1522 6 [19] 188 [6061 21+178 X Intersection
dc1523 7 [22] 128 (410] 17+143 M Road widens/poor surface pattern
dc1524 7 [22] 784 [2507] 81+573 M Overpasst
dc1524 6 [19] 61 [194] 5+45 Intersection/poor surface pattern
dc1625 7 [221] 49 [155] 5+40 A Road widens i

dc1625 6 [19] 105 [333] 12+86 M Road widens
dc1625 6 (19] 9 (809 98+705 M Edge of image
dc1625 7 [22] 128 (406] 10+99 M Poor surface pattern
dc36808 7 (9] 725 [772] 42+267 A Edge of image
dc36808 7 [71] 200 [213] 12+98 M Intersection

d36810 14 [15] 1596 (1686] 129+855 A Edge of image
dc36810 13 [14] 369 [390] 35+260 A Poor surface pattern
dc36810 13 [14] 374 [395] 51+366 M Poor surface pattern
dc36810 11 [121 1527 1613 102+730 M Intersection/wrong edge followed
dc38012 7 [7] 88 [921] 10+83 M Road widens
dc38612 0 [1] 1608 [1613] 94+633 M Road splits
dc39203 [81] 2232 [2316] 142+856 A Vehicles / intersection N

dc39204 8 [8] 416 420 ] 3293 M Poor surface pattern / turn
dc39206 8 [8] 553 (559] 44+354 M Road same as background material

dc39208 7 (7] 200) (1348 99+610 M Intersection
dc39208 15 (15 134 [133] 11+72 A Road turns/poor surface pattern
dc39208 8 [8] 416 [417] 36+293 N Poor surface pattern / turn -r

Figure 7-6: Using Combined Edge Surface Tracking (Test) '.
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Figure 7-7: Performance Comparison Of Tracker Combinations
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-PACE-
An Evironment For Intelligence Analysis

N.R Corby, J.L. Mundy and P.A. Vrobel

General Electric Corporate Research and Development Center

Schenectady, NY 12301

A.J. Hanson, L.H. Quam, G.B. Smith and T.M. Strat

Artificial Intelligence Center

SRI International

333 Ravenswood Avenue
Abstract Menlo Park, California 94025

The system design for an environment to aid intelligence anal- the satellite requires fuel, so it may be desirable to queue up a

ysis is described. The goal of this system development is to number of image requests for a given satellite alignment.

provide an integrated set of tools for analysing the status of a Previous reports and associated imagery are often available

military site from a set of aerial images and collateral reports. for the site as well as other sources, such as eyewitness accounts

The system, called PACE, is to be implemented by integrating and message traffic. The key benefit of the PACE system is the

various research tools that have been developed at SRI and GE. coordination of these information elements into a common envi-

The system development will be focussed on the application of ronment using image understanding tools to assist the analyst

airbase monitoring. Experiments are underway at the 109th in object recognition and site status evaluation.

Tactical Airlift Group Base in Schenectady. In the development of the initial PACE prototype we plan

to focus on three primary sources of site intelligence: P

1 Introduction * visual aerial photographs

1.1 The PACE Concept * infra-red aerial photographs

The Perceptual Analysis and Control Environment, or PACE, a natural language reports
system is currently under development at GE in cooperation I nese sources are used to derive a description of the site based

with SRI. The motivation for the development of this system is on a detailed a priori model of the site and models of the ex-

to augment the existing-procedures for carrying out intelligence pected site elements.

analysis from aerial photographs and collateral reports. The 1.2 Ass Application Scenario

main function of the PACE system is to compile images from 1

multiple image sources into a common three dimensional ref- To illustrate the intended PACE functions, consider the prob- "

•erence frame and permit the visualization of this data through lem of airport monitoring. We assume that the monitoring is

synthetic image display, including image projection mapping. carried out on a routine basis and that a detailed representation

PACE is also intended to permit the integration of various of the buildings, aircraft and vehicles are available.

geometric constraint information available from sources other The functions of the monitoring process are:

than images, such as functional descriptions and other intel- Determine the existence of new buildings and alterations

ligence reports. The ultimate goal for PACE is to be able to • Deterin tie

assist in assessing the integrity of the existing site description

and to aid in the planning of additional image acquisition tasks. * Determine the classification and location of vehicles and ,".,

The typical intelligence analysis task is motivated by a set aircraft.".,'

of queries which are to be satisfied by examining a set of aerial * Determine the nature of current missions underway at

images of the site. These images are acquired by reconnais- the base.
sance aircraft or satellites which are deployed in response to

the queries. An important aspect is making optimal use of TIe full automation of these tasks is beyond the grasp of

these resources so that the intelligence analysis can be carried current image understanding techniques. llowever, there are

out expediently and at reasonable cost. For example, there some emerging techniques in model-based object recognition

may be a number of outstanling queries that can be satisfied and geometric constraint analysis that can assist the analyst

during a given orbital pass of a satellite.The repositioning of and carry out the more routine, straight forward aspects of these"
airport monitoring tasks. A central goal of PACE is the inte-

'This work was supported in part b the )ARPA Strategic Conput- gration of these techniques into a uniforr environment and

ing Vision Program in onjuinction wirh the Army Engineer Topographic with a convenient riser interrface to permit a ulose inrteraction
Laboratories under Contract No. DACA76-86--007. between the analvst and t li, IU tools.
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1.3 Requirements For PACE
O~h Object Model

SenorFuson It is seldoml the case that images are regis ao1p c Recognition onstructio
tered inl a kiiowii i'oordiiiate referencre fiaioe. Ili order to coill- Wrsation System Tookit
pare a set of images from the sitv it is neressary to rItap the (SRI) (GE) (GE
imiage dat~a ito a coinoo re fvreice framiie. 'I'liS COInI pilatirlil(G )GE

process is coimiioily referred to ;Ls sclsor fiisimo. 'The fulsionl Core Knowledge System (SRI)
Process requires that coiiinoii referentce points are locat ed inl
t he images and theni thle traiisforniiltrioii beVtWeeii lieV iliages is Iiaae Caic GEometer
coiipiited fronti this set (if coiiiioii references. (RI) (GE)

thel ricirreiit apprcoache's genevridy ifivilVe iiaiiiol select ioti.
of the cominioi feat ires, and theii all opt-iioizat iont lir'c'ss to PIXAR Connection Machinel
pirovide iil arccnrate vstiiiate for lhe I raiisformoatioii l't weeii
the coordiniate framies ii'thn' camerats thalt geiierate each iiiiage I-igiire I: Iliil( ACE prootv~e no iiiectiie

[I'litigr . .. It is idesi rale that livse i'irri-slioili'ii-s Ili'

liv a segiieiitatimi of thel( i iiage ila .

,,\u iiiportit isllhlicaioii of this iage fulsionl prcs fori li lii piiutots Ii sysilo iiiiilr del'sliiii'itt, we' an' oiilcY
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the database. The mouse interface is designed to provide a 2.2 GEometer
smooth access to image data, three dimensional spline curves
and polyhedral object models. A system for representing and reasoning about geometry, under

Another important function is the rendering of object sur- development at GE, is shown in Figure 3. The GEometerTM

faces by conventional synthetic light models or more impor- structure represents the geometric and topological relationships
tantly, by image mapping onto the object surfaces. 'Ihis map' that exist in the world as well as mechanisms for representing
ping is carried out by attaching image intensity array data to the process of projecting sensor viewpoints into two dinen-
each polyhedral face of the object and terrain models. When a sional image and segmentation data. The general organization
view of the world data base is created, the intensity maps are is in terms of the concept of inclusion or composition.
used to generate a realistic presentation of the object surfaces. Each object has its own coordinate reference frame and the

A primary function of the user interface is the creation of world data structure maintains the relationship between these
feature models by interacting with multiple image views and coordinate systems. Closely linked to the world representation,
with digital terrain elevation data. In many cases, the elevation is a set of sensors and associated viewing transformations that
data is generated from stereo image pairs. link the coordinates system of the sensor image planes to the

The object models are parameterized, and the model pa- world coordinate system. Each sensor is described in terms
rameters can be manipulated through mouse interaction. The of the associated geometry of projection and the image signal
user adjusts the model parameters to give an acceptable fit for processing model.
the model in the available image views. Some functions are
also under development to use image segmentation to assist Object Topology The object structure is shown in Fig-
the delineation of boundary curves. tire 4. First we describe the topological structure of

The Cartographic Workstation also maintains a hierarchy an object, which follows the standard formal convention
of coordinate transformations and a data base structure for [Wesley and Markowsky]. The object is composed of blocks
representing the relationships between objects in the world. A which are closed volumes bounded by a cycle of surface faces.
significant portion of the effort needed to create the data base This closed chain of faces is called a 2-cycle. A block can rep-
is involved in defining these transformations and insuring that resent either material or empty space, so that full Constructive
the objects are correctly place(] with respect to each other. Solid Geometry (CSG), object descriptions can be created.
Tools are available for computing transfornations from various The face is a closed region of surface which is bounded by /
constraints, such as a set of common image feature locations, a closed sequence of edges, called a 1-cycle. The surface itself

In a practical cartographic system, there are many forms is a plane, for the case of a polyhedral object.
of coordinate representation that must be related. These spe- The edge is a bounded one dimensional curve which corre-

sponds to a line segment for the polyhedral case. The edge is 0
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inside or ou tside of a biounidary. Thiis containIieni test is the 4

Vetxina in conl )u tatioj i nvol veil in liooiean inutersec tion anid displayL
processing. -

Generic Geometric Relations and Operations perhaps
the inost significant conitribuiition of the piroposedl representa-Edge tion is the ability to express symbholic geornetric conistrainits i

Ae Mu ody). Thie representation as described so far is si 0 liar to

roany solid niodel i g systeis; b ut perhaps inore formnally d-

I -Cycle inediil. HIoweve'r, such miodel inmg systemns, (e.g. PADL~ [BIrowni]),
ianipulate fixed numnerical descriptions of object verte 'x coo-

dlinates and surface iparalnetelrs. All operations alid relations

are carried out ulsinig arithirietical comnputation.
lit the proposed representation, the geomietric aiid topiolog-

ical constraints c!an be expressed miore generically in a lattice
structure, as illustrated in Figure 5. The lattice represenuts

Iicreainlg degrees of constrainit, as inldicated by the arrow re-

Objctlations. In the examiplle, we start with the general conicept of
lickte polyhled ron whiichi can be comnstrid ied itaniy ways. Th le

geomnetry of the polyhiedron call lie constrained to lie convex,
where a ilie segrelit wi th both end point1 s imisi de thle polyhe-
dlronm nhist also lie entirely inside the( polyhied ron. '[here are
miany specializations of the con vex polyhled ron, in cluin( g thle
regular polyhledron whlich has all faces the saline, and the rect-

_____________________anigiilar prismn which is a six sided polyhedroi with rectanigular
faces. 'Thle noctionm of a lattice structure is sblown by the exai-
ple that various subtypes call be specialized to a conuiioli type. F
Thbe regular polyhledromi alld thle rectangular prismii calli bothI be

F-igiire 4: '[le top~ological structure of an object. specialized to a cube. In the first case, the faces of the regular

polylied ron are conist rai ned to be son iares. Imi the second i case,

dlesc ri bed by a paraniem ri c ciurye descri ptioni whIiich deinles t ie Plhdo
ploinits lyimigon thle edge. '[le edge is buiiied by twio ellilllits Plhdo
whicli are, eachl defined'~ by a vertex.

'The 'rixis conisidieredl to lie zerol dlieisiimal aiiu dineiis Plhdo
a point iii Space. Convex Plhdo

Object Geometric Operations and Relations Im aduli Retagua
tiomi tii the topological structure just imtroiliied , thuere is aI set, Regular PolyhedronRetnua
of fund;laiient al relatioinshiips and operations that are ildineid
for the obliject coinpivioei.s. The relationsis and operations
cani hei classified-i accordinug to the liniuemisiou (if thii Space t hat Cube
is uueed toi conutaimn tie obiject. ciulipli(-ts iiivoilvedil ilie re-
itiimnshii. Fo~r i-xamtiiue, thi- orderimng oif po( is on a lini, or liii

lentigii of a liiu, segilli-it are coinsidireid toi lie on( iie iluusiiumal , [Cube Aligned Unit Cube Cb ihOii
oir scala r ope rations. With <x,y,z> [O.,O.,.]

C olilpni ilg the, intiersectionu uf a sit iif coiplaniar ]iiiu- seg
Iilints or testitig thie ccilliiuearity of aI sit iif pints are coiusil
ireil to III, twou dlilelsiolial priicedures; tflie, copulaiu;irity of a set

of poilnts i ir test ing thii iiitiersictioni of two faces are ulassiiil Standard Cube
as 1iri-i ini ii' oal.V 

=0..0.Thei iipli-t e siei of ojlirltiiuls sup portedu luy C;o~ V2 1.io-0
ti-r siri gviwiru il froini flit, fuiniii nt al gi-oinvtitc liri-it
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nessI relitioiin i i tun dm. nb-eiinni wiin't r or not I lpobint is

%4 % %



the lengths of the sides of the rectangular faces are made equal. are used to determine the sensor coordinate frame and
Note that so far there is nothing to constrain the actual sensor geometric parameters.

size, location or orientation of the cube. Figure 5 shows how
the cube can be further specified in terms of these constraints. The idea of symbolic constraints is also relevant to such
Finally, the object becomes totally specified and the representa- sensor relations. It is often the case that we know partial infor-
tion is then equivalent to a conventional solid polygonal model. mation about the sensor transformation which can reduce the

There are two major advantages obtained by extending the computation of matching process. For example, constraints
representation to include symbolic constraints: like: Buildings are anchored to the ground plane. or The air-

craft viewpoint is nearly vertical, can be expressed as symbolic
* A wide variety of objects can be represented in terms geometric relations.

of the parameters of the constraints. The constraints The edge and region segmentation procedures operate on
are expressed as equations and specifications that con- the image intensity data and produce geometric features which
tain parameters that generate all objects satisfying the are described in the same format as the object face structure.
description. A specific object instance is represented by This representation provides a uniform treatment across the
assignint values to all of the parameters. system for all geometric entities.

The symbolic constraints can be used to insure consis- The current status of the GEometer development is :

tency. In current modeling systems, the numeric opera- * A strictly numerical form of GEometer (previously called 5
tions are not guaranteed to produce correct and consis- Geo-Cac) has been under development for several years
tent results. For example, the edges obtained by inter- and currently provides the basis for a model-based object
secting two faces may not lie in either face due to numeri- recognition system [Thompson and Mundy] and for auto-
cal roundoff error; however, it can be easily deduced that mated model generation tools [Connofly and Stenstrom].
they must from the symbolic description of the process
of face intersection and the description of the structure * An separate experimental system for representing and
of the two faces. manipulating symbolic geometric constraints (previously

called GEometer) has also been implemented. This sys-
tem has been used to prove a wide variety theorems inSensor Models and Image Projection The sensor model

represents the geometric properties of image projection as well plane geometry and for consistency analysis in object
as the intensity signal processing models appropriate to a par- viewing. This experimental system is currently being ex- %
ticular sensor mode. There can be a suite of sensor types along tended to handle inequalities which are needed to repre-

with a set 9f vi.ewpoints for each sensor, sent uncertain, empirically derived geometry.

Referring back to Figure 3, each viewpoint generates an The GEometer system is closely coupled to Image-Calc. It
image as well as a corresponding geometric segmentation. The provides the user interface mechanism, and basic image manip- %
image is considered to be a planar surface and the segmenta- ulation capability. GEometer provides edge segmentation and
tion elements lie in this plane. The segmentation is described [Canny] and boundary segmentation [Asada and Brady] algo-
in terms of a set of coplanar faces which are bounded by one- rithms within the Image-Cac enviroment. Thee segmenation
cycles of two dimensional edges and vertices. The edges and algorithms provide a bridge between the image data represen-
vertices form sets of connected chains. The segmentation ele- tation and the GEometer geometric entity representation.

ments are due to projections of three dimensional objects from
a particular viewpoint. The edges may be due to geometric 2.3 The Object Recognition System
occlusion or shadowing, or produced by reflectance variations GE has implemented a model-based object recognition system

interior to an object face.
The location and orientation of the segmentation features that determines the pose of a given object model in an intensity

imag&. The model matching is based on a simple segmentation
in the image plane are geometrically constrained by the sensor T edgprojection model and the object description. Several examples feature, the vertex-pair [Heller et all. In this context, a ver-

should clarify the definition and application of this structure: tex is a point defined by the intersection of two or more line
segments in the boundary segmentation. The vertex-pair is

o Model Matching - The transfornation between world, ob- formed by grouping two vertices and the two line segments as-
ject and sensor coordinate frames are unknown, or par- sociated with one of the vertices. It can be shown that the
tially specified. Assignments of segmentation features to vertex-pair provides enough constraints to determine the affine
mod(e) features provides further constraints on the trans- transformation between the image coordinate system and the
formations until consistent, unique transformations are three dimensional model coordinate frame.
determined. That is, a three dimensional vertex-pair is grouped in
Stereo - Iwo. or iore, sensor viewpoints are defined the object model and assigned a hypothesised corresponding

to -a wo, o r atiforatieo ewits e dsoefner- vertex-pair in the segmentation. The model- to-image trans-
with a knwn tansforination Ietween the sensor refer- formation is then computed for the assignment. The set ofonce framnes. The correspondence of segmentation fen- "-'
tures between images constrains the three dimensional correct assignments is determined by clustering the transforu

values for eaclh of the possible assignments of model vertex-pairs"
coordinates of th features. to segmentation vertex-pairs [Thompson and Mundy]. The

a Calibration - Te three dimensional coor(linates of a matching process has a cost proportional to MN
2 

where M
world description are given, along with the correspond- is the number of model vertex-pairs and N is the numer of
ing image segnentatiou features. The correspondences vertices in the image segmentation.
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Initial experiments have indicated that it is possible to ob- upper right hand pane shows the imiage segmientationi inito edges
tauti match transformations witht rotational accuracy of about all(l vertices. The lower left pane shows an isolatedl face of tile
5' and translational accuracy of several pixels. In the P5ACT object, together with a new face being extracted onl the wheel -
system this intial estimate will be used to focus thle search for of the vehicle. The lower right pane shows the three dimen-
additional reference features by constraints obtained from the( sional geometry of the isolated face by rotating the simulated
initial match. As thle number of matched features is increased, camera viewpoint segmented into edges and vertices.
the accuracy of thle transformation of at given image viewpoint SRI is also developing segmentation guided boui~dary def-
transformation also increases [Lowe]. Conversely, a more ac- inition, where boundary splines are allowed to coiformi, ill aft
curate specification of the viewing transformuation will allow error mlinimnization p~rocess, with respect to intensity bou ndaryOl
incorrect feature assignments to be identified, constraints [Ilanson et all.

This object recognition system will also be exploited to ver-

ify the status of vehicles and other movable structures at the 2.5 CKS
site. Part of the common routine analysis tasks involve count-

ing and classification of familiar objects. 1)) this application, The Core K nowledge System, or CKS, is und~er dlevelopmrent

each object model in the site library is matched against the at SRI [Smith arid Strat]. The main functions of the system

scene and if a consistent set of feature assignmenits call be foundli are to plrovidle a inecllanisll for commlrunlication amongIl various

in the segnientation, then the( object and its location are dleter- processes and to mlaintainl a database of information about thle

mnined, world that is to be exchanged between processes.
There are two major dlata structures emplloyedl by CKS to

2.4 odelColatruciotn Sysenirepsresent thle world, an octree for storing thle location of ob-
2.4 odelConsructon Sstemjects, and a semantic network for dlescrib~ing relationiships he-

GE has also been developinig a system to generate object. miodels tweeli objects. The octree provides a conivenient way of effi-
from a number of sources: cien tly computing spatial relationships. T1he semantic network

provides a general way of storing functional arid inheritance
* Multiple In tenisity Views rltosis

* Thlree D~irnrsiorial Range D)ata The general control environmInent of CKS is a set of concur-
rent proicesses that exchange database queries and (data tokepns.

Both of these systems are based on the( concept of backpco- 'T'his control is augrmenteid by dtlsenrs which may be attached
jectirtg thle segmented image projection to form a solid which to arty slot of any (data. token iii the dlata base. Thle daemnorart
bounds tile occluded space of thle object view. Thtese r'ictt'solid.4 interrupt a specified process if the data in that slot is altered
are then combine(] across nnuli tple viewpoints by formirng their by another piroce'ss.

[rIs "comnlnity of 'irocesses" archiitectu re adloplted for thle
CKS requIices thIiat proC0SSeS be able to cO~mniciate their oin~iI-

ions wit I one another anil without untdiie interference frori pro-
cesses withI comlpetinrg views. T[hiis fun ction is accomnplished in

CKyrep reselntinhg databiase ('nitries ats opiriioris held ly in -
di vidiuital p~rocesses Th le in tegra tion of these opiniiions relate to
qulery larigirage qualifiers such its, "A PPARlEN'L' I," which is

valid if any process bieliieves thtei~ca'i'tei inl the queryc. T[le

qulifieiir, "POSSIBLY, hldlis if rio process biluvi's I-a Plii'

pirediicatei is false anid at least one( agent bielieve." hat t ill' fact r
is triu'.%

A pri.iiar ' featice of the ('KS is a ca uabilit), for charactic-%

Jr :11 11171uiig arid citrieviiig infiiriiition ltasid iipiin thii siemuantic (-il-
lout. lii this regard. ('KS muust, supplort a ciuiommi viicabuilary
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Figure 12: Nose Dock Model
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Figure 10: The configuration of service vehicles and support

stations.

priori information about the base including detailed geomet-
ric models of the vehicles and buildings. We will also make . ,
use of relationships derived from natural language reports and
messages. The linguistic analysis will be carried out using the
TRUMP language interface, developed at GE [Jacobs].

4 Initial Results

We have already carried out matching experiments on the
recognition of lhe C10 aircraft itself [Thompson and Mundy].

The generation of the data base of buildings, vehicles and ter-

rain is currently underway. The resultant individual models Figure 13: Fuel Truck Model
will be merged into the world coordinate reference frame for the

base. Images of the individual elements will be texture mapped
onto the underlying models. The following figures show somne %

of the elements of the data base.
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AFFINE INVARIANT MATCHING

Robert Hummel and Haim Wolfson

Robotics Research Laboratory
Courant Institute, New York University

251 Mercer Street, New York, NY 10012

Abstract images. The work is motivated by knowledge that human
visual processing is mediated by center-surround receptive

We begin with a selected overview of computer vision fields of various sizes in early stages of the visual path-
research at New York University, emphasizing work on way, and by directional and motion selective processing in
representation of Images, and on model-based vision. We subsequent stages. Accordingly, the research has focused
then focus on a technique for fast matching of shape on representational issues involving pyramid data struc-
descriptions of objects to preprocessed models. The tures, scale-space structures, and on methods for extract-
matching process permits general affine transformations of ing information from low-level cues, such as depth from
the shape, and thus is applicable to the problem of recog- motion perception, and on methods for combining infor-
nizing flat, or nearly flat, objects viewed from an arbitrary mation from multiple cues to provide higher-level infer-
angle and distance in 3-D. Different methods apply when ences.
the boundary of the objects consist primarily of line seg- Three methods are used to evaluate a representation.
ments, or general (non-convex) curves, or (the most diffi- First, a proposed representation should be analyzed
cult case), convex curves. We also discuss the case of mathematically, to the extent possible. Questions of com-
recognizing 3-D objects, as opposed to flat objects. The pleteness, continuity, and stability are the standard
novelty of the approach and the computational efficiency is mathematical questions that must be addressed. Next, the
achieved by a hashing technique indexed over possible information content of a representation can be assessed by '"

affine transformations. using psychophysics to determine the information that is p.

used by the vision system to induce perceptual effects. For
example, we can produce a reconstruction, and conduct1. A selected summary of Computer Vision research experiments to compare the information content in an ori- .I

at NYU ginal image with the impoverished reconstruction. Finally,
In Table 1, we list a number of researchers, their a representation can be shown to be worthwhile if a useful

titles and affiliations within NYU, and topics of research vision system can make use of the construct. We next
interest. Within recent years, computer vision research describe how several subprojects support this methodology
has become a speciality in the departments of computer of representation evaluation.
science and psychology at New York University.
Research in the psychology department has focused on 1.1.1. Solving ill-conditioned inverse problems
computational vision studies through psychophysics and Many problems in vision involve the solution of
cell recordings, whereas research within the Courant inverse problems. Interltion, segmentation, motion
Institute's computer science department has included high- extraction, shape-from-shading and other cues, and many
level vision and sensor design within the Robotics Labora- other standard problems in vision can be viewed as inverse
tory, and theories of low-level vision and mathematical problems. Moreover, the problem of reconstructing image
analysis of feature extraction within the interdisciplinary data from a representation is also frequently an inverse
"representation of images" sponsored research program. problem. At the Courant Institute, interest in inverse
Most of the researchers listed in Table I independently problems is a hallmark of research work over the past fifty
direct a group of students, programmers, and other staff. years.
We describe some of the activities of these groups below. Nearly all inverse problems are ill-posed, in the sense P

1.1. Representation of images that either no solution exists, or many solutions exist, or if
one exists, there are man, other candidate solutions which

Professor Robert ftuimel, in collaboration with Pro- are nearly as good. The latter situation, when manyfessor Michael Landy in the Psychology Department, has images project to nearly the same representation, charac-
been directing a research project on low-level vision, in terizes the case of an ill-conditioned inverse problem. A
which they attempt to take a methodical, analytical, and prototypical example is the deblurring problem: to recover
mathematically sound approach to a comparative analysis the image data from a Gaussian-blurred version of the ori-
of representations that can be useful for the analysis of ginal image. In 11]. we examined a novel filtering approach

40.
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Researcher Position Vision Interests

J. Schwartz Professor, Computer Science (on leave) Model-based vision, matching

M. Sharir Professor, Computer Science (visiting) Shape representation

R. Hummel Assistant Professor, Computer Science Representations, feature
extraction, knowledge aggregation

H. Wolfson Research Scientist, Computer Science Efficient matching,
model-based vision

P. Wright Professor, Computer Science Automated manufacturing

E. Schwartz Adjunct Professor, Computer Science Neurophysiology, retinal
Professor, Medical Center mapping, extra-striate physiology

D. Lowe Assistant Professor, Computer Science Model-based vision
(on leave)

M. Bastuscheck Research Scientist, Computer Science 3-D sensor design

I. Hong Professor, Computer Science (visiting) Shape representation

X. Tan Research Scientist (visiting) Shape matching

M. Landy Assistant Professor, Psychology Shape perception W'-

R. Shapley Professor, Psychology Single cell recordings, visual pathway

A. Movshon Associate Professor, Psychology Neuroanatomical mapping, motion

G. Sperling Professor, Psychology Psychophysics: Motion perception,
attention, computational vision

Table 1. Selected NYU Researchers in Computer Vision

to deblurring. More practical instances of vision-related
ill-conditioned inverse problems include reconstructions 1.1.2. Scale-space representations
from zero-crossings, interpolation, and reconstructions In a number of publications and presentations,
from sparsely sampled filtered data. These topics have researchers at NYU have become major proponents of the %.
been addressed in subsequent studies. scale-space viewpoint on pyramid data structures [4,5].

One way to approach certain ill-conditioned inverse The idea of using the Heat Equation to model the process
problems, formulated as variational minimization prob- of representing image data by a continuum of Gaussian-
lems, is to add a regularization term. When done care- blurred images is not new, but has become the basis for
fully, the result is an image or function that is not quite a much of our mathematical analysis of related representa-
solution to the original problem, but satisfies some tions. In particular, we have shown that the "evolution
smoothness constraints. By allowing for controlled con- property of zero-crossings," the famous property that says
tinuity, it is even possible to allow for some discontinuities. that in scale-space zero-crossing contours are never

created as one passes from fine to coarse resolution, is .-
A major contribution of research effort by Professor catedas eqpaen fo fie t arse rinis

Hummel and Dr. Moniot has been to show the utility of a m
different approach. The method, called minimization of parabolic equations [5].
equation error, is applicable whenever the inverse problem Zero-crossings in scale-space have become a popular
involves the specification of information in scale-space. proposed representation, especially since the zero-
To date, the technique has been applied to deblurring [21 crossings are correlated with edge information. One diffi-
and to reconstructions from zero-crossings [3]. The results culty with zero-crossings is that they do not vary continu-
in both domains have been excellent. A principle advan- ously with the image data; a second problem, as we have
tage of the approach is that there is no explicit smoothness established, is that the representation is unstable.
constraint. Instead, there is an assumption that the sup- Nonetheless, by working on reconstructions from zero-
plied information came about from a sampling in scale- crossings, we have been able to establish that the informa-
space. tion carried in the zero-crossings is a rich description of
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image information, and that the reconstructions contain interpolations that are used when the stereo information is r
many recognizable features of the original data. This sug- sparse. By discovering that smooth interpolants seem to
gests that the zero-crossings enhanced with slightly more dominate, we have constrained models for stereo percep-
information should suffice for a good representation. tion.

Indeed, in more recent experiments, we have esta- 1.1.4. Knowledge aggregation
blished that stable reconstruction is possible when zero-
crossings are enhanced with gradient data along the zero- A large body of research in AI is concerned with the
crossings. The fact that such a representation is complete combination of knowledge from different sources of infor-
was conjectured by Marr, established theoretically by us in mation. In computer vision, cues can come from edge

a paper a couple years ago, but only established in stable data, texture, orientation, dynamic processing of temporal
numerical experiments by us this past summer. data, color, models, and other sensory sources. To make

It is also possible that the structure can be simplified inferences from disparate sources of knowledge requires a
to make for a more useful image representation, using representation of information in a fashion that permits
alternatives to zero-crossings altogether. Specifically, the incremental modification. 'V

visual cortex seems to have cells that respond to local We have long been associated with relaxation labeling
bandpass filters of visual data, and to directional deriva- methods for image analysis [7]. We have developed a
tives of that data. By sampling data and derivatives of number of relaxation labeling models, and continue to
data in a Laplacian-of-Gaussian scale-space, we believe show their effectiveness at handling low-level visual tasks.
that an effective representation can be constructed. Others However, there are many related alternatives to relaxation
have similarly been concentrating on "oriented pyramids," labeling, and we have pointed out relationships between
for example using the "wavelet" transformation, and we relaxation labeling, stochastic relaxation methods, brain
find much of this work to be persuasive. We expect to use state models, neuril networks, and the Dempster/Shafer
our reconstruction techniques and mathematical analytical theory of evidence [8]. _

methods to study these and related representations. Ulti- The latter topic, the "theory of evidence," has a large
mately, we seem to be focusing on a representation involv- and dedicated set of advocates in the Al community. By
ing sampling in scale-space, and cortical computations for bringing a mathematical and statistical viewpoint to this
reconstruction of a representation that encodes the coin- field, and by contrasting the methods involving the theory e
plete Laplacian pyramid. of evidence to other knowledge aggregation methods, we

have been able to explain the foundations of the Dempster
1.1.3. Kinetic depth effect and depth perception rule of combination, and show that the basis of the for-

Another way to probe the information that is retained mula is Bayesian combination of opinions, where the state
by our image analysis system is to determine the cues that of the system is represented by the statistics of more than
are important for certain perceptual effects. Professor one opinion. Using this viewpoint, we are able to suggest ,
Michael Landy, in collaboration with postdocs and stu- alternative formulations, which end up looking remarkably
dents, has extended understanding of the kinetic depth like Kaiman filtering [9, 10]. One of our extensions,
effect, by conducting many experiments varying motion presented at the last IJCAI meeting, incorporates a noc,on
cues and evaluating depth perception. A key to this work of parameterized independence, relaxing normal assump-

is our ability to measure the perceptual effectiveness of the tions of complete (conditional) independence.

kinetic depth effect in particular psychophysical experi- . p ne
ments, based on a collection of three-dimensional shapes. 1.2. Computational neuroscience
It is important to isolate the cues presented to subjects in Professor Eric Schwartz directs a large group con-
order to assess independently the information that is used cerned with computational neuroscience. Using studies of
in the computation of shape parameters. For example, we the visual cortex of monkeys, complex patterns of func-
are able to remove local dot density as a cue, and still tional areas have been identified. In this project, we are
retain shape identification from moving dots. Further, we especially concerned with the mappings along the visual
have shown that while visual motion is the essential input pathway, and the algorithms that nre suggested by the data
stimulus that is responsible for the kinetic depth effect, the structures created by the precise organization of informa-
optic flow perception need not be computed by a Fourier tion. Attempts at understanding the nature of visual cor- . .
energy detection system, such as the Reichardt model. tex pose a wide range of problems in computer graphics,
Moreover, pairs of features do not seem to be important in image processing, computational geometry, and numerical
depth perception. We conclude that the kinetic depth methods. In a series of studies, computer graphics and
effect is based on a representation of optical flow that is image processing methods have been used to develop accu-
preattentive and based on global computations. We are rate three-dimensional models of the retinotopic map, and
thus developing a model of optic flow computation feeding to represent these maps by numerically flattening layers
a model for generating a kinetic depth effect [61. using a method of minimal metric error [11, 12). Using Z

Another interest has related to depth perception from results obtained from these methods and dioxyglucose stu-
stereo. The cooperative psychology and computer science dies, subsequent work has suggested a number of algo-
group has begun to develop a rmultiresolution modcl of rithmic methods that arise from the functional neuroana-

stereo perception. However, the model suggested a tomy. In particular, a novel computational method for 0

number of experiments for psychophysical investigation, stereopsis has been suggested based upon the striations in ,-,N

and these experiments have been conducted by students in primary visual cortex [13,141. A shape representation ,
our Psychology department. At interest is the kinds of scheme has also been presented, and recent work centers .
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on pattern recognition interpretations of cortical functional This effort has been recently extended to local
maps. representation of 2-D curves in an affine invariant way
1.3. Representing shape [27]. We will elaborate on this issue in Section 2.

In a separate but related project, some particularly

In addition to studying representations of grayscale elegant work on affine invariant global shape representa-
image data, members of the Courant Institute Robotics tion has been completed recently by Professor J. Hong and
Laboratory have been concerned with more symbolic Dr. X. Tan, who are currently visiting our Lab [28].
specifications of image constructs. In - rticular, we have
beenFinally, we have applied an interest in parallel algo-
dimensional shape information. In this study, our principle rithms to shape analysis. Much work in parallel image
evaluation criterion for a shape representation is its effec- processing focuses on SIMD architectures, where many

simple processors perform the same function distributed
tiv es ri petionito n syaps inamanufacturover an image. However, it is clear that in biology, there

For description of 3-D shapes in a manufacturing is a diversity of function in massive parallelism, so that
environment, it is reasonable to assume the existence of models of multiple program streams (MIMD) are in a
3-D depth data, obtained from a depth sensor. In this sense more realistic. We have done a limited amount of
regard, the NYU Robotics Laboratory has pursued the work on connected component algorithms for image
development of a novel light-striped depth sensor, yielding analysis, focusing on issues of MIMD parallelism [29,30].
simultaneous intensity and range data [15, 16). Using NYU has a large group of researchers involved in parallel
depth data extracted by this depth sensor, and also by the algorithm development, parallel architecture studies, and
laser-based "White Scanner," descriptions of 3-D objects parallel system design. In particular, the "Ultracomputer"
have been developed. project works closely with IBM's RP3 project to develop

For 2-D object description, Yaron Menczel in his an MIMD shared-memory machine with a combining net-
thesis work demonstrated that shape information can be work, together with an highly parallel operating system
effectively encoded by a graph structure that is derived based on Berkeley UNIX. Many image processing and
from the orientation of boundary points [17]. Specifically, vision research projects (for example, the matching algo-
each point in a region is labeled with an orientation tag rithms based on the footprint technique), will be greatly
based on the orientation of the nearest boundary point, facilitated by the accessibility of this unique parallel
and the orientation field is quantized to produce regions of machine.
similarly labeled points. The resulting graph is used for
matching and recognition, and proved successful for appli- 1.4. Model-based vision
cations such as character recognition with variable fonts Our work on representation and description of scenes
and connected letters. has led to a large program of work on object recognition

A principle motivation in the study of shape informa- using the techniques of model-based vision. A number of
tion is that shape identification is possible in the presence methods progressing along complementary lines have been
of occlusion and obscuration. Thus it is evident that shape developed.
analysis for this purpose should be local, enabling partial The curve matching techniques using footprint
matching techniques. Since 2-D objects are fully described representations, which were mentioned in the previous " d
by their boundary curves, both globally and locally, and section, led to the development of an experimental 2-D
3-D objects may also be represented by sets of characteris- object recognition system enabling us to recognize
tic curves, (e.g. ridges, curves of sharp intensity change, overlapping 2-dimensional objects selected from large
curves of specularity), considerable effort has been done databases of model objects without significant performance
to develop efficient curve representation and matching degradation as the size of the data base increases [24].
algorithms both in 2-D and 3-D (using range data, as Experimental result3 from databases of size about 100
described above). This effort was initiated by the work of make this technique appear quite promising.
Professors J. T. Schwartz and M. Sharir and their co-
workers, and has been carried on and expanded in the last A complete, working model-based system, SCERPO,
two years by Dr. H. J. Wolfson and graduate students was developed by Professor David Lowe while at NYU
associated with the Lab [18-22]. A landmark in application [31]. Several graduate students at NYU continue working
of this method in the 2-D case, and a clear demonstration on this system, under direction of Professor Lowe
of its sensitivity and robustness, was its use to assemble (although David has now returned to the University of

(graphically rather than physically) all the pieces of two British Columbia). For example, Robert Goldberg is - -

intermixed hundred-piece commercial jigsaw puzzles from extending SCERPO to the case where the models have

separate photographs of the individual pieces [23]. articulation joints [32].

The work is founded on a new technique for geometr- The existing, functioning, SCERPO system is one of P%icallyThshewis to-dienona an techi rgeme a the first to demonstrate the recognition of three--P .ically hashing two-dimensional and three-dimensional dimensional objects in single images taken from arbitrary ,

curves [24-26]. Curves are represented by local features diensin ctsporating fas aen m usitra J
that are invariant to rigid transformations, and feature viewpoints, incorporating fast matching methods using a

values are used to generate an attribute of a curve called grouping strategy. The objects are represented as
iex t polyhedral solids. Features are extracted from the scene by

its footprint, which enables us to efficiently index the means of low-level edge feature extraction [33], followed

appropriate local information to the object for recognition by simple grouping and feature description operations.
purposes. Matching is done by solving for the three-dimensional
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position and orientation of an object directly from two- 2.1. Introduction
dimensional image measurements, using an iterative, hill-
climbing technique to find the best viewpoint parameters Recognition of industrial parts and their location in a

that will "project" the object model onto the locations of factory environment is a major task in robot vision. Most

matched image features. An important point is that the practical vision systems are model-based systems (see the

evaluation of the quality of a match, is done in the pro- survey in [37]). Object recognition using model-based

jected, two-dimensional image space. Thus methods to vision presents many challenges in image understanding,

recover 3-D object shape from image cues are unneces- but offers the possibilities of well-formulated tasks and

sary. Once a few initial matches have been formed, it can rigorous algorithm evaluation.

make quantitative predictions for the exact locations of We consider the object recognition problem, where
further model features in the image. This provides a reli- the vision system is faced with a composite scene of over-

able method for evaluating the correctness of a match lapping parts (thus partially occluding each other), taken
according to whether it is consistent with a single from a data-base of known objects. The task is to recog-
viewpoint [34]. nize the objects in the scene and to specify their location %

A second aspect of the SCERPO research concerns and orientation.

the problem of perceptual organization. Human vision is No restriction on the viewing angle of the camera is
able to detect many different types of significant groupings assumed. We begin by considering the recognition of flat
of image elements, such as parallelism, collinearity, prox- objects arbitrarily positioned in space. At the end of this
imity, or symmetry in an otherwise random set of image section, we discuss the use of these methods for the gen-
features. This perceptual organization capability has been eral, case of 3-D objects. The recognition is done from 2-D
missing from most computer vision systems. Since these intensity images. The algorithms that we describe have
image groupings reflect viewpoint-invariant aspects of a been actually tested for the recognition of objects compris-
three-dimensional scene, they are ideal structures for ing composite scenes of industrial tools, such as pliers,
bridging the gap between the two-dimensional image and wrenches, etc., (see Figs. 4-8).
the three-dimensional model. Probabilistic measures have Since we are concerned with recognition of partially
been developed for evaluating the significance of instances occluded objects, the use of global features is precluded.
of each of these image relations that can arise from projec- Accordingly, we must describe our objects by a set of local
tive invariance. The SCERPO system uses these signifi- features. This same conclusion is applicable to the human
cance measures to prioritize prototype matches for object vision system, which is also capable of recognition in the
recognition [35]. presence of considerable occlusion. The local features can

Yet another project in model-based object recognition be points, line segments, curve segments, borders, or
from single 2-D images is being directed by Dr. Haim other structures developed from local description opera-
Wolfson. This system is based on affine invariant point, tions. Initially, we restrict ourselves to the use of special
line, and curve matching, and uses the affine approxima- points, which we denote as interest points. The point sets
tion of the viewing transformation to facilitate efficient of the various model objects are matched against the ptint
matching procedures. The system will be able to deal effi- set of the composite overlapping scene using a smah
ciently with both polyhedral and non-polyhedral scenes number of corresponding points. Once a prototype
with considerable occlusion. Some of the algorithms have correspondence is established, we find the best transfor-
been already successfully tested in recognition of flat mation in least-squares sense to establish the correct posi--'
objects in 3-D scenes from an arbitrary viewpoint [27,361, tion of the model object in the scene image. A key aspect
and it is currently being extended to enable recognition of of our scheme is its computational efficiency, based upon a
general 3-D objects. This work will be addressed in detail division into a preprocessing stage and a recognition stage.
in Section 2. Our model point sets are preprocessed off-line indepen-

dently of the scene information, thus enabling an efficient

2. Efficient matching on-line recognition stage. A major advantage of the pro-
We now present a design and results of work by H. posed matching algorithm is the ease with which both the

Wolfson, in collaboration with H. Lamdan, and J. preprocessing and recognition stages can be parallelized.
Schwartz, on object recognition in the presence of arbi- The problem of object recognition in 2-D scenes is a
trary affine transformations of the models, common one (24,38-411. Three-dimensional object recog-

We develop new techniques for model-based recogni- nition systems are discussed in [37,42]. Recent image
tion of 3-D objects from unknown viewpoints. The understanding results not mentioned in the above surveys
method is especially useful for recognition of scenes with include [31,43,44].
overlapping and partially occluded objects. An efficient The method described here differs from other existing
matching algorithm, which assumes affine approximation model-based matching systems. Our method, which uses a
to the perspective viewing transformation, is proposed. hashing scheme indexed on the affine transformation and
The algorithm has an off-line model preprocessing phase model type, is more algorithmic and more parallelizable
and a recognition phase to reduce matching complexity. than Lowe's SCERPO system [31]. In [441, a clustering
The algorithm has been successfully tested in recognition approach is used to discover the transformation between
of flat industrial objects appearing in composite occluded the model and the scene images. The hashing scheme here
scenes.
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is more efficient and more predictable. In [43], there is an In our experiments with 2-D objects, we used points
emphasis on the classification of the model and image of sharp convexities and deep concavities along the bord-
features to reduce the complexity of matching, while the ers (see Figs. 4c, 4d, 5b, 6b).
matching algorithm itself is straightforward. We, on the (e 4 5

other hand, consider the case where no such effective clas-
sification can be done (this is also the assumption in [44]), 2.4. Recognition of a Single Model in a Scene P
and, hence, our emphasis is on the development of an effi- For the sake of clarity we describe our algorithm in
cient feature matching algorithm, which processes the the simpler situation, where the database consists only of
models and the scene images independently allowing fast one model. However, the presentation given here applies
recognition. In case feature classification is possible it can to the general case where a number of models may appear
be incorporated in our algorithm in a natural way to in the scene.
improve its efficiency. It is well known that an affine transformation of the

2.2. Definition of the Problem plane is uniquely defined by the transformation of three

We initially assume that we view partially occluded non-collinear points (see, for example, [48]). Moreover,
flat objects from an arbitrary viewpoint. These initial there is a unique affine transformation, which maps any
assumptions are similar to those in [43]. We also assume non-collinear triplet in the plane to another non-collinear
that the depth of the centroids of the objects in the scene is triplet. Hence, we may extract "interest points" on the

*large compared to the focal length of the camera, and that model and the scene, and try to match non-collinear tri-
the depth variation of the objects are small compared to plets of such points to obtain candidate affine transforma-
the depth of their centroids. Under these assumptions it is tions. Each such transformation can be checked by match-
well known that the perspective projection is well approxi- ing the transformed model against the scene. This is also
mated by a parallel (orthographic) projection with a scale the basic approach in [43].

factor (see for example p.79 in [45]). Hence, two dif- However, the complexity of such a scheme is quite
ferent images of the same flat object are in an affine 2-D unfavorable. Given m points in the model and n points in
correspondence: namely there is a non singular 2X2 the scene, the worst case complexity is (mXn) 3 xt, where
matrix A and a 2-D (translation) vector b, such that each t is the complexity of matching the model against the
point x in the first image is translated to the corresponding scene. If we assume that m and n are of the same magni-
point Ax + b in the second image. tude, and t is at least of magnitude m, the worst case com- i*%

Our problem is to recognize the objects in the scene, plexity is of order n7 . One way to reduce this complexity

and for each recognized object to find the affine transfor- ([43] ) is to classify the points in a distinctive way, so that
mation that gives the best least-squares fit between the each triplet can match only a small number of other tri-
model of the object and its transformed image in the plets. We consider, however, the situation were such a
scene. distinction does not exist or cannot be made in a reliable

way (see [44]). Hence, we present a more efficient triplet A,"

2.3. Choice of 'Interest Points' matching algorithm. Our method has the advantage that

The matching algorithm, which is described in the when distinguished points are classifiable, or when the N
next section, is based on matching 'interest points', transformation can be restricted to a smaller class, the
extracted in both the scene image and the model. These complexity will be reduced.
should be database dependent, so that different databases The algorithm consists of two major steps. The first
of models will suggest different features for 'interest one is a preprocessing step which is applied to the model e%
points'. For example, a data base of polyhedral objects points. This step does not use any information about the
naturally suggests the use of polyhedra vertices as 'interest scene and is executed off-line before actual matching is
points', while 'curved' objects suggest the use of sharp attempted. The second step, matching proper, uses the
convexities, deep concavities and, maybe, zero curvature data prepared by the first step to match the models against
points. 'Interest points' do not have to appear physically the scene. The execution time of this second step is the
in the image. For example, a point nay be taken as the actual recognition time.
intersection of two non-parallel line segments, which are In order to separate the computation into two such
not necessarily touching. An 'interest point' does not independent steps, we have to represent the model and
necessarily have to correspond to a geometrical feature, scene point information in a way that is both independent
The Moravec 'interest operator', based on high variance in and still allows comparison of corresponding structures.
intensity, is described in [46] and was used in [47]. The crucial observation is that once an affine basis is

The problem of extracting stable, useful 'interest specified by a triplet of non-collinear points, then the coor-
points' is a delicate topic equivalent, in many ways, to the dinates of all the other points, given in the coordinate sys-
shape representation problem. Although a successful tern of the triplet, are affine invariant. That is, if elo, e0 ,
approach to this problem is required for any model-based and too are three non-collinear points, then any other point
vision system, we will assume here that a sufficient v, with coordinates (El):
number of stable points can be extracted from the relevant
images. Our emphasis then, in this paper, is on the match- v = k(elo - too) + 9(eol - eoo) + e0o
ing problem, and not on the model representation or image will still have coordinates (k,71) if the entire figure is
description.
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translated by the affine transformation T: model points in a scene of n points, then the probability of

Tv = t(Telo - Teo) + not choosing a model triplet in t trials is approximately

iq(Teol - Te~o) + Teoo p=(1-(k)3) t

I1 I.
assuming the same triplet of points, now Te0o, Tejo, Teo H if weare hosn a th bais.Hence, for a given e>0.ifw assume a lower bound on
are chosen as the basis. k

Accordingly, our data structure for representing a the 'density' d=- of model points in a scene, then theAcodnlordt tutr o ersnigan log* %

given object will be based on a collection of mappings number of trials t giving p<e is of order og(ld 3 ),

from the set of all non-collinear triplets into a list of quan-
tized coordinate pairs. Actually, w- will form a hash which is a constant independent of n. Since the verifica-
table, where each quantized coordinate pair, i.e., a box tion process is linear in n, we have, in this case, an algo-
represented by ( ,'1), contains a list of all object models rithm of complexity 0(n), which will succeed with proba-
and their basis triplets that contained an interest point that bility of at least I - e.

mapped to that box. This method assumes no a-priori classification of the

Our algorithm will efficiently compare these sets of model and scene points to achieve matching candidates. If

coordinates belonging to different bases. The algorithm is such information is available, it can be incorporated into

as follows: our method by assigning weights to the correspondence of

(A) Preprocessing different triplets to the model, and by checking the triplets

Assume we are given an image of a model, where m i

'interest points' have been extracted. For each ordered Numerical errors in the point coordinates are moresevere when the basis points are close to each other com-
non-collinear triplet of model points, the coordinates of all pared to the other model points in the scene. To overcome

other m -3 model points are computed taking this triplet thipartobem we mae intuc the folng pocerme
asanafin ass f h 2D lae Echsuhcordnae this problem, we may introduce the following procedure.

as an affine basis of the 2-D plane. Each such coordinate If a certain basis triplet gets a number of votes, which, on
(after a proper quantization)is used as an entry to a hash- one hand, are not enough to accept it as a 'candidate'
table, where we record the number of the basis-triplet with basis, but, on the other hand, do not justify total rejection,
which the coordinates were obtained and the number of we may change this triplet to another triplet consisting of
the model (in case of more than one model). The com- points that were among the 'voting' coordinate pairs, and
plexity of this preprocessing step is of order m per are more distant from each other than the previous basis
model. New models added to the data-base can be pro- points. In the correct case this procedure will result in a S-v

cessed independently without recomputing the hash-table. growing match, as the numerical errors become less signi- -

(B) Recognition ficant. Even if a basis-triplet belonging to some model did

In the recognition stage we are given an image of a scene, not get enough votes due to noisy data, we still have
where n 'interest points' have been extracted. We choose chance to recover this model from another basis-triplet.
an arbitrary ordered triplet in the scene and compute the A major potential advantage of the suggested algo-
coordinates of the scene points taking this triplet as an rithm is its high inherent parallelism. Parallel implementa-
affine basis. For each such coordinate we check the tion of this algorithm is straightforward.
appropriate entry in the hash-table, and for every pair
(model. basis-triplet), which appears there, we tally a vote 2.5. Finding the Best Least-Squares Match ', r
for the model and the basis-triplet as corresponding to the Suppose that for a particular basis triplet chosen in
triplet which was chosen in the scene. (If there is only one the scene, a high number of votes are obtained for a given
model, we have to vote for the basis triplet alone). (model, basis-triplet). Each vote implies the existence of a

If a certain pair (model, basis-triplet) scores a large number match (by close proximity) of an interest point in the scene . €
of votes, we decide that this triplet corresponds to the one with some point in the specified model. This match is
chosen in the scene. The unl4uely defined affine transfor- valid for the affine transformation that maps the basis tri-
mation between these triplets is assumed to be the plet in the scene to the basis triplet of the model receiving ,,p
transformation between the model and the scene. If the many votes. We can then improve this affine transforma- " '-

current triplet does not yield a model and triplet that tion, and potentially find more matches by finding the -

scores high enough, we pass to another basis-triplet in the optimal affine transformation for the set of matched
scene. points. This is efficiently accomplished if the measure of "

For the algoritim to he successful it is enough, optimality is the sum of square distances in errors of the
theoretically, to pick ay three nn-collinear points in the match (details are given in I 36J). Other measures are also -

scene belonging to one model. The voting process, per tri- possible. ,
plet, is linear in the number of points in the scene. Hence, We incorporated this process of affine transformation "' "

the overall recognition time is dependent on the number of improvement in our experiments. In Fig. 6c we see an
model points in the scene, and the number of additional example of a fit obtained by calculating the affine .. e
'interest points' which belong to the scene, but did not transformation from three basis points, and in Fig. 6d the
appear on any of the models. Although, in the worst case, same model is fitted using the best least-squares affine S
we might have an order of n4 operations, in most cases, match, based on 10 points, all of which, by the way. were
especially when the number of models is small, the algo- recovered as corresponding points by the transformation in
rithm will be much faster. For example, if there are k Fig. 6c.

. .... "- " ""V -N N ... "



p

.tbasis of the line. Each such coordinate is used as an entry
2.6. Summary of the Algorithm to a hash-table, where we record the number of the basis-

Our algorithm can be summarized as follows: pair at which the coordinate was obtained, the number of

(A) Represent the model objects by sets of 'interest the line, and the number of the model.

points'. (B) Recognition

(B) For each non-collinear triplet of model points compute Extract sets of points positioned on the same line in the
the coordinates of all the other model points according to image. Choose a pair of points on such a line as a basis
this basis triplet and hash these coordinates into a table and compute the coordinates of the other points on the
which stores all the pairs (model, basis-triplet) for every same line according to this basis. For each such coordi-
quantized coordinate pair. nate check the appropriate entry in the hash-table, and
(C) Given an image of a scene extract its interest points, vote for every triple of (model, line, basis-pair), which

choose a triplet of non-collinear point, as a basis triplet appears there. A triple that scores a large number of
and compute the coordinates of the other points in this votes gives the correspondence between the points on the
basis. For each such quantized coordinate pair, vote for appropriate lines. Correspondence of three non-collinear

the pairs (model, basis-triplet), that appear in the hash points (obtained from different lines, of course), already S.

table at that location and find the pairs which obtained the gives a full affine basis, and we proceed as before.
most number of votes. If a certain pair scored a large The worst case complexity of this approach is less by
number of votes, decide that its model and basis triplet a factor of n, since we now are iterating over pairs of
correspond to the one chosen in the scene. If not, con- points, as opposed to triples of points in the scene. The
tinue by clhecking another basis triplet, expected complexity is also less, since we are more likely

(D) For each candidate model and basis triplet from the to choose a pair of points belonging to a single model,
previous step, establish a correspondence between the over choosing a triplet within a single model.
model points and the appropriate scene points, and find A different reduction in complexity occurs if we are
the affine transformation giving the best least-squares confronted with the problem of recognition of objects that
match for these corresponding sets. If the least-squares have undergone a similarity transformation, i.e., rotation,
difference is too big go back to Step (C) for another candi- translation, and scale. This is the situation when the view-
date triplet. Finally, the transformed model is compared ing angle of the camera is the same both for the model and
with the scene (this time we are considering not only pre- the image of a scene. Such conditions can be achieved, for
viously extracted 'interest points'). If this comparison example, in a factory environment where the viewing
gives a bad result go back again to Step (C). (In our angle of a camera on a conveyor belt can be kept constant.
experiments we compared the boundaries of our objects at Our algorithm is obviously applicable without modifi-
equally spaced sample points.) cation to the case of a similarity transformation, since it is

This is a short summary of the basic algorithm. Of a special case of an affine transformation. However, the
course, various improvements can be incorporated in its complexity of both the preprocessing and recognition stage
different steps. We discuss a number of possibilities in the can be reduced. The key observation here is that since the
next section. similarity transformation is orthogonal, two points are

enough to form a basis which spans the 2-D plane. (The
2.7. Reduction of Complexity using Affine Invari- first point is assigned coordinates (0,0) and the second .,
ants (1,0). The third basis point (0,I) is uniquely defined by

When the number of 'interest points' on the models is these two points.) Hence, we may repeat the procedure "-.',
large, various affine invariants can be exploited to reduce described in Section 4 using basic pairs instead of basic tri-
the complexity of the method presented in Section 4. We plets. This reduces the complexity of the preprocessing
give one such example, We will use the following obser- step by a factor of m, and the worst case complexity of the
vation (see, for example, p.73 in [45]). Two straight lines recognition step by a factor of n.

which correspond in an affine transformation are 'similar', 28 ~eMthnwhih crrspod n a afin tansoratin re siila', 2.8. Line Matching "
i.e. corresponding segments on the two lines have the
same length ratio. The same statement holds for sets of In the previous sections we dealt with point matching
parallel lines. Hence, if we have a set of points, which are algorithms. However, extraction of points might be quite
located on parallel lines in a model, and another set of noisy. A line is a more stable feature than a point. Thus
points on parallel lines in the scene, we can efficiently in scenes were lines can be extracted in a reliable way,
check the conjecture that some of these points correspond. e.g. scenes of polyhedral objects, we might be interested

Let us see how the previous method can be modified to apply similar procedures to lines.
for the case when the 'interest points' lie on a collection of All the point matching techniques given above apply
lines. We have again two major steps. directly to lines, since lines can be viewed as points in the
(A) Model Preprocessing dual space. Thus three lines that have no parallel pairs are

a basis of the affine space; each line has unique coordi-
Extract the 'interest points' on the model and group the nates in this basis, and we repeat exactly the same match-
points into a collection of lines. (A point may belong to ing procedure. We can also make use of line segments to
different lines.) Take an ordered pair of points on a line reduce the complexity of the point matching when lines can
and compute the coordinates of all other model points on oe stably extracted from the scene. We omit the details
this line taking this pair as the standard one-dimensional here. 10
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2.9. Curve Matching The procedure for recognition of partially occluded
non-convex objects in composite scenes may proceed

In this section, we extend the methods of the previous exactly in the same way as as in the previously described
sections to the case where the extracted features are no point matching algorithm (see Section 2.6). Here, how-
longer simple 'interest points,' but instead are entire boun- ever, the the complexity is highly reduced, since we con-
dary curves. Since the shape of planar rigid bodies is com- sider only basis triplets that are concavity-based. More-
pletely described by their boundary, object recognition can over, since concavities may be differentiated by their
be accomplished by matching these curves. Matching of shape even in the affine invariant case, we may further
curves that have undergone affine transformation was dis- reduce the complexity of the algorithm by comparing only
cussed in the works of Cyganski and Orr ( [49,50]). basis triplets based on affine invariantly similar concavi-
Another elegant global curve matching method was ties. To accomplish it we introduce a numerical affine
recently developed by J. Hong and X. Tan [28]. Their invariant shape characteristic that we call a footprint. The
methods, however, require knowledge of the full curve, footprint should be a continuous, stable, and easily com-
and hence are unable to deal with occlusion. The method puted representation of the concavity shape. To compute '
described in this section is based on local affine invariant the footprint, we first normalize a concavity by applying

features enabling recognition of partially occluded objects. the transformation which maps its triplet basis to a stan-
The curves are conveniently represented by vertices dard equilateral triangle. That is, the concavity endpoints

of their polygonal approximations. Ideally, the extraction are mapped to (-1,0), (1,0), and the third point to

includes a smoothing process, such as the one described in (0,V3). To each such. normalized shape we assign a vec-

(18]. We discuss separately the cases of non-convex and tor of numbers that we call the 'footprint.' One of the
convex curves, footprint schemes that we use is illustrated in Fig. 2. Forsome constant s (say 5!5s-510 ), we divide the upper half

2.9.1. Non-convex Curve Matching plane by s +I rays based at the origin, with angle -s
As was pointed out in [51], non-convex planar regions between two consecutive rays. Let ai be the area of the

are sometimes easier to handle than convex regions. In normalized' shape between rays i and i + 1. The footprint
the case of an affine transformation, each concavity sup- will be s-vector (aI ,a 2 , ,a ), where each component
plies us with a stable feature from which the aff.ne is quantized into one of a number of discrete bins.
transformation can be recovered. Specifically, consider
the sketch of Fig. 1. The concavity depicted there is (',

bounded by a single segment of the convex hull which we
call the concavity entrance. It is a simple geometric obser-

* vation that the concavity entrance is invariant under affine
transformation. An additional point which is invariant
under affine transformations is the concavity point most
distant from the concavity entrance line. (If this point is 2-A

not unique, we may choose the leftmost.) Thus, one can .

extract a concavity-based point triplet which is affine
invariant. This basis triplet can be used in a recognition -

scheme similar to the point matching scheme.

The concavity entrances are computed as follows.
First the convex hull of a polygonal approximation of the Figure 2. The footprint of a concavity

boundary curve is computed. The concavity entrance end-
points are those convex hull point pairs which are We now proceed as before, constructing a hash table.
separated by polygon vertices not belonging to the convex Each footprint is used as an entry to the hash table, where
hull. The computation of the (leftmost) boundary point the model and concavity numbers are recorded. In the S

recognition phase, each concavity is used to compute a
footprint, and the appropriate entry in the hash table is
accessed. For each pair, (model, concavity), appearing in
the hash table at that location, we compute the appropriate
affine transformation to the associated model, and attempt
to verify an instance of the model in the image.

If the concavity entrances are distinctive enough, the
complexity of the recognition stage will be this time

linearly dependent on the number of concavities in the
scene and the number of scene vertex points, namely,
0(kX n).

Figure 1. A concavity entrance and basis triplet 2.9.2. Convex Curve Matching

most distant from the concavity entrance is simple. The In case we have a model with a convex boundary
complexity of the entire process is 0(n), where n is the curve, or if we wish to recognize non-convex models with vnumber of polygon vertices (see [52], p 9 3 )w all concavity entrances occluded, a different method is
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needed. (It is interesting to point out that for these cases, We distinguish three approaches to the problem. The

the point classification method of [43] is also unapplica- appropriate method will depend upon the complexity of
ble.) We must resort to a strategy with a greater time the models, and the robustness of the feature extraction.
complexity, since there is no 'natural' affine base, as the
one defined by a concavity. Specifically, to construct the If the objects can be approximated by polyhedral, "

hash table for a given convex model, we iterate over all solids, then we may build a database of 2-D models .
pairs of boundary points. For each pair, we join the two representing the 'almost' planar faces of each 3-D model.

points with a line, which will be called the 'base line.' The problem then reduces to recognition of these flat sur-

There are two most distant curve points from the base faces, according to the methods of the previous sections.
line, one on each side of the base line. (If this point on one The faces may be partly obscured by the presence of other ,.

side is not defined uniquely, take the leftmost such point). 3-D objects in the line-of-sight to the object. Complete

Each most distant point together with the endpoints of the identification of the object and its orientation can be

base line form an affine basis triplet. To each such basis verified by the consistent identification of other faces of

triplet corresponds a convex region bounded by the base the 3-D object in the appropriate locations [34].%J

.4

line and the convex body, containing all three basis points. Alternatively, we may discretize the space of viewing e
This is the 'basis region' (see Fig. 3). directions, and produce a nearly flat model of each 3-D ,"

object from each given viewing direction. Recognition
proceeds by identifying objects and the viewing direction~among the database of models, which may have been sub- 1

need. (jected to a similarity transformation. In this approach,
ta there will be many models, but due to the fact a similarity

transformation is sought rather than an affine transforma-

tion (Section 2.7), there will be a reduced complexity in
the recognition phase. h

Finally, in the same way that a triplet of points in the
Figure 3. A basis triplet of a convex object. 2-D case can be used as an affine basis, four points on the

surface of a 3-D model, providing they are non-coplanar,

As before, we can use a footprint based on the nor- define a 3-D basis. Suppose that we choose four points in
malized basis region to create an entry to a hash table. In the scene, and posit a match with four corresponding

this case, for each pair of boundary points, we have a Thefas a bely obscured ence fte r

sid isno deine uiquly tae te eftos suh pin). -pobets in oeThe ieof- spondthe obj e Complet

separate footprint. Thus the hash table entries contain the affine transformation of the object. The match can be ve-
identification of the model and the identification of the ified quickly, by checking whether other points of the
basis triplet. For recognition, we judiciously choose a pair model appear in the scene according to the affine transfor-s[4

of points in the scene on the boundary of a convex curve, mation. The checking can be made faster by a hashingfind an associated convex 'basis region,' and compute the scheme (although, one that is different th the hashing
footprint. For this footprint (properly quantized), we method presented earlier). However, methods to speed the
check the appropriate entry in the hash table, and extractie in tin ecn
the pairs (model, basis triplet) appearing there. For each carc by te etfy obet affun o th s ing recine
such relevant model with the appropriate basis triplet, we sub-
compute the corresponding affine transformation between 3. Experimental Results
the model and the scene, and verify their correspondence.b t ar

Obere ha onexboie sull itesctatco-We have implemented the point matching, non-convex %'.

Obsrvetha covexbodes sualy ntesec atcon trnsfomating is d sot rathrthsqan a in ansfo-

cave angles (in t24] they are called breakpoints). Thus for rvhm at re

the recognition step, it will be enough to examine only one I-sho
pair of points (one base line)for each convex 'protrusion',o ontin
delimited by two consecutive breakpoints. Hence, if a industrial parts (pliers) in composite scenes. Here the
smazede asis reione oucreatedan enturytoad itle. Ion- point matching algorithm and least squares matching algo-

tsn cas f oexaro boundary ponts weli ave a ponsicamdlohecrepodnedfie--

secutive breakpoints), the recognition stage of the algo- ar a the o b The th can b r- 5,'

rithm wil be of the order k x n , where n is the number of scale images of two models (pliers), and Fig. 4c and 4d
objec, vertices. That is, the recognition phase will be very show the extracted 'interest points' of the models, whichtrn

efficient. are points of sharp concavities and convexities. In Fig. 6a .-
we see an image of the pair of pliers of Fig. 4a rotated,

2.9.3. 3-D objects translated and tilted at about 40 degrees (observe the dif-
The f t. ods For crbe this t pper qaua xtizend ferent lengths of both handles in the image). The recogni-t he he approiate Detry in th e h as twal extreac tion algorithm was performed to obtain a number of

the pirsmatching basis-triplets. The corresponding affineatc

rate 3-D depth data is available, an entirely similar pro- transformations were calculated and for each such
cedure can be developed based on extraction and matching 3.aExfrmenl ets
of points in 3-D, subject to a rigid transformation. Here, on the scene of Fig. 6a. Fig. 6c shows such a transforma-
we discuss the More general problem of recognition of 3-D tion computed according to a basis triplet which gives a
objects from a single 2-D view. We assume that the varia- i
tion in depth of the objects is small compared to the depths somewhat noisy match. This solution is significa,!tly
of the object centroids, so that the perspective projection is improved by the best least-squares match which is given in
well-approximated by an affine transformation. Fig. 6d and was calculated using af the points which were
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In Fig. 5 we see an inage of a composite overlapping [1] Hummel, Robert A., B. Kimia, and S. Zucker, "Deblur-
s ne fig te we seer antimae oftracomsinteepping aring gaussian blur," Computer Vision, Graphics, and Image

scene of the two pliers, the extracted 'interest points', and Poesn 8 p 68 18)the recognition results, Note that in Fig. 5b we have addi- Poesn 8 p 68 18) .
tional 'interest points' that do not correspond to 'interest [2] Hummel, Robert and Robert Moniot, "Solving ill-

points' in the original models, but are created by the conditioned problems by minimizing equation error,"
supnerposition of the two objects. Also, one can see that a Proceedings of the IEEE First Insternational Conference on
number of the original 'interest points' are occluded in the Computer Vision, pp. 527-533 (1987).
scene [31 Hummel, Robert and Robert Moniot, "A networkapproach to reconstructions from zero-crossings," Proceed-

The second set of figures deals with recognition of ings of the IEEE Computer Society Workshop on Computer
some household items. Fig. 7a is the original gray scale Vision, pp. 8-13 (November, 1987).
image of a pizza cutter. In Fig. 7b the concavity entrances [4] Hummel, Robert, "The scale-space formulation of '","
are marked by the dashed lines, and the concavity basis pyramid data structures," pp. 107-123 in Parallel Computer " -

triplets are displayed. Fig. 8a is a composite scene of the Vision, ed. Len Uhr, Academic Press, New York (1987). '
pizza cutter and a spatula. The image was taken by a sig- [5] Hummel, Robert, "Representations based on zero-
nificantly tilted camer" resulting in an affine distortion of crossings in scale-space," Proceedings of the IEEE Corn-
the model. In Fig. 8b the concavity entrances of the corn- puter Vision and Pattern Recognition Conference, pp.
posite scene are marked, and the basis triplet points are 204-209 (June, 1986).
displayed. The algorithm of Section 2.9.2 was applied to [6] Landy, M., "A parallel model of the kinetic depth effect
this scene, resulting in the recognition of the' pizza cutter using local computations," Journal of the Optical Society of
displayed in Fig. 8c. America (A) 4, pp. 864-876. (1987).

[7] Hummel, Robert A. and Steven W. Zucker, "On the foun-
Acknowledgments dations of relaxation labeling processes," IEEE Transac- - I

Work described in this paper was supported by Office tions on Pattern Analysis and Machine Intelligence PAMI-5,
of Naval Research Grants N00014-82-K-0381 and pp. 267-287 (May, 1983).
N00014-85-K-0077 Work Unit NR-4007006, and National [" Landy, Michael S. and Robert A. Hummel, "A brief sur-
Science Foundation Grants NSF DCR-83-20085 and IRI- vey of knowledge aggregation methods," Proceedings of
8703335. the International Conference on Pattern Recognition, pp.

248-252 (October, 1986).

jS

a) b)

Figure 4 he models of the two pliers and their extracted 'inter<,- t oiitt .

.C)'

Fjzore4 Themodel of te -..

_" ? ":" . ';. ".-. -' -,. - :.. - " . -" :- . ---- . - ----.-- ,-.- - -....- ,...-., .-. .... ... .. , ?."S



I

Figure 5 :a) A composite scene of the pliers of Fig.1 (observe different

lengths of handles due to the tilt). b) Extracted 'interest points'.

* 14!

c) Recognition of the models in the scene.

a) b) d

Figure 6 a) The plier rotated and tilted in space (see different length of handles).

b) Extracted 'interest points'. c) Matching based on one 'basis triplet'

correspondence. d) Best least squares affine correspondence.

p.'2
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a) b)

Figure 7 ) ,rav scale im:age of a pizza cutter. b) concn.itv entrances

and basis triplets.
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Figure 8 a) a composite scene. b) concavity entrances and basis triplets

of the scene. c) recognition of the pizza-cutter. ..
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Constructing Simple Stable Descriptions
for Image Partioning *

Yvan G. Leclerc

Artificial Intelligence Center, SRI International
333 Ravenswood Avenue, Menlo Park, Ca 94025

Abstract obtaining a best description of the image. We require that the
description be both stable (niinor perturbations in the viewing

This paper presents a new formulation of the image partitioning conditions should not alter the description) and complete in the ,,,
problem: construct a complete and stable description of an ir- sense that all the intensity variation, up to uncorrelated white
age, in terms of a specified descriptive language, that is simplest noise, is explained by the polynomial intensity model. That
in the sense of shortest description length. A suitable descriptive is, our description will differ from the actual image only to the
language that results in intuitively satisfying partitionings can extent that the residuals can be characterized as independent
be limited to a low-order polynomial description of the inten- samples from a normal distribution (whose parameters are not
sity variation within each region and a measure of the length of known a priori and may differ front region to region). Finally, wc,
the region boundaries; other aspects of the shape and semantic select the simplest (in the sense of shortest description length)
properties of the regions need not be explicitly considered. Ex- description which satisfies our previous requirements. We de- S
periments performed on a variety of both natural and synthetic scribe a continuation-method-based computational procedure to
images demonstrate the superior performance of this approach construct the desired optimal description.
over partitioning techniques based on clustering vectors of local Experiments performed on a variety of both natural and syn-
image attributes and over standard edge-detection techniques. thetic images demonstrate the superior performance of the spec-

ified approach over partitioning techniques based on clustering

1 Introduction vectors of local image attributes. Examples are included to show
that naturally occurring subjective edges, invisible to local tech-

The partitioning problem is one of the most important unsolved niques, are correctly placed, and that the "ugly" mistakes typical

problems in computer vision. While impossible to define pre- of local techniques are largely avoided.

cisely in its broadest sense, the partitioning problem requires In the following section, I describe the general framework for

it Procedure to delineate regions in an image that correspond formulating scene analysis probems. This framework is the con-
to seniantic entities in the scene (i.e., objects, processes) or co- struction of the best description of an image in an appropriate

herent regions or structures in the image. In practice, most descriptive language, where we define criteria for descriptive lan-

partitioning techniques are designed to identity regions that are guages and the definition of best. I thei, d ,1.1 ,0 conccept of

honogeneous in some set of local image attributes, such as in- a minimal-length information-preserving description (a formal %",1%
tensity, color, and texture, or to detect the boundaries between definition of what we mean by a simplest complete description),

regions based on discontinuities of these local image attributes. show how to design optimal lang,iages for such descriptions, and

In this paper, we do not critically distinguish between tIe , show that these descriptions, followed by simple tests for stabil- ,€

partitioning problem and subsequent steps of the scene analysis ity, satisfy the criteria just mentioned. Then, I develop a specific

process. We formulate this analysis as one of finding a "best" descriptive language for image partitioning, derive an algorithm
description of the image in terms of some specified descriptive for finding the simplest description in this language, and illus- p.,

language; partitioning liffers froi later steps only in the sun- trate the application of the language and algorithm to several
plicity of the vocabulary employed. The principal components images.
of any solution thus include the specification of tie descriptive
language and a computationally feasible tprocedure for selecting 2 General Framework
a best description. ,-"

We, will show that a suitable descriptive languag, for lrovid- The general framework of this approach can Ibe described inu- 
ing an intuitively satisfying solution to the partitioning problem itively as constructing the best description of an image in some
for a broad variety; of images can Ire limited to a low-order poly- specified descriptive language. The '-hoice of descriptivo lan- %
nomial description of the intensity variation within each region giragi and what is meant by "best'" is. of course, strongly task
anl a nieasure of thi lengt I of t he region bundaries; other as- dependent. lowever, not all choices are reasonable, and I ar- .
picts of t he shape and semantic roperties of the regions need gue that the following set of criteria are iniport ant, and perhasls
nt he explicit ly considered. even necessary, constraints on the choice of language and what

Our principal contrilbtion in this paper is in providing a set is nreanIt by best. These criteria will be used to formulate the
of , Ieria. and i, corrspoiling comprtational dlinition, tu" problemi of finding the best description as that of finding the .

Support for this work was 1 rovided by the Defense Advansced Research sim)lest description, as descrili,,d in the next section.

Projects Agency trnder contract M I)A903-86-( -)084. The first criterion is a const raint on t he descriptive language
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alone, namely that the descriptive language must be complete. synthetically generated image derived from a new description-%
That is, all descriptions in the language must exactly determine one where the portions of the new description relating to, say,
a single image. Thus, what one usually describes as "noise" lighting, surface coloration,and/or viewpoint are slightly differ-..]
must be included as part of the descriptive language. Note that ent from the first description. This expectation is precisely an
completeness means that a given description yields only one im- exanmple of the stability criterion defined above. Furthermore,
age, but there may be many, perhaps even uncountably many, we now see the motivation for the completeness criterion: with-
different descriptions for a given image. out it, we could not have generated a unique new image fromThe secod criterion is a constraint on both the language and the modified description.

the definition of best, namely computational fea¢ihility; that i . Now, it is clearly infeasible to test directly for stability in
the best description of an image (or at least something very close the above fashion because that would entail generating and an-
to it) must be constructable in a reasonable amount of time. alyzing a large number of synthetic images. Instead, one must

Of crucial importance to any system that purports to find the demand that the language and the algorithm that computes the
best description of an image is the ability to determine when the best description be designed in such a way that. together, they
image (or, more generally, some portion of the image) lies outside guarantee stability in this sense for the class of images for which
the range of the descriptive language. This leads to further the language is dpsigned. Or, at least allow for a computation-
criteria, which must be satisfied for all (or at least a very large ally inexpensive determination of some measure of stability of
fraction) of the images for which the language is appropriate. the description (perhaps on a part by, part basis).
Thus, failure to satisfy either of these further criteria is a strong In the next section, I introduce the notion of a minimal-length
indication that the language is inappropriate. i nformation- preserving description, and show that one can de-

The third criterion, then, is that the best description of an sign descriptive languages such that, for almost all images for
image must be an efficient description. A weak form of this which the language was designed. the simplest complete descrip-
criterion is that the best description must be shorter in length tion is also a stable description. Such descriptions are called
than the image itself, as suggested in Georgeff and Wallace [6]. minimal-length information-preserving descriptions of an image
A stronger form, which can only be defined roughly here, is in terms of a given descriptive language. This leads us to formu- "
that the complexity of the description should not exceed the late the problem of finding the best complete and stable descrip-
conmplexity one would expect for the given image. tion as that of finding the minimal-length descriwtion, followed,,

The fourth and final criterion is that the best description of an by sinmple tests for stability.

image must be a stable description. Of course, since descriptions
are complete, any change in the image causes some change in
the description. Thus, stability cannot be defined in the obvious 3 Minimal-Length
mariner. Instead, we define stability in the more general sense Information- Preserving Descriptions
that some portion of the best description is invariant to certain "'
classes of image changes. A further consequence of the com- The idea that simpler descriptions are better than more comi- "
pleteness of descriptions is that the class of image changes just plex ones is a strongly intuitive idea that goes back, at the very ,
mentioned are necessarily reflected in changes to other portions least, to the ancient Greeks. It embodies not only the notion"t
of the description. Thus, the stability of one portion of the best that simpler descriptions are better because they are easier to,.
description is a function of changes to other portions of the best use in many ways, but also the body of scientific (and personal)
description. experience that tells us there is almost always a simpler descrip-

As motivation for these criteria, consider the following exam- lion of a set of observations than their mere tabulation. %.
ple, where a complete three-dimensional description of a scene, However, tht idea that simpler is better is quite vague: What .
including a complete camera model, has been computed from a exactly does it mean for one description to be simpler than an- %
single image. Clearly, we should expect the volumetric (three- other? One possible answer is that the number of degrees of '',
dimensional shape) portion of the description to almost always freedom. or distinct and independent variables in the descrip- '

remain the same, given a new inmage of the same scene differing tion, should be the measure of simplicity. 'rake, for exanmple,
'/only slightly in, say, lighting, surface coloration, or viewpoint. the classical curve-fitting problem, wbiere oure is presented with
,In other words, we should expect the volumietric portion of the an ordered set of numerical observatioas that can purportedly

" description to remain invariant to (i.e., be stable with respect be described as points along some mathemnaticall 'y defined curve.
.tto) the class of image changes corresponding to slight changes in The simplest description, then, should be the one that requires

Slighting. surface coloration, and/or viewpoint, but not to intage the fewest nmtber of parameters to define the curve. But, even%
changes corresponding to changes in the shapes of objects, for for such a simple problem one inmedliately sees that the (ef-
examp le . ' nition as stated is still somtewhat vague.

Of course, when supplied with a single image. we cannot di- First. the number of paramieters, required to define a curve
rectly test for stability by analyzing another image of the scene depends very much on the vocabulary of curves one bring,, to
with slightly changed characteristics. (Indeed, for changes like hear. Fobr example, if the observations Were actually equally
surface coloration, this is not feasible even if we had the op- spaced points on a quadratic curve, but one attempted to de-
portunity to take a new picture!) Instead, we are left with a scribe them using sinusoids (as in a discrete Fourier transform),
slightly weaker, but still crucial expectation: that the voluntet- one woutld require as many' paranteters as tbere are observations;
tic portion of the description should renmain the santo given a however, a polynomial representation would require only six pa-

'ln effect. Binford [1) calls stability with respect to change in viewpoint a itr (hees cfyn teril brof bevto ,.,p cng
the assumption of general position. In thissense, gtneral position i a special and order of the polynomial. antd three specifying the curve).
case of our notion of stanility, independent. of the number of observations. Thus, one would be
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inclined to say that the polynomial description is the simpler of put the jfficiency of the description. By definition. information-
the tw, for these observations. However, if one :b ah6.ePd to use preserving descriptions satisfy the completeness criterion of the
any possible mathematical curve, one must also specify which of previous section.
the infinite class of curves the parameters refer to (polynomials The most efficient description, D,*(y), is the minial-length
vs. sinusoids vs. ). Since this clearly requires an infinite num- information-preserving description of the input written in tile
ber of parameters, one is left with the inescapable conclusion descriptive language of the decoder. We will say that a descrip-
that the vocabo!lry - -urves (or, more generally, the language tive language is appropriate for a class of input strings when it
in which the description is expressed) must be restricted in some yields a unique minimal-length description for almost all strings
sense, or else one will always need more parameters than obser- in the class.
vations.

A second fundamental problem with this definition of sim- 3.1 Minimal-Length Descriptions of Ergodic Pro-
plicity is that almost all phenomena, and hence observations cesses
of them, inherently have a stochastic component. At the very C thria y

least, the observations will be corrupted in some stochastic maii- Consider the case when te input string is generated 1,N

ner. even if the underlying phenomenon is purely deterministic. ergodic process F. that is.

Thus, for our curve-fitting example, even if one could specify the
underlying curve using a few variables, one would still need to Y = F(x),

describe th - point by point deviations from the curve (either di- where F is a deterministic, ergodic, function and x =
rectly or in some appropriate parameter space) in order to have ro. x, ... ., x,_1 } is drawn from a known unchanging distribu-
a com.plete description, amd ih;s would require at least as many tion. (The length of the vector. ii, may also be a random vari-
variables as observations! Agai, one is left with more variables able.) The probability of the input, denoted P(y). is therefore
thtan observations. defined for every input string, and the pair (F. x) constittes a

The information-theoretic answer to this quandary is to re- description of the input. When F is not uniquely invertible, i.e..
duce the idea of an independent variable to its simplest form: when a given input string can le produced by mailifferemt
a bit. The measure of simplicity then becomes the number of xs, the problem arises of how to choose a single x for -en
bits in the description that some coaputationally effective pro- input.
cedure requires in order to reproduce the observations. That is. One way of choosing a single vector, out of all the possible
the simplest description will be the one that requires the fewest vectors that can produce the input, is to choose the most likely
number of bits for which the procedure reproduces the input, one, x*. This is called the maximum a posteriori, or MAP,
This, of course, demands the prior specification of the compu- strategy because one maximizes the a posteriori likelihood of x.
tationally effective procedure. thus specifying the language in P(x j y ). which is a function of the prior probabilities of x and
which the description is expressed. In other words, the r.otion the function F.

of simplicity in this formalism becomes a relative one, one which Unfortunately, for many functions and distributions of inter-
strongly depends on the choice of descriptive language. est. there may be many equally likely vectors that produce a

The advantage of this formulation is that one cali defiie pro- given input string. For example, if F(x) = xo + xi, and x0
cedures for reproducing both deterministic and stochastic pro- and x are each drawn front the same uniform distribution, then
cesses. Moreover, there are provably optimal procedures for re- there will generally be many most-likely pairs for a given input.
producing stochastic processes (optimal in the sense of requir- If this multiplicity occurs for a significant fraction of the input %
ing the fewest number of hits of descriptioti per bit of inipt, ti n trstrings. then the problem of choosing a single most likely vector
average). When using such optimal procedures, there is a natu- is ill-defined. In the terminologyP of tie ireviois sectioii the ,.,

ral trade-off between the allocation of biits for the (let crn nistic tiost-likely description would be unstable for that fraction of '
versus the stochastic processes. For the curve-fitting problem,, input strings.

this anounts to a natural trade- off betwceen the nmiiiber of ari- The lin ifl lc-ngth description solution to tihe problem of
shies required to specify the curve and t lie deviat ions versus tle choosing a single description is based on the observation that.

mutber of bits per variable. This is described in detail in tile it is always possible to design an opit htal descripjtive languuage .
following subsection. For an excellent introduction to tho formal by for aiin ergoli process F such that the slortest description
theory of minimuial-leugth descriptions. see Hissanienu's discussion of lue input has lengt I"

Before we enter the next subsection, a more formal definition I1Y(Y) = -log 2 Py) (1)
of the minimal-length description probilero. as we will use it. is
required. We define the problem in terms of an cmcodcr. whose bits' [9]. (We will see precisely how to do this for certain kinds of

utput is the set of observations in the form of a bit string, y. ergodic processes later.) Such a descriptive language is optimal r .F

and whose output is supplied to a drroder, which uses this to imi the sense that no other descriptive language calt expect to pro-

produce the output. duce a shorter description than this. out average.
3 

A consequence I. %.P

When the output of the decoder is identical to the input For some distributions, one would need to encode an infinitely long input
y, then the output of the encoder is called an inforutation- string iuu order to achieve exactly this efficiency. A more precise statement

preserving description of the input, denoted V,(y), written in is that we can achieve an efficiency as close to this optimumn as we like by

the dcscriptiv( language LI, of the decoder. The superscript j encoding sufficiently large chunks of the input string at a time.
indicates that there may, iii general. be tmore than one possible 'This is not to say that no other descriptive language caun do betier on

any given finite input string, but only that no other language can do better
description for a given y. We shall call one minimus the ratio of the on average. Or. equivalently, no other language ca' do better for arbitrarily

number of bits in the description to the number of bits in tibe im- long input strings.
*I1%
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of this optimality is that there exists a unique shortest descrip- for. Unfortunately, with the exception of inputs that simply
tion for every input string, 4 because otherwise there would exist cannot be described in the language (because the probability of
"wasted" descriptions (the ones that map to the same input) that input was assumed to be zero), there are no criteria that we
that could have been used for other inputs but were not; hence can apply with absolite ceztah ty !-, finite-length input strings.
one could have devised a more efficient descriptive language that Even the criterion that the length of the description must be
made use of these wasted descriptions. Note, however, that there shorter than the length of the input string is not an absolute
are always many different optimal descriptive languages for a certainty-we may just have been very unlucky for that partic-
given ergodic process, but they are equivalent to each other in ular draw!
the sense that there exist one-to-one mappings between them (as Instead, when dealing with ergodic processes, we must be sat-
a consequence of the uniqueness of description just mentioned). isfied with somewhat weaker, probabilistic criteria. In particu-

When there is a unique most-likely vector for each input lar. if we design the language so that the criteria of the previous
string, the minimal-length description solution is equivalent to section are almost always met when the input follow5 the ap-
the MAP solution in the sense that there is then a one-to-one propriate distribution. then failure to satisfy these criteria for a
mapping between each shortest description and x* (again, as a given input string is a strong, but not absolutely certain, indi-
consequence of the uniqueness of description), cation that the language is indeed inappropriate for that input.

When there is not a unique most-likely vector, one can view To make all of this concrete, let me illustrate the design of
the optimal descriptive language as a way of describing a differ- some optimal descriptive languages, using the criteria of the
ent function andi distribution of vectors (with fewer elements, or previous section, with three examples. The first two examples
degrees of freedom) that produr, the same distribution of input illustrate the design of optimal descriptive languages that are
strings, but f7,r which there is , unique most-likely vector for one-to-one mappings of the input, i.e.. for which there is ex-
each input string. Intuitively, the optimal descriptive language actly one description for a given input. Since the mappings are
merges together hidden or unobservable variables (such as x0  one-to-one, the stability criterion is inapplicable, and we are left
and x, in the example above) and replaces them by observable with only the efficiency criterion.
variables (such as x = xO + x). The third example builds on the first example for inputs that

In summary. one can define optimal descriptive languages result from complex combinations of several independent pro-
when the distribution of input strings is known a priori. When cesses, in much the same way that images are the resulta of
the input is generated by a known ergodic process that has a several independent processes. In this case there are many pos-
i1nique most-likely vector for each input string, the shortest de- sible descriptions of the input, and the encoder must, in some
scription in the optimal language is equivalent to the most-likely manner, determine tihe shortest of these descriptions. We will
vector. Otherwise. the shortest description is equivalent to the describe a specific optimization algorithm for this language that
most-likely vector of a different ergodic process that produces generalizes to the more complex languages required for image
the same distribution of input strings. but that does have a partitioning. We will show how to determine the stability of the
unique most-likely vector. shortest description, and bow to use this measure of stability

to determine the appropriateness of the descriptive language for
3.2 Minimal-Length Descriptions for Specified De- the given input. This final example is the basis for the imagescriptive Languages partitioning problem in the remainder of the paper.

Now. one can turn the argument around and ask whether it is 3.3 Example 1: Independent Symbols
reasisable to simply tefiie a descriptive a nuage arind t hen cow-
ptre t le siort efi n es ription for each input striig. ertainly we Th purpose of this example is to illustrate the (design of air opti-
ciii do so by assumirg that the itput is an ergodic process with a rial descriptive language for input strings consisting of symbols

unique trost-likely vector, and design the language according)y. i ideleetl drawn from a known itSribition. (This d of

\e know that. if flu input follows the distribution that fi /an- language is useful for the noise component of images, as we shall

luayp ia.s d(signrdfor., the shortest description will then be Ite see in the third example.) In this example. F is the identity

nmost-likelv vector. Furthermore, because optimal descriptive functiott. and y = F(x) = x = {.o~xI ...... r,_}, where x, is

, laiguages have unique shortest dcscriptions for all inputs. any one of tlie three symhols '00.' '01.' 'IL.' independently drawn

descriptive language that yields a unique shortest description with probability 0.5. 0.25, and 0.25. respectively.
, or all ittpitt st rinrgs is art optittal Ilescriptivye language for sorte Front Eq. (1) above, we cart design sir Opttial descriptive -

ergodic process. Therefore, if ,' (Iis/h to intfrpret Ih s ionr- language LI such that the description length is

,t dsr.crition as frt( d(scription of thfi most-likely t'rctor. then P~(y)I = -log, P({.co. . ,,)
choosing a descriptive language is equivalent to assuming that
tIre input is generated by that ergodic process. = -log P(,)

lowever. as we saw above. there are many different optital
Ingua e for a given ulistribution of input strings. Thus. addi- ,-

iotal criteria. such as those itinetioned ini tprevious section. = Z -log 2 J'(),)."
initit Ihe brought to hear in th design process. Irs particular. %",

,)t tnist have a way of decihing when the descript!vc languiageiShirt, - log. P('0(t) = I atd - log, P'01') log, P('10')
i itappripriate for tie input, or ,,quivatlctly, whirn 1te inptt

do". tot follo ws tl ' ui.trih luitim t fli tf thle langt ue o s d igr l ". a cud-r hvoting exactly o i i for- 1 t '00]' and tw bit s e ch for
'0) 1- and 10.' iich as I he li-fixl, . (. 'ode

I Iw phras, ffor (--r' , int string-" i i, . r, at id ds-i-wlnrt. i. -h r fi,r
for -,rv intl string that has nmnro robai lity oft -lrr ,t, " 0 -- "
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'01' - '01' MRP is no longer a straightforward mapping of each symbol

'10' - '10, (or group of symbols) to a unique bit string. The technical de-
tails are not important here, but the basic idea is that the cod-

is an optimal code. Thus, on average, the optimal encoding of ing scheme for xi becomes a function of {Xi-,.Xi-2 -... ,Xi--}.
an input string containing n symbols (or 2n bits) requires only Nonetheless, the code is still unique and the number of bits
1.5n bits. The efficiency of the optimal encoding is therefore required to encode x, is still - log2 P(xi), but P(x,) now de
I - 1.5/2 = 0.25. pends on {xi- 1 ,xi-2.. . ,.Xi-.} instead of being fixed a priori.

In general, - log 2 P(xI) is not an integer, so we might en- For ,xample, one begins by encoding the first m symbols in
code several symbols at once (called block encoding) in order to the straightforward fashion of Example 1, then one encodes the
achieve something close to the optimal encoding length, but the next symbol using the code defined by these m symbols, then
principle remains the same. the next symbol using the code defined by the previous m sym-

With the exception of input strings containing the symbol bols, and so on. (Actually, the first m symbols can be encoded
11 ' (which is assumed to b, impossible for this example). there more efficiently by taking advantage of the dependence of the

is no way of determining with 'ertaintv that a given finite input second symbol on the first, and so on.) Thus, the decoder m-st
string has not been drawn from the distribution we've assumed, know the encoding scheme for (or, equivalently, the probability
Furthermore, the weak form of the (UMciency criterion (that the distribution of) every possible combination of m symbols. This
length of the description be shorter than or equal to the length of makes the decoder more complex, of course, but allows for the
the input) is useless because it is trivially satisfied for any input optimal encoding of MRPs.
string not containing the symbol '11.' However, it is possible Here we saw that higher-order statistics (the conditional prob-
to define the stronger form of the efficiency criterion for this ability of occurence of an input symbol given a subset of the
example, namely that the description should not be too complex others) allowed us to capture more of the structure of the input
relative to the input. Specifically, we can calculate the range than simple first-order statistics, at least for MRPs. In the next
within which the ratio of bits of description per bit of input example we see that, in general, one must have a much deeper
should lie, say, 99.9% of the time, as a function of n, and reject understanding of how the input is generated to design an opti-
descriptions that fall outside of this range. mal descriptive language and thereby fully capture the structure

lo reiterate what was said in the initial subsection, the more of the input.
general way of determining that the descriptive language is in-
appropriate is to see whether a different descriptive language 3.5 Example 3: Independent Processes
could encode the input in fewer bits. But, to make the compar-
ison, one must have a common language in which to write these Finally, consider a case which is much closer 'o the image par-

different descriptive languages, and the length of the description titioning (and more general sccne analysis) problem, one where
of the descriptive language must be taken into account! In other the input is a function of several independent processes. For this
words, one cannot get away from the dependency on a base de- example, the input y is a function of three independent vectors,
scriptive language of some kind. The efficiency criterion in the 1, h, and r,
previous paragraph is merely a computationally inexpensive ap- y = F(l, h, r).
proximation to this more general method.

Although tho trmt-order statistics of an input string (the prob- The first two vectors 1 and h are combined to form a piecewise-
Aconstant vector u to which is added the "noise" vector r. Inability of occurence of a symbol) capture some aspect of the other words,

structure of the input (and indeed, capture it entirely when the
symbols are independent and identically distributed as in this Yi = U, + ri, i = 0,-.. n - (2)
example), the next two examples illustrate that much more is
needed in general. The elements of I are the lengths of the intervals within which u

is constant, and the elements of h are the heights within these
3.4 Example 2: Correlated Symbols int.,rvals. For simplicity, we assume that n, the number of el-

Consider a similar case to the one above where the three syin- ements in y. is fixed and is much larger than typical interval

bols '00, '01,' and '10' occur with the same probabilities as lengths. An example is illustrated in Fig. 1(a).
before, hut such that they occur only as one of two sequences,
say '00t001 10' and '01100000,' with equal probability. Clearly 3.5.1 Defining a Near-Optimal Descriptive Language
we need only I bit to distinguish one sequence from the other. As stated before, the minimal-length description will require
so an optimal descriptive language L2 would be -log 2 P(y) bits (where P(y) is conditioned on n, the known

'00000110, 0. Vnumber of elements in y). However, unlike the first two exam-
pies, there are many triples of vectors (1, h, r) that map to the

'01100000, , '" same input y. Thus. the number of bits in the optimal descrip-
tion isThus. on average, the optimal encoding of an input string con-

taining n symbols (or Sn bits) requires only n bits. The efficiency -og2 NY) log2 P, , h, . (3)
of th,, optimal encoding is therefore I - 1/8 = l.oPy5. - - Z lg 2 f'((hr). (3

The above is an example of the more general case of
a Markov random process (MRP), where P(x,) depends on Because the vectors are independent of eath other.
.r_..x,-2. ... .r,,}, but is conditionally independent of the
other input symbols. The optimal descriptive language for an P(l, h, r)= P(l)P(h) 1(r). (4)
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(Again, the probabilities are conditioned on n.) Designing an a brute-force manner. However, when the elements of 1 and N
optimal descriptive language for such a process is, in general, h are drawn from uniform distributions and the elements of r
extremely difficult and the language would almost certainly not are drawn from a normal distribution, the above decomposition
produce stable descriptions. However, we can design a near- leads to an efficient algorithm that finds something very close to
optimal descriptive language that produces stable descriptions the optimal vector, u*, as follows.
for almost all inputs when the changes in height of u are almost When the elements of 1 and h are drawn independently from
always large relative to the variance of the noise elements. uniform distributions, the encoding length for each element is

When the changes in height of the constant intervals of u are a constant, say b and bh, respectively. Thus, the combined
large relative to the variance of the noise elements, there is a encoding length of both vectors is simply b = b, + bh times
unique most-likely triple of vectors (1', h*, r*) that maps to y. the number of their elements, which, as indicated above, is the
Furthermore, it can be shown that the probability of this vector number of constant intervals in u. Furthermore, the number of
is much larger than the sum of the probabilities of all the other constant intervals in u is exactly equal to one plus the number
vectors that map to that input. In this case, Eq. (3) reduces to of adjacent pairs of elements (u,, ui+,) that are unequal. Thus,

the total encoding length of y for a given u can be written as
-log 2 P(y) -log 2 P( l , h, r')

hn-1 n-2 '
-log 2 P(l)P(h)P(r") (from Eq. (4)) D(y)l = DR(yi - ui)I + b+ -b(1 - 6(ui - u,+,)), (5)
- [log 2 P(I*) + log 2 P(h') + log 2 P(r*)]. i=O i=o

Thus, a near-optimal descriptive language L3 is one which inde- where
pendently describes each of P, h. and r in the optimal fashion f Xf
illustrated in Example I above. 6(x) = the Kronecker delta = i

As we shall see in the following subsections, this language 0 otherwise,

is most strongly sub-optimal when the descriptions are most VDr(r)[ = the cost of encoding a single noise element, r.

strongly unstable. (Roughly speaking, this occurs when the
change in height from one interval to the next is small relative When noise elements are drawn from a quantized normal dis-

to the variance of the noise.) Thus. the measure of stability we tribution (i.e., the elements are first drawn from .V(O.a
2
) and

shall propose tells us not only when the description is unstable then rounded to the nearest q). the probability of drawing an

but also when the language is least appropriate, element r is then

3..S.2 Dnf.'i, . ' Fr-codor P(r) [ - exp 7 ] dx

The encoder for this example is much more complex than for q e whe q < 2r.
the previous two examples because it must solve the optimiza- ;:z r 2  w q<2

tion problem of finding the triple of vectors (l*, h*, r*) that both

maps to the input and requires the fewest number of bits to en- Thus, the cost of encoding a single element r is
code in L3 . A brute-force method for solving this optimization
problem is to search expiicitly through all possible triples. de- jIr(r)J = -log 2 P(r)
termining for each one whether it describes the input, and. ifit 1 /1 + _o
does, comparing its encoding length to that of all other tr ples g K -log2nr +log-logq+ ). (6)
that describe the input. lg2(227

A more elegant solution is to take direct advantage f the Substituting this into Eq. (5), we arrive at the followingestimate
completeness of the description. First, note that, for a gicwn of the encoding length
input, the piecewise-constant vector u completely deterrmines
the residuals because, from Eq. 12). P-'(f)I b nc - ..,

3 I_ E _ ' +b-(1-(u,-__+_)), (7)

r, = y, - i ,. io .= -I -

Furthermore. independent of the input, the piecewise-constant where

function u implicitly specifies both n and y: The lengths of a(a -- ,,7

the intervals wherein u is exactly constant are the elements of 2log2 ,0
I. and tie values within these intervals are the elements of h.' b = the cost of encoding an element from both I atrd h
Thus. instead of explicitly searching through all possible triples 1 1 log 27, + log cr - log q
of vectors, one need simply search through all possible vectors u. c - log 2 ( 2 1o2,,7

and compute the sum of the encoding lengths of the implicitly
specified vectors h. h. and r. Because of the Kronecker delta term. finding the optimal vec-

Of course, the search space is still very large (on the order tor u% is a complex nonlinear optimization problem. Although
of h", where h is the range of elements in h!) if seardhed in one can devise a straight forward dynamic programmingsolution

_ for this problem (in fact. s how we arrived at the provably
tn fart. i' implicitly specifies more than one pair (I, h). For example. optimal description of Fig. l(c)), it is extremely difficult to gen-

ii = {,.5~.5.7.7.7.7} riot only sper-ifies the pair ({3, .1}.(. 7) adescribed eralize to thre two-dimensional image partitioning problem that
above. but it als, spe(ifies the pair (12, 4). {5. 5,7) (amongst others).
However. these other pairs are always more expensive to encode than the we present in the next section. Furthernmore. the sitiulated-

first, and so are ignored here. aniealiirg style of algorit hms exemplified in Giman and Getnan
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[5] are also inappropriate, because the time complexity is much because of the nonlinear term s'(x), we can view I - P'(x) as
too high for this type of function (Blake [2]).6 representing the energy of a nonlinear spring; one which behaves

Instead, we have devised an algorithm that yields something like an ideal spring with spring constant 1/c2 until it is stretched
very close to the optimal solution for a large class of inputs beyond its maximum length c, at which point it breaks (there-
and that generalizes easily to two or more dimensions. This after having a constant energy of 1). In other words, we can ,
algorithm is similar, in some respects, to that described in Blake view Eq. (9) as representing the energy in a system comprising
and Zisserman [3]. both ideal and nonlinear springs as illustrated in Fig. 3.

To simplify the notation in the following description of the In terms of this intuitive interpretation, the continuation
minimization algorithm, we remove constant terms and make the method starts with weak nonlinear springs (small spring con-
dependence on u more explicit by defining the length function stants 1/c2), then continuously strengthens them (and continu-

ously breaks/attaches those that become longer/shorter than ()
£C3(u) = JZu(y)J - b - nc until is sufficiently close to zero. s I approaches zero. pairs of

/-1 ( -\ 2  n-2 samples ui and ui+l that are held together by unbroken springs
= al: + b l - 6(u, - UI+1)). (8) become arbitrarily close to each other, and those that have bro-

,=0 ( or) i=0 ken springs are independent of each other. Thus. in the limit as
3.5.3 An Efficient Minimal-Encoding Algorithm c approaches zero, u becomes a piecewise-coistant vector.

To make the continuation method discrete, we must define the
The difficulty with finding the global minimum of C3 (u) is that it order in which the nonlinear springs are adjusted for each dis-
has many local minima. Thus, standard gradient-descent based crete time index t: first decrease I. then strengthen the springs,
optimization techniques are useless. However, a particular clas- then adjust their lengths to attain a global minimum in the en-
of optimization techniques, generally called continuation meth- ergy (as if the springs were linear for the Itmoment ). aid finally
ods, yields something very close to or equal to the global mini- break/attach the springs according to their new lengths. Fig. .4
mum for the kind of function we have. shows the result of this discretized continuation method, defined

An intuitive description of the continuation method we shall formally in the following paragraphs, for several values of t. Note
define in the following paragraphs is that one creates a kind of that, for this example, the final result is the same as the optimal
scale-space" representation of the objective function £ 3 (u) and description of Fig. 1(c). .-

tracks a local minimum from the coarsest scale (where there is More formally, we define a sequence of quadratic forms C£(u) .1,

only one local minimum) to the finest scale (where there are in which the nonlinear springs of £(u) have been replaced by
many). ideal springs whose break/attach states at time t are defined 01-
More formally, the continuation method requires a family of by the global energy mirmum of the springs at time I - 1. •

approximations £(u) for which there is a single minimum at This recursive definition is grounded at I = 0 by choosing a
some large ( and for which the approximation converges to £ 3(u) sufficiently large I for which we can prove that the nonlinear
in the limit - - approaches zero. We start at the unique local springs are all attached at the global energy minimum. Since
proaches zero.

The specific approximation £ (u) we use replaces 1 - 6(x) in Ymin -< 11, < Ymax for all i and ,

3 ( U( with the approximation 1 - 6'(x), where where ynin is the smallest element in y and yitax is the largest, ,
choosing f > (Ymax - Ymin ) elsule" .hL '( - Lu,+,) = I for

-6(x) s'(x) + (-s(x)) all i. That is, all the nonlinear springs are attached at the global{ 1ifIIenergy liniinmum of C'(u) when I > (ymax - Ymin )if !Xl < Teeoe e
,.)= 0 otherwise. Therefore. let

so  (Ymax - Yin)
(Simply put, I - 6'(x) is a quadratic in x when jx) < I, atttl i a
when ix 2! 1, see Fig. 2 for a graphical representation of this (o = S017
function.) In other words. u a ,( ) 2 ,i+, 2

3C()= a _+ by --0
u E(u) a )+,("

t Then. for f > 1. let .%

ITI.1)- .,'(tI, - u,+t )). (9) (u = + d u , ] (1 d ) .-

Intuitively, we can view each of the quadratic terms in Eq. (9) where
as representing the energy ol an ideal spring, because the energy 1t in..
of an ideal spring is a quadratic function of its length. Moreover. 3t = the iue ttlnintttt of 1S- t (u)

'Blake has shown, utsing Monte-Carlo sim tlations. that the tittle re.iiired dIt  = l if 
-  

(t-I

to find the global minimum of functions similar to that of Eq. (7) increas-.-L 0 otherwise 4

exponentially as the "rigidity" of neighborhood constraints increases The- , rt-I (1 < < )
neighborhood constraint represented by the term 5(u, - u,+, ) is, in ecit.e ,
an infinite!y rigid constraint•= IT.
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Please note that £t3(u) is indeed a quadratic form because the small changes in the noise elements, can change the intervals of
function s'( u, - u,+ I) of £(u) has been replaced by the set of the optimal description. Clearly the optimal description for this
constants d,. In other words, £fl(u) represents the energy of input string is not a stable description, at least for the first two
a system comprising only ideal springs plus a constant energy intervals. (Recall from Section 3.5.1 that this is precisely the
term. case when the language is most strongly sub-optimal.)

This definition of stability call be directly related to the stop-

3.5.4 Computational Expense ping criterion of our optimization algorithm. In the first example
above, we find that all of the breaks are found by the algorithm

The bulk of the computational expense in the above procedure well before s' approaches 1. whereas in the second example. slies in minimizing the quadratic form £)(u). This can be done must be reduced well below 1 before the first break is found, if

by solving the set of simultaneous linear equations it is found at all. (This argument has been verified for many

different input strings.) Consequently. we can be fairly certain
On,, 0 that breaks found bv the algorithm will be stable with respect

"2a b to stnall changes in the height or noise elements if they are found
= -t,,, - Yn ) + '2,, (u -) ,,_u ) when s is significantly greater than 1. In other words, a inea-

sure of the stability of a break is the value .5, of ,s at which it
+2d,+ - ~un+I was found: when S, is much larger than 1, the break is very(stat) stable, whereas if it is much smaller than 1, it is very unstable.

'2 /t 2  Thus. a reasonable stopping criterion that yields stable de-
l)ividing by yields scriptions is to stop when s' is close to one. Once we have found

the breaks in this manner, we can determine the optimal height

u , t + 2 t2 within each interval in a straightforward manner, because it is
dt+ i )u u l = Y simply the average of the yi within the interval.

When the description will be used as a basis for further pro-(with d'~ -d' u-I E u,. 0). csigo h nu tig tmyb oeueu oso ts

We can solve this set of equations relatively cheaply because cessing of the input string, it may he more useful to stop at s'

teitxsdcand much smaller than one and let other processes use the break-by-tile mlatrix is banded, synunietric, adigoally dominant, al-
break stability measure, Si, as they see fit.

lowing for such local, parallel, and iterative solution techniques The stability measure just defined is also a good measure
as the Gauss-Jordan iterative solution procedure. Furthermore. of the stability of the positions of the breaks with respect to
the solution typically differs onlv slightly from I to I + 1, so tI:
lie iterative sollutio n procedure ran use thle previous soluition chianges in the parameter b of Eq. 7. lit other words, large val-

ties of S, indicate that the breaks are stable with respect to
iarations. p changes in this aspect of the descriptive language. This is espe-

We have so far studiously ignoreu the question of a stoppin cially important when we do not have a precise model for theWe lar sofarstuiouly gnoed he uesionof sippng generating processes, as in the case of real images.
criterion. That is, whtat value of s' is sufficiently close to zero
that we can expect l) further chianiges in the break/attach states Of course. these arguments relating the stopping criterion to
t'h'a' e anser elatd to ie esil the e c i a measure of the stability of the intervals are only applicable

Which is explored in the following section. when the descriptive language is appropriate for the input. In
the next subsection, we see how we call get a reasonable measure
of the appropriateness of the language once we have found the N

3.5.5 Stability of the Optimal Description breaks and the interval heights as above.

'lhe above defined a near-optinial descriptive language and ati
optinal encoder for this language, but what of the stability cri- 3.5.6 Using Stability to Determine Appropriateness
tortn" Recall that stability is u]efilted as the invariance of one
portion of a description with respect to changes in the input As mentioned earlier, the stabilitx measure should allow us to
that are reflections of changes to other portions of the descrip- determine when a given descriptive language is inappropriate for
tion. Furthermore. the choice of which portions should be stabie a given input.

with respect to what other portions is task-dependent. To illustrate, consider the noisy ramp of Fig. 6(a). Applying
Suppos, that for the piecewise-constant functions of above the optimization algorithm (where a72 is the true value of the

,we are interested in the stability of the lengths of the intervals variance used to generate this function) and stopping at s' = 1
(i.P.. th positions of the hreaks) with respect to changes in produces the results illustrated in Fig. 6(b). One can imnedi-
tle heighfits and/or tie noise elirents. lo niake the argunent at ly determine that the language is inappropriate bry' comparing
cotncre'te. consider t lie pivce -i , collst ant flinclion iti Fig. 1/a). t lie niasured variance irt each interval (iu this exam ple there is
Ahose optimal encoding is illustrated in Fig. l(0. Now. if we only one) to the valut, of the variance iised i; the optitiization.
hiatige the height of the first intrrval liv a small alnolint. as ill Sitce the measured variance is significantly different froo that:igl.5(a). or alter t!.0 noie elenwuts i ts ilt Fig. 5tb), It vaidli,, this is a strone ind catiou that the language is inappro-

iinter'.als oif thie otptinial description remlain the salniv, I hu,. I li priate.

ophntal description for this input sIriug is etabl with rt ,sput Altternately, we cnito l ithe process at a much sialler vahle

tl the, ttypes of changes. of s' and note that all the breaks have ta lok stability leasire,

fHowever. Miten the heigltt of the firer iiterval is o o cost)to ;is illr,l rated itt Fig. h c).

that of the second. :! il Fig . S"c). arbitrarily wneall chiangs ill Agaii. measures of tppropriateness stuch as tlese are only

the height of either the first or st'cttnd i terval. o arbitraril r'o uilrtationally inexjtuitsive atlroxi ations to the nlore geli-
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eral nito fcmaigteecdn eghars ifrn t' ixIx.r steieling.G? 'i nw
desciptve angage. Fo exmpl. i wewereto escibethi p~it-srea fuctin, ad Rx".rl isaddiiveindlwneri an

scrib me thd ofx corngw oldeta the encoding length acr oss (lferf - c IenraltY we assm th at (lea] imge G .r I i the wi

* ~~is siegnific ant lv sima] br t hana for a(iv p1 ecewi so-coaist a t (Iescrip- crnma indter of the paperi.
iolt. II the following suibsect(ions, we (](efil(ie a soc es of in creasinugly

comiiplex descriptive I a (giages that tire inic reasinugly het ter ap

3.6 Summary p~rox iiiat ions to thids moidtel of corrutiVed iiages. 'This is donte
for two rcasons. The first is that it is eaisier to understand the

InI summnary, we have shown that a reasonable deofiinitioin of a most comlex language by first understanding the simpler ones.
best complete and stable dlescriptiont of an inpuitt string is the Thel( second is that this seqluence of languages, each being a gen-
tuitiital-length informiation-preserving description, followed by eralization of the previokuF illustrates the process of augmenting-
siniple test,, for stability and efficienc *y. We have shown how to a descriptive language in order to captutre ittore compthlex aspects
(design sotne classes of optimial descriptive languages aiid have o h mgsw r eciig
described a comnputationally effective procedure for finding the
optimial description. We have shown that t he mninimial-length
iliftrliiatiolt-presorvilig tdescriptioit of the input is a stable (h- 4.1 Piecewise- Constant Ideal Imiages
scrilitioti for a large class of inputs. Finally, we have described When the ideal imiage is piecewise-colistant aitd the point-sliread %
several wa ' s of measuring the stability' of the ininimtal-length ftinction is neglible. one can immediately see the resemblance of
descrilitionr and indlicatedl how thlis cattb hti-il to determnine Eq. ( 10) to Eq. (2) of Exanmple 3 when 'we rewrite Eq. ( 101 as
wh et her or not the (Itscci pt is- laniigiage is a pprcop riate for a givSen

4 A Descriptive Language for Image Par- where u = { i(x,,x, )} is the spatially discrete antI] ilitenshy~- r
qaiit ized pieceiso- ciaist a it ideal i niage.7 anil th lie lelens of

titioning r = {r(.r9.9 1)} are thle quan t ized residuals. We adctpt (the siiii-

tiler no01ationi%
lniatge hart it ioliiig is a very b road tIlroblein t hat is tinli kely to t

bte olvedl in it, etitirets witht the clicoice of a sinigle simuple tde- ..

,ccip1 ti vt laitgiage [.1. 11li ovr.IIklaggeIan about t .o whiere t = fx, I)iti~ =~ ,.r -, all( r, ci n4
6lescribe lprovidle atli mt titively satisfyin g sol ut ioni to thie part i- the remiiainitdec of thle pa per because it simiiptIilies (lie (iotatii i -
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Ih lIanliage is Itased on a world miodel in awhicli all okbjects As it Examiiple 3. u anld r are illdelpenident and thle niear-

are cotmptosed of ic-is-ifeitalesurfaces whose tilbedlo opt imal descriptive latnguage simiplY (descri bes each itideponi-
variec iti a pioceaise difforetiale ntahnec.. Genierally speaking, doittly. And again, the encoditig lengthI for all oft toe residuals is
hi scontiltnitie iS Ith dit(epthIt. or it at ion,- al beoo anItd ill uniti na- t ho si t of thle encoding lengthI of each resi dutal elieiint.-
ittn (If thlit surfaces will produce tdisconitintuities in thle intensities Hlowever. tinlike Example 3. the optimal descriptive language

of itl imiages taken a-ithI perfect tili-liolo camtiras. These iti fttr u is miore coiiplex. InI thle o10iteliIiOiial example, one
iage iiscctnttinuoilties are a gootd cant1i datec for a st able comp lonenit si n pyieeded to dlesc ribe) thIt lenigthI of thle intervals and the 4

ttf the (descript ion of the ideal intage because I hr- remaini largely lieightt of u wvithin each interval. auid so thle encoding length wvas
itivariant to snil chatnges in idepthb. orienitatioti, (lbeilo. andit il- simplyN ptroportionial to the itutubet -f contsant iintervals, which P

luinitat io T -Iherefore.h% Ii y-itdinig tlit de-scriplt ion of i t idileal wits equatl to tile nluitiber of unequ(iial adjacent t pairs of u.-
iliagt inttt Tw ats. a tdc,(eript ion ttf region btotundaries atndC it lii the two-tdimtensiotnal cast-, ((lit (m(lst destribte utt otily thle

t-st-rittitta itf (the titititus aitil dliff-etintiabile ititetisit ' vait- height ttf the regiotis whitin which ku is constat. btitl also theic
ttii'l wititi eatch ct-gion. itit is likely to have tlt-escriptin s ize atnd shiapte. The il-sccittiv- laiiguiage wei htavt- chioseti. ill
whtith the first part andt stttme iiltt, tif tit' stetotid patir (stubl iialtgp til the olie-tdiltisionatl cast-, is the dlifferential chiaiti

au t'ltittislu-er-i lit tIrivttits tf tteiii~viictt coidet of (lie regioun boundaries. lit tti er wotrts, eatch region is det--
it's T.S)lil v art- stalt. sati-.vi le t Iillikit% t-tilitttt st-l('t bo its height inld its, ltotutary. andt the lttttiitlic is tde-4.

4 1tt ii 2. sin li-i bv aln it ial point Ia-.y ).initlialirli rt kit (tip. tlos% vt. eft -

tnfttcttuiatt-ls.v %, we ait uev-r t iretIv ob tlservt idv-al iniiigts. ii- oi- right ). (lie nmbetr tf -eentis iloiig (t-e bouititais. and at si-
,ttl. we tnnt tdeal withI real iia-.which is.'- nint-I ats itdeal quen--- of lite -cianges in ttlirect ion ttfthe btoiidatry. l-or lartt-

m tha tiit Itat- Io, itittrrtil-t bt% the intiagitig titt-. It rt-gionts. (t- tulk ofthle t-icotliig It ngth Ii ill rt-site ill tesplt-ni-
taicutlatr. s%, untl real illitigIs ;1s itdtal iittatpts (t act- lttttt tciati f ( lie sequence ttf tdirecttiona iinges, whith ispIritlttltitnal

it ~ ~ ~ ~ ~ ~ ~ ~ t tet- -eit of (lit ttlt regio soldl-f tit-scrir binil ilttv t oac-al aiti(i- t c t r-ii

ttltv v fttltstrsat ittits fy, - f i', cr, i = it - tt. - I) Nwlitr, ll, p1,mmll, i, l t , n - tt a iti-a t ir r ) r-( tprc-, WO itt- l(iit-

(lt'11N f1111 Ilr Y tv- i l u tini m i t - tlr.d at-ti- H %is
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the total encoding length as Similarly, efficient encodings of piecewise-polynomial images

demand two things. First is that the number of non-zero coef-
u) = aZ-( - 1 + b- Z (1 - 6(ui - uj)), (11) ficients in each region should be as small as possible, and tile

S / i dEN, second is that the number of coefficients that are different be-
tween neighboring regions should be as small as possible.

where N, is the neighborhood set for index i (i.e., the set of As for the piecewise-constant case, we represent the piecewise-
indices j such the u, is adjacent to u,), a = 1/21og2, b is one-
half the number of bits per chain-code element (since this way of polynomial image in a spatially discrete manner. However, we

writing the equation counts each element twice), and all constant replace the cia u(reeent te at intesity fuc-
expressions have been removed. tion within the unit square centered at (x° , rl) with a vector

As in the one-dimensional case, one can find a good estimate of U, {tk. k = 0,..., m - 1) (representing the polynomial in-

the global minimum of £ 4 (u) by defining a sequence of quadratic tensity function within the unit square). The particular vector
we use is the vector of coefficients of the Taylor exp;nsion of the

forms: polynomial about the center point (x0, xi ). In other words, the

aZ]£,2u intensity function within the unit square is of the form

,, ,2  o + ?1 , .I ( x 
0  

- X ) + U , 2, I - _ ?) + , ,3 1x 
o  

_ X o )-

+bZ Y d, ' t + (1 d )  (12) +Ili,4(X
0 

- X
0

)(Xc - dAi) + u.s(x - X )2 +
i EN,

where As previously mentioned, tile first term in the encoding length

for each region is proportional to the number of lion-zero polyno-

ut -  = the unique minimum of £tL(u) mial coefficients in that region. Moreover, in order to maintain

1 1 if - - 1 reasonable accuracy over an entire region, one would expect that

, j 0 other ise < the number of bits req~uired to encode each lion-zero coefficient
otherwise would increase with region size. Rissannen [10] shows that, for

st 
= rs'-  (0 < r < 1) a particular encoding scheme for one-dimensional polynomials,

= sta the number of bits increases with the logarithm of the number
of samples. In order to maintain the locality of our approxi-

and the recursion is grounded at t = 0 by defining E0  (Ymax - mation, we will assume that the the number of bits increases

Ymin ) and do -1 linearly with the number of non-zero coefficients. Thus, the first

term in our estimate of the encoding length is
4.2 Piecewise-Polynomial Ideal Images d y(3

iAn approximation to the class of piecewise-smooth ideal images i k , - t

is the class of piecewise-polynomial images, i.e., images com-
posed of regions whose intensity function is a two-dimensional where d is the number of bits required to encode a lion-zero

polynomial. Of course, piecewise-constant images are a subset coefficient, divided by the average region size.

of such images: those for which the order of the polynomials is The second term in the eicoding length is the number of co-

strictly 0. efficients that are different between neighboring regions. As in
To understand how one could construct efficient encodings for the piecewise-constant case, we compute this number locally by

such images, consider the problem of encoding one-dimensional counting the numbe of additional coefficients that we :eed in
piecewise-polynomial functions. In a similar fashion as for the order to represent t;.. combined intensity function of the two
one-dimensional piecewise-constant case, we divide the function adjacent pixels. For the piecewise-constant case. this number

into intervals, where the intensity function within each interval was (I - b(it, - it,)). That is, the constant intensity functions

can now be represented by a single polynomial of finite order. were either the same, requiring no additional coefficients, or they

If we were to encode each interval independently, the encoding were different, requiring one additional coefficient.

length for each interval would be proportional to the number of One way of computing this number for a pair of neighboringpies(01 , n (xo. x1j) is to compare tihe polynomial and its
non-zero coefficients of the polynomial. However, we can reduce pixels (.r0, x-) and J i
the encoding length even further by taking advantage of the derivatives at some common point. such as the average of the

relationship we can expect to find between the polynomials in point coordinates. ( ). Each non-zero difference in
adjacent intervals. For example, if we encode the intervals from the polynomial or any of its derivatives means that an additional
left to right, and if the function is continuous (hut not differen- coefficient is required. For example, if we restrict ourselves to
tiable) at the first interval boundary. one cati take advantage of first-order polynomials for the moment, the numnber of additiona!

,." the continuity to use one less coefficient to describe the polyno- coefficients required to represent tile combined intensity function
mial in the second interval (i.e.. the polynomial in tie second for a pixel (.r,, xo ) and its neigh+or to tle right i -t (a? +
interval has one less degree of freedon thian it would otherwise I -r ) is
hi ,ve).

To suniniarize. efficient encodings of one-dimensional { I - o([ti,.ii + 0.5tiA] - [ti, 0 - 0.5n,11]11)

piecewise-polynomial functions dettand two things. First is that + 1 - s( i,l - 11.I)}
tie number of non-zero coefficients in each interval should be as +{ - b( . - ?J, .)}.
small as possible, and second is that the intiber of coefficients
that are different between adjacent intervals should be as smnall hit ,.'rl. th,, polynonial or anyvof its derivatives at onie ctoi-
as possible. tiioiimsut Can he expressed as a liniar coTuhilalioii of the Taylor.
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coefficients, so that the general form for counting the number of Furthermore, since Irepresents the spring-length between neigh-
additional coefficients is boring points i and j, it must be defited in a symmetric fashion.

Tihe seqjuence of quadratic forms we have dlefined that satisfies

L 6 - i ( ~ l} - Pjk~lU these requirements is

Thus, the second term in the encoding length is CLii) = t (

bZ E ~(1 -(P,,.k- Pj,, 1 ). (14) +bZ E /, + - l~
I EN, k Itv )+( -d 2 )

where
coompare this with Iiq. (12)) where

P,,).k~~,, = ~~~11.
"..''u

1 1  
= thle unique niiiniliii of CL i(u)

I i, <I

Combining Eq. (13) and Eq. ( 1-) with the term for the encod- st rqt- (I) < r < 1)

ing length of the residuals, we arrive at the following approxi- (t St,

mation for the total encoding length: (tj ma=

fYi______ and the ,ecursion is grounded at t 0 by defining d~' a1 n
L5(u) a' n

a]~~~~ .s uhta tesals equals (Ymax - Ymin)- As before,

+bF E E 0( - b(P ',, -ji) -s' is a good measure of the stability of a break. Note that this
jEN, kdefinition of £it(u) reduces to Ct(u) when the cis arc constant.

+d F (I -b(11,k)) (15
+dZZ~ - ~(, ~))(La) 4.4 Images with Unknown Spatially Varying Noise

k

Finally, we can include tile point-spread function by approx- But what if we don't know the aTs? Then, according to the

miiating the convolution with fihe ideal piecewi se- polyvnomni al Minimlal en coding-lenigthl criterion, we must find those values of

inilage by a discrete convolution with1 thle spatially discrete tlte ta,s that moinimize tile overall encodinsg length. includil 7 thie
pieci cost of c neoding thie a, s tieinselres jin .'orn descriptii'( long. ogc.

'-'-olyomil iilag. ~ieli l~ 2One possible mlodel for spatially varying nocise is that the : i- ~ .4

If Yi, -,B Y~ (0, ,5 13.5 2sure is hpiecexise-conlstalit, with tile variance boundaries coin J1-

a,(u ig withI the illteilsity boundaries. Thus, for this model. tiliec
for encoding a region boundary will nlow he slighltly highler (sill

+1- k - PI, k -(I' I Ilie cost of thle boundary subsounles Ilie cost of encodinrg I te pi,
JE k raieters withIin the region), aiti wve ineed to iiiclude a termi whichl

.4-PEZII - Is)
1 1

,
5

))(163) enlsures that a, = or for all adljacent pairs rnot crIf gargo
k liolildllry. Again. usinig thle piecesvise-constant-itlteuisitvI model%

Whee i, eigts f iledisree cnvouton ernl. for siriptlicitY. atld reinserting thle term inlvolvitng log a thlit wvas
whr ,.k are, tleighso edsrt ovlto enl removed for convenience when aT was fixed (see the definition of

and1 1B, is ft( ieIlie spatial support of C,. i.e.. thle set of indices i a and c in eq. (7)). the encoditig length function becomes%

where (;,,jk is non-zero for at least one k.
As al ways, we siilvye for the gloibhal in iiiti ii bY defiing a l(,-u\

sequience of quadratic formis. Cs( u. a) -+2Z K ,)4 loga)

4.3 Images with Known Spatially Varying Noise +iFZZ( s i-i9

Thle discuission so far ha~s aissiiid that the variance of the noise +( ITs i 13)1-I~ , a).(
is bot h roust ant anti known a priori. We can deal withl known JN
vairianiice t hat isdifferent from pointi to poi (It si 111ply by cliatiginrg
a toi a, ini the first ;utirntliot (if the enlcodling lengthl flictioli. %%-11117( b is iiow sliglfY larger thanil for L'.1(u . and11c -, bi.

Il ius. for IxarnpIIIv. Cj1 ) be licoiiles thell encoing letigt 6 filictil One( coldll at tempt to find thle global mininii of t his futic-
lml by dhrillng ai sequenltce of funtctioiis ill ile same veinl as

aZ (Y ' + , It leflre. 1Illfortilllte'l. these 611111 11711 wold not be quadllaic
Y> (i I - hrl.l- 1II1 115. (If) fil ('g , 1111 lls" fIh ,,tlIl oi1e woil he faced

nd i le probilemi of findcing~ Ilhe glob-il mlli Ililll of e;Iclj of tile",'1

ion is sligly more complllex. in Illirt biecaulse of tie criteioll lllt,1 1' 1151'i~ Iii,' filllo\%ili lin, ofei mll~iillg_. lFir,t . olserv1
t lit ie seqllenCe is StOppe,l at I wi'Jeji f' aZ5(. IlltIs. W 11e11 a7 is thlit ;1 1 I oglobal 1iillillill i1i*r7 . 11111 fola I lltici, lttl\ llouL,"e%

Iif,r-nt fron point to poinlt Ia,). itist also lie ,lifferent froiii ( ,' aT iieve -I if I liat1 i .. nas is Ill % i IIt i li

point to point because it twist5 never fall below aT, ait lilY po, it. Ille clltigil(Iiis regionus I hat ti' is (((lIst hut. as5 \\i ldeiliaiill. l'o
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make this explicit, let R denote the set of indices within the where
rIh region, and let u, and a, denote the constant values of u",
and a' within this region. Thus, we can rewrite eq. (18) at the it- .ai1i) the unique nini of C

1 (u. a)

global minimum as t -  if -

1o 1 if Ilu i - i < 1

1 U(,r 
+  1 0 otherwise

lg2 (2 Or \2d. )"lR, og a / oa = the local estimate of the standard deviation

+b~houndary length of BR_ (19) ZE.d (Y- )
2

Since the boundaries are fixed by definition. eq. (19) is minimal =,eN, d:,,
when each term s

t 
= r s

-  
(0< r< 1)

2 C o1

- ( i -( U) ± log gae ) I ),
(1hr \ (7rr  / 

(I~J = max

is itself minimal. Since this term is differentiable, we can de- and the recursion is grounded at t = 0 by defining d%,= 1,
termine the values U, and a, that minimize it by differentiating -I = (andsetingto er, wichyiedsui yj (thereby defining a' in terms of the data only), and s
and setting to zero, which yields suhtaIh mlet?=(/a 1msuch that the smallest c0 = (ymax - Ymin)'

Ur n-- I E Y,

= (y,-11)2, 4.5 Results

iER,
we st n e ei The elements of the descriptive languages that we have just

where nr is the number of element,; in Rr. Ili other words, as defined are, of course, extreme simplifications of the processes
we might have expected, the minimal-length encoding occurs that form aii image. There is no direr' notion of the three-
when the intensity estimate within each region equals the region dimensional nature of objects, their iite: ction with illuiinants,
average and the variance parameter equals the region variance. nor even any notion of texture. Yet. even such extremely sir-

In other words, if we knew the region variance, we could mini- plified descriptive languages yield intuitively pleasing partitions
mize £ 8 (u. a) in the same way that we minimized L(u), simply of real inages.
by substituting ai = a, for i S B. For example, Fig. 7 illustrates all application of the piecewise-

Of course, this is not directly possible, but we can come close first-order-intensity with piecewise-constant-noise model to an

by noting that the region variance is approximately equal to the aerial photograph ofa house. Fig. 7(b) and (c) illustrate the un- C..

average of local estimates of the variance within the region; that derlying piecewise-first-order image (i.e., the vector u) and its

isS discontiinuities, after having stopped the process at 0 = 0.25. 5

, _1 1 - JEN,nR(YJ - U,)2 Fig. 7(d) is an image of the stability measure (S,) for these
- . n--- , -- Y_ discontinuities. There are two interesting points about this ex-

ample. First, note that the four bushes in the lower-left corder

Thus, by adding a term to the sequence of quadratic forms that were delineated even though the contrast along part of their
converges to the average of local estimates of the variance, we boundaries is virtually nil. This is extremely difficult to do with

should come close to the global minimum. We start with local either standard region-based or edge-based approaches. Second, , .4

estimates of the variance based directly on the data, and improve note that the bulk of discontinuities that form closed regions S
these estimates from t to t + 1 by basing the local estimates on have high stability measures. This is a fairly strong indication ,

ut
-l. 

In other words, we define the sequence of quadratic forms that the piecewise-first-order model is appropriate. If we now

as follows: demand a truly piecewise-first-order description, we call remove
all discontinuities that do not form closed regions. and explicitly

y. - u, fit first-order polynonmials to the remaining regions, as illustrated
2ua) = og at) in Fig. 7(e) and (f).

2 A second example is an applicationl of Ill( same mnodel (using "
+b1-, E l. +1, precisolv thle saie parameters) to the iuiage of aface. ilhist ratod

e.v, \ ,.J ) ill Fig. 8. Il this example, about half tihe dicontinuities have

2 a fairly low stability nm asure. This is aii iinlication tliat the

2 l 2I'0., language is probably not appropriate fo r- this iiiage. T his is

especially evident inl the forehead. cheek, am) chin areas where

("a-a. 27 + i hig) er- order model is clearly inore a ppropr ia te. IC yen so. tike
+d ) + (1 -a) . discontinuities with high stahility measures appear to le good

JE, , candidates for the boundaries of regions for higher-order models.

'The inequality occurs only because of boundary condition. Thus. the Preliminary experiments with higher-order models (which could
approximation is best for large regions, where the effects of the boundary not be carried out oi the full immage because of tiiiie constraints)

conditions are minimal. show promising results. IV
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5 Summary [8] Y.G. Leclerc and S.W. Zucker, "The Local Structure of
Image Discontinuities in One Dimension," IEEE PAMI,

We have presented a new approach to the image partitioning 9(3), pp. 341-355, 1987.
problem: that of constructing a complete and stable description
of an image in terms of a descriptive language, that is simplest in [9] J. Rissanen, "Minimum-Description-Length Principle," in

the sense of shortest description length. We have presented crite- Encyclopedia of Statistical Sciences, 5, J. Wiley, New York,

ria on which to base formal definitions of completeness, stability, pp. 523-527, 1987.

and simplicity, and have applied these criteria to the theory of [10] J. Rissanen, "A Universal Prior for Integers and Estimation
minimal-length descriptions. This formalism is very general and by Minimum Description Length," The Annals of Statis-
is likely to be applicable in other stages of the scene analysis tics, 11(2), pp. 416-431, 1983.
process.

For the specific image-partitioning problem, we described real [11] S.W. Zucker, "The Diversity of Perceptual Grouping,"
images as the corruption of ideal (piecewise-polynomial) images McGill University Computer Vision and Robotics Lab-
by blur and additive white noise. We defined a language for oratory Technical Note TR-85-1R, McGill University,
describing both the ideal image and the corruptions, and pre- Montrdal, Quhbec, Canada, 1985.
sented an algorithm for finding the simplest description of an
image in terms of this language. The algorithm produces both
this simplest description and a measure of the stability of the

description.
Applications of this formalism to real images indicate that,

even though the descriptive language we have defined is ex-
tremely simple (with no models of three-dimensional shape,

lighting, or texture, for example), the simplest description in
this language yields excellent image partitions.
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i Figure 1: (a) A piecewise-constant vector embedded in noise.

(b) Several different descriptions that produce the same noisy
vector. (c) The optimal description of the noisy vector. Note
that the interval lengths are precisely the same as for the tiheu11lerlying vector u. atd that the interval heights are very close

to that of U.
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Figure 2: The graph of I - b(x) compared to that of I - b(x). '
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Figure 4: The state of the discrete continulation-lnethod for sev- _@

eral vales of t. Note that the final state is the salne as the ';l

optimal description of Fig. 1.
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(a) (b) (c)

Figure 5: (a) Slightly altering the height of the first interval does
not effect the optimal description. (b) Slightly altering the noise

elements also does not effect the optimal encoding. (c) When

the change in height between the first two intervals is too small, .
the optimal description is unstable.

1t16 .B

_4• .4l . 104 I i

(a) (b) (c)

Figure 6: (a) A noisy ramp vector. (b) The result of the op-
timization procedure when stopped at s t = 1. Note that no

breaks have been found, and that the variance from the mean is 6

clearly much larger than the variance of the noise used to gen- -

erate the vector. (c) The result of the optimization procedure 4%

when stopped at s' = 0.1. Note that the stability of the breaks
(indicated numerically immediately above the axis) is very low.
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(a)(b

(C) (d)

(e)

IIA~mL,

F'igure 7:An application of the piecewise-first-order-intensity
with piecewise- constant- noise model to an aerial photograp, rif
a house. (a) Original image, (b) the underlying ideal image u',
after stoppinig the optimization procedure at sl = 0.25, (c) the
discontinmuities of u' overlaid on the original image, (d) the sta-
bilit 'v measure for thle (lisconti n ui ties (brighter indicates more
stable), (e) the ideal imiage um after all dlisconltiinuities not form-
iing closed regions have been removed aiid izst-order pholynlomfials
have been fit to the mummaimlimg regions, (f) the (I iscunti nui ties of
th is mod1i fied u' overl aid( om thle original ii age.
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(a) (b)

(c) (d)

Figure 8: An application of the same model as in Fig. 7 to
the image of a face. (a) Original, ! .,ge, (b) the underlying ideal

image u' , after stopping the optimization procedure at s t = 0.25,
(c) the discontinuities of u t overlaid oil the original image, (d)
the stability measure for the discontinuities (brighter indicates
mlore stable).
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3-D OBJECT RECOGNITION USING SURFACE DESCRIPTIONS'

T.J. Fan, G. Medioni, and R. Nevatia I"i"k

Institute for Robotics and Intelligent Systems

University of Southern California
Los Angeles, California 90089-0273.

ABSTRACT that more views could have been used for each model; this

would however increase the search space in the matching '

In our previous work, we have developed a method to segment process, and the results show that 6 to 8 view: should be )

and describe range images using surface properties. In this pa- nut'cent in general.

per, we show how these descriptions can be used to establish
correspondences between 3-D objects as needed in recognition..i

In a first step, we group labeled curves corresponding to jump I Introduction
boundaries, creases, and limbs of objects into boundaries of re-

gions. Each region is therefore described by its boundaries, and We are interested in establishing correspondences betweeen range

by a polynomial approximation, which allows us to reconstruct images representing 3-D objects. Good matching techniques are
each patch individually, and also the complete scene. The scene is needed for many generic tasks such as object inspection, recog-. '

represented by a graph with the patch as the nodes and relations nition, and mechanical manipulation of the objects. One can '[

between them as the links. In a second step, we infer objects (or match two scenes at many different levels of descriptions with .. ~
partial objects) from surface patches, then match two range ira- some trade-offs: The lower the level of the descriptions, the eas-t;,.

ages at this partial object level Graphs of objects are matched ier it is to comput them. For example, a range array may be

uiga bs-isserhunder three types of constraints: u~nary available directly s input and an Extended Gaussian Image [131 r

constraints between corresponding nodes, binary constraints be- requires only the computation of surface normals. However, low[ eeq-_,%

tween corresponding linked pairs of nodes, and contraints im- level descriptions are not invariant to viewing directions and little " J

posed by the computed geometric transformation. The matching tolerant to occlusion. The higher level descriptions, on the other

is data-driven in the sense that no a priori information such as hand, maintain their invariance but the algorithms to compute .

pre-built model is required. Substantial partial occlusion is also thmaeoenwkaderr-re.Teprpitelvlf

allowed, description to be used for matching thus depends on the expected q

The results are presented in two instances: variations in the scenes and on the state-of-art in computing de-"i

" Matching two complex scenes: Objects that appear in two scriptions of the scene.

images are identified without a priori information of these We have decided, in this work, to use object descriptions in

objects. Descriptions for both images are computed lade- terms of their surfaces. The surface of an object is described

pendently and a graph for each image is obtained. Then by segmenting it into surface patches and the complete descrip-.',

a best first graph search is applied to find the best match tion consists of the description of each patch separately, and their

between these two images. The transformations between inter-relationships. Such a description can be viewed as a graph .

corresponding objects are aso caculated. The objects in with the patches as the nodes and relations between them as the ,:--

both images may vary in orientation and position, they can links. The segmentation and description of the s~trfae is based

also be occluded by other objects. Various real range ira- on measre %uvtr rpriso h ufc.W ecieti .

ages have been used in the testing with very good results. process briefly in section 2, more details are given in previously

" Multi-view model building and object recognition: The de- reotdwok[,]

scriptions of objects are used to build multi-view models. We believe that our chosen representation has many advantages .

Each model consists of several views (6 to 8). These views for scene and object matching. The description is rich, so that",''4

are arranged so that most of the siginificant surfaces of similar objects can be identified, stable, so that local changes.% ,

the model object will be contained in at least one of these do not radically alter it, and has local support so that partially ,.

views. Finally, given a new scene which contains various visible objects can be identified. It also enables us to recreate, %N,

objects, a model matching is applied, and a best model. if from its features, a shape reasonably close to the original one. %'

any, is selected for each scene object. It should be noted The surface descriptions are much higher-level than pointwise or

'Tisreeachwa uporedbyth efns Avace esarh roecs edge descriptions, but not as high as volumetric descriptions. The

Agency under contract number F33615-87-C-1436, monitored by the Air sufcderitosaenvintormlerhngsnvewg

Force Wright Aeronautical Laboratories, Darpa Order No. 3119. angle than would be the case for volume descriptions. However, %. '"
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techniques for volume descriptions are not yet fully developed, 2.1 Extracting and describing surface patches

whereas our previous work allows us to have high-quality surface

descriptions. Given a complex surface, we wish to decompose it into simple

We assume that range data (i.e., 3-D positions) of the points surface patches. Our approach is to determine the boundaries '1
on the visible surface are available, for example, by the use of of the surfaces by computing local properties and then inferring

a laser range finder. It is also assumed that this data is dense, the patches from them. Similar ideas for segmentation have been
in the sense of being sampled on a certain grid and not just at used in [2,3]. In particular, we seek to find the following kinds of
discontinuities (as may be the case for uninterpreted edge-based boundaries:

stereo data). In the remainder of this paper, the terms scene, 1. jump boundaries where the surface undergoes a discon-
range data, and range image are interchangeably used. tinuity

There has been much work in the area of object description and
recognition, it is impossible for us to give a detailed survey here, 2. creases which correspond to surface orientation disconti-

good sources for survey are [1,6]. Some typical works are sum- nuities

marized below. We infer these boundaries from curvature properties of the sur-

* 3DPO [4] recognizes objects in a jumble, verifies them, and face. In particular, we use curvature zero-crossings and extrema [7].

then determines essential configurational information, such A jump boundary creates a zero-crossing of the curvature in a di-

as which ones are on top. The system only use cylindri- rection normal to that of the boundary; a crease causes a local

cal and straight edges to recognize objects, hence is rather extremum of the curvature at that point. Crease boundaries may
restricted in the shape of the objects. also create zero-crossings away from the location of the boundary

itself.

* ACRONYM [5] is a model-based image understanding sys- These features, when connected using contiguity, give us par-
tem. The user is responsible to provide complete descrip- tial boundaries for patches in which the surface should be seg-
tions of the models. Furthermore, the results shown are mented but not necessarily a complete segmentation. These par-
very limited in change of viewing directions. tial boundaries are then completed by simple extension [8]; we

* Faugeras and Hebert [9] developed a system to recognize have found this process to be satisfactory for a large number of

and locate rigid objects in 3-D space. In their system, rep- examples we have tested it on. The resulting regions are assumed

resentations should be in terms of linear primitives, such as to correspond to elementary surface patches. These regions could
points, lines, and planes. be segmented further, either based on the region shape or on the

results of surface fitting; we have not found it necessary to do so
@ Grimson and Lozano-P4rez [10,11] discusses how local mea- for the examples we have tried.

surements of 3-D positions and surface normals can be used The surface patches are approximated by a second order poly-
to identify and locate objects from among a set of unknown nomial in (z, y, z), whose coefficients are computed by a least-
objects. Only polyhedral objects are used in the testing. squares method. The details are given in [8]. Figure 1 illustrates

* Oshima [16,17] describes an approach to the recognition this early processing on a synthetic image for reasons of clarity,
of stacked objects with planar and curved surfaces. Only but the method has been applied with success on a large number

ofmtaed octlusions alowith planard surfaces Only of real scenes. Most researchers display range images by encodinglimited occlusion is allowed on planar surfaces, and no oc-

clusion is allowed for curved surfaces. depth by grey level, but this produces images with very poor dy-
namic range; in the rest of the paper, we present range images by

Most systems are highly model-dependent and restricted to the borrowing a technique from computer graphics: we assume that
class of models known to them. By using models, it is possible to the object is Lambertian, compute the normal to the surface in
work with low-level scene descriptions, but at a cost in flexibility a small (3x3) neighborhood, and generate a reflectance image in
and generality. We believe that our system is more general than which the intensity is inversely proportional to the angle between
those described as above. the light source and the surface normal. Figure l(a) shows the

The next section briefly explains how we go from a dense range shaded image representing three objects partially occluding each
map to a set of surface patches, then how these patches are fur- other, figure l(b) shows the curves obtained by our feature de-
ther organized into partial objects. Section 3 presents the match- tection process, figure 1(c) shows the regions bounded by the
ing algorithm which uses the descriptions given above, and shows previous curves, and figure l(d) shows the reconstructed shaded
how the results of matching may be used to refine the segmenta- scene, after each patch has been approximated by a quadratic
tion of the scene into objects. Section 4 presents the multi-view polynomial.
model-based recognition. Finally, section 5 summarizes our con-
tribution. 2.2 Object level descriptions

At the end of above process, we obtain a symbolic representation

of a scene as a graph whose nodes represent the patches and whose

links express geometric relationships between patches, making it
In the following, we describe two major steps of our description an appropriate level to use in a matching process. We found,
process: the first is the extraction and description of surface however, that it is possible to further group these patches into
patches, the second is the inference of objects from these patches. objects, or rather visible faces of objects, by reasoning on the type

V
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r Let Si and 5, be two surface patches sharing a common boundary-
, where k is the label associated with that boundary a Si

1. Si occludes Sj if his either a jump or a limb, and Si is
closer to the viewer than Sj (in a neighborhood arround
b1).

2. Si and Sj are connected ifk is a crease, convex or concave.
Furthermore, if k is a convex crease, then we can conclude
that both surface patches belong to the same object. If
k is a concave crease, then either they belong to the same

(a) Original scene (b) Features chosen for segmentation object, or they belong to two different objects touching each

other.

2.2.3 Inferring and describing objects ,s

2 The match primitives are composed of graphs and subgraphs. We
2 create a node for each surface patch, which contains the unary in-

formation about the surface patch such as the shape, orientation,

and location. Then for each pair of nodes that share a common
9 3boundary, we create a link between them. This link contains the

8 12 4 binary information between these two nodes such as the bound-

aries and the possibility that these two nodes (which represent
two surface patches) belong to the same object. Thus, at the

(c) Result of segmentaion (d) Result of reconstruction very beginning, we have a graph for each scene. Note that one
node contains one surface patch only, but one link may include

Figure 1: Segmentation and reconstruction multiple boundaries. In the following, the terms nodes, surface
patches, and surfaces are interchangeably used.

of connections between adjacent patches. This even higher level From the type of adjacency relationships described above, it is
of description facilitates the matching process. We now describe possible to generate hypotheses about objects. We do this by
the procedure used to obtain these objects. looking at each triplet (Si, Si, bk) in turn. Whenever k is a

2.2.1 Labeling boundaries convex crease, we directly conclude that Si and S, belong to the
same object. Such a strong conclusion, however, cannot be made

So far, we have classified the boundaries into two classes: jump about the other junction types. We have chosen to compute the
boundaries and creases. Once each patch is approximated by an possibility p that two patches belong to the same object. This
analytic function, it becomes possible to distinguish true jump number p, between 0 and 1, encodes our heuristic belief that
boundaries from limbs (also called axial contour generators [19]), two patches belong to the same object. The following are the
for which the normal to the surface becomes perpendicular to rules governing the way to assign and aggregate the connection
the viewing direction. This distinction is very important for vol- possibilities p:
une inference, and also for matching, as limbs are not intrinsic 1. If there exists a convex crease (+) between two surface
properties of an object, but depend on the viewing direction. patches, these two surface patches must belong to the same

We therefore end up with the following set of four labels: object, and p = 1, otherwise,

1. convex crease (-): It corresponds to a negative curvature 2. If there exists a concave crease (-) between two surface
extremum. patches, it is strongly believed that these two surface patches

2. concave crease (-): It corresponds to a positive curva- belong to the same object; however, it is also possible for .

ture extremum. the concave crease to be generated by two objects adjacent
to each other, p = 0.75, otherwise,

3. limb (L): It is a jump boundary at which the normal of 4-

one of its adjacent surface is perpendicular to the viewing 3. If there exists a limb (L) or a jump (J) between two surface
direction. patches, there is no direct clue indicating whether or not

they are from the same object. It may occur by either
4. jump (J): This is a depth discontinuity which is not a self occlusion of one object or mutual occlusion between 9

limb. objects. In this case, p is assigned a value between 0 and
0.5 inversely proportional to the distance between the nodes

2.2.2 Occlusion and connectivity (surface patches) around the limb or jump. If more than ,,

one limb or jump exists, the maximum value of p is chosen. .

Surfaces are only parts of solid objects. In a segmented scene, Note that we choose 0.5 as the maximum value for p, as %
the types of adjacency between two patches convey strong infor- opposed to the case of a concave crease, because we believe
mation regarding whether or not these two patches belong to the the latter gives a stronger clue.
same object. Based on our labels, the adjacency inforr-ation we Finally, those links with p less than some threshold (here we
can derive is that of occlusion or connectvsty choose 0.30) are removed, which means the two nodes are not
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Scene I Scene 2

Ordering Objects Uy Constraints

Ordered Limt

"*1 t tBinary ConstraintBea Fg -, ------------- -. ,
G r a p h e a r c hT r a n s fo m a t io n

Possible Match Constraints

(a) Inferred objects (b) Graphs -

Figure 2: Objects and graphs of a scene.
n

likely belonging to the same object. Thus, we obtain a parti- , .-y '

tion of the original graph into a set of subgraphs with no links A Unm . Y Split/Merge pUmatched Objects

between them, each subgraph representing one (partial) object. O ct

Figure 2(a) shows the objects inferred from the scene in figure 1 in n

which different objects are represented by different textures, and
Figure 2(b) shows the graph where circles represent the nodes Final Match %

whose numbers refer to the patch numbers shown in figure 1(c),
and lines represent links with a value corresponding to the con- Figure 3: Block diagram of the matching process.
nection possibility p. It should be noted here that the grouping
may not be perfect, thus merging or splitting of subgraphs may "

. prove necessary later, matched. Each graph is partitioned into the sets M = {M 1 ,..., Mn}
and S = {S1,... S,,} of subgraphs, each of them representing

ab a possible object. The matcing process consists of pairing each
3 Matching Symbolic Descriptions subgraph M of M with at most one subgraph S, of S. In order

to prune the tree to avoid searching for all possible pairs, for each
The system matches two scenes A and B at the inferred object subgraph Mi, we first order the set S according to the following ]
level. Each object consists of a set of grouped nodes (surface similarities in Mi to create the list (Si ,..., Si.):
patches) and links (relationships). The purpose of the matching 9 Number of nodes,

a process is to find correspondences of the objects between A and
B. At first, for each object a in A, the objects b in B are ordered. * Number of planar/curved nodes (surface patches),
Then for each a in A, the system selects b in B in turn until a @ The visible 3-D area of the largest node.
satisfactory correspondence is established. A best-first search is Then the pairs (M,, S1 ) are evaluated in the order of the list.
used to build the correspondences of objects using three types of If one such match, say (Ma, S) is "good enough", we do not

constraints. Since the object inference may not be perfect, mul- evaluate the remaining pairs (, S) for 1 > k. We therefore
tiple correspondences are allowed. Finally, objects are merged evaluate all pairs only in the event that there exists no good
and/or split to improve the correspondences. Figure 3 shows a match for Si.
brief block diagram of our matching method.

Our method is applicable when the difference between the view-
ing angles is restricted such that enough number of corresponding 3.2 Graph Searching

surface patches are visible in both scenes; however, this restric- We use a best-first graph search to build the correspondences. -
tion turns out to be quite loose, as for some objects (of which Even though the number of nodes is assumed to be Nelatively
we give examples later), the difference in viewing angle can be small, a blind search is still prohibitive, for example, it may re- %
as large as 600. We also assume that the descriptions are not quire as many as 10! tries for a graph with only 10 nodes. To
dominated by viewpoint dependent cor.pon~t- Our terhniq, e restrict the search space, we apply a unary constraint (or node-to-
also takes advantages of the fact that the graphs we match have node constraint) to each matching pair of nodes. If the constraint~a rather limited number of nodes (typically less than 30).' is not satisfied, the pairing of these two nodes is discarded, oth-

erwise, a measure based on the similarity and area of these two
3.1 Ordering Objects nodes is computed. The best-first search is then applied, starting '*0

from the pair with the highest measure. Here we use a two-stage %:Scenes may contain a lot of objects. Searching for each pair of process. In the first stage, the depth of the search is retricted to
troess tn thed firstbl stagendee thel dept ofo thesereinrtrctdvoe.

them to find possible correspondences would be too expensive. 4. Only part of the nodes (with the highest measures) in Al, and a.."In this paper, we use a heuristic method to order the objects to S are selected and matched. These nodes are referred to as ker-be matched, then select object pairs based on their heuristic val- nel nodes. Then in the second stage, remaining correspondences I

* siginificantly reduces searching time, are built around these kernel nodes. In both stages, the search .n
sigiifianty reuce serchig tme.starts by selecting a pair of unmatched nodes mn and s, using

Consider two scenes, represented by the graphs M and S, to be s,
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a

best-first search, where m is in M and s in Sj. Then for each Average principal curvatures c and a2 .
matched pair < rni, si >, a binary constraint (or link-to-link con- 

.pcK

straint) is checked against the pair < m, s >. If this is satisfied, - For planar surfaces: 1 = r2 = 0.
then the best transformation between the matched nodes in Mi - For other surfaces: Let 0 represent the orientation of
and Sj is computed. The error in the estimated transformation the surface, and V the projection of 0 on x-y-plane.

should be lower than a specified threshold, this process is refer- Let V2 be the vector on x-y-plane perpendicular to V1. %
enced as transformation constraint. It is important to note that Then , is the average curvature at every point of the
the constraint imposed by the transformation is extremely pow- surface patch along the direction of V, and a2 that of
erful and supersedes all the others, more heuristic ones. In fact, V2.
it even allows us to correctly identify correspondences ignored
previously because a patch was too small or mostly occluded. Hence r. and 1 2 reflect the flatness of the patch.

The matching process continues until the above constraints can . Estimated Ratio of Occlusion:
no longer be satisfied for unmatched nodes. That is, we cannot A surface patch P is said to be occluded by another surface
add any pair < m, a > consistent with the transformation com- patch Q if there exists a limb or jump c between P and Q
puted for all the pairs in the path from the root to the leaf. Then where the depth value of P around c is less that of Q (Note
at each leaf of the search tree, a match measure based on all the that the depth is encoded such that the higher the value,
matched pairs in the path to the leaf is computed. If it is good the closer is the point to the viewer). Let C denote the set
enough, the match is accepted and the search terminates, other- of boundaries of P that are occluded by other patches, and
wise, the search continues. If all candidates are evaluated without B the set of all the boundaries of P, then the estimated
success, then the match with the best measure is selected, ratio of occlusion of P is equal to the total length of C

It should be noted that in selecting a pair of unmatched nodes, divided by that of B.

we do not require them to be adjacent to any of the already * Centroid:
matched nodes or the kernel nodes. This significantly speeds up The centroid of a patch is equal to the average coordinates S
the search process as the better nodes are picked up first, even if of the visible surface points of this patch.
they are distant from the already matched nodes. "

In measuring the similarity of two nodes m and a in Mi and S, 
Our method differs from the one used in [171 in the following respectively, we first compute a normalized measure between 0 %
senses: and 1 of the difference of each of the following properties:

" We use different descriptions, most of them are viewer de- Ja - bl
pendent, for example, we use 3-D area instead of 2-D. P(a, b) = -)max(a, b) )

" We use transformation constraints. 1. D,,() = P(A,, A.), where A- and A, represent the 3-D

" We allow large occlusion on both planar and curved surfaces visible area of m and s, respectively.
while in f17] only limited occlusion is allowed on planar 2. D-,.(2) = P(Km, K.), where K represents the average cur-
surfaces, and no occlusion is allowed for curved surfaces. vature r.1.

The three constraints and the match measure are discussed in 3. D-.(3) = P( , a,), where a. represents the average cur-
detail below.

vature a2. -

3.2.1 Unary Constraints If any of the above measures is larger than 0.30, which represents

We first establish a node-to-node correspondence: To compare 30% difference, then the two nodes are considered not consistent,

two subgraphs, we compute a set of descriptors for each node otherwise, the similarity measure of the two nodes m and s is

(which is a surface patch) and define a metric to compare vari- defined by:

ations, we then evaluate each pair of nodes (m, s) according to Di. - 3i= tVD_,.(i) (2)
this metric. EL , wi
The descriptions are as follows: where wi represents the weight for each item D_,(i). In our

experiments, we chose w2 = 2, and w = "3 .
" Visible area

the 3-dimensional area that is visible to the viewer. Since the visible area is sensitive to occlusion, the threshold for
D-,(1) is allowed to be smaller than 0.3 + 0.7 x R where R is

" Orientation the maximum of the estimated ratio of occlusion of node m and

For planar surfaces: the direction of the normal.

- For cylindrical or conic surfaces: the direction of the 3atraxis. 3.2.2 Binary (link-to-link) constraints
axis.

- For other surfaces: the direction of the least curva- Everytime a pair P, Q of nodes is selected, it is compared to A

tur, which is defined as follows: Let ce(p) denote the all the already matched pairs using a binary constraint. If this
curvature of a point p in direction 0, and let ic - constraint is not satisfied, the chosen pair is discarded. A A

Eipp I1,(p)1, where P is the patch. Then the orien- The following information is computed for each pair of nodes P
tation is chosen as the direction 0 for which K# is the The fo
smallest. That is, we choose the direction along which and Q:M%
the patch ;s the least curved. * The type of adjacency: The adjacency between P and Q
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can be any combination or none of the following-. If these four consistency conditions are fulfilled, we say that '

-P is occluded by Q at a jump or a limb, < mi, si > and < mj, sj > are mutually consistent. This -

Q isoccudedby at jup ora lmbonly happens, however, when no abrupt changes occur asaresult of a difference in viewing angle. To take into account

- P and Q are connected by a convex crease, such changes, we define the fifth condition: ',
i -P and Q are connected by a concave crease. 5. Enclosure: To determine whether a surface patch P is '

" The (3-D) length of the boundaries connecting them. (partially) enclosed in 2-D by another surface patch Q, wei''

start from the center point C7 = (z, y) of P, where z and y
" The distance between centroids, are the first two coordinates of the centroid of P, and search

" Th anle etwen te oienatins.outwardly in 8 directions, each 45 ° apart, if 6 or more out
In thsecond ste the owinttonssce r hce o of the 8 searches encounter any point in surface Q, we say P

v I ths scon ste, te flloing onsstecie arechekedforis enclosed by Q. With this definition, we accept two pairs

each matched pair < - , si > and < mj, sj >: even if they fail any of the consistency conditions above

1. Connection consistency- except for condition 1, as long as mi encloses (is enclosed
Let 11 and 12 represent the links between mN and rnj and by) mj and si encloses (is enclosed by) si.

between si and ij, respectively. Then the types (L~e., limb, It should be noted that the above criteria are not perfect, espe-
jump, convex, or concave) of 11 and 12, denoted as ti and cially when parts of the objects are occluded and mostly serve to
t2, respectively, are said to be compatible if and only if one prune the search tree. Thus it is necessary to use the transfor-
of the following satisfies: mation of the matched objects to further verify the match.

& ti is equal to t2, or
9 one of them is a jump and the other one is a convex 3.2.3 Transformation constraints

cree (hneo iwpin arnfomoeit Computing the geometric transformation between matched ob-
the oher)jects not only tells how to bring matched objects in correspon-

@ either one or both of them is NULL (the nodes are dence, but also helps to verify the matching process. If the error
not adijacent, this is possible especially when shadows in the transformation for the current partial match is too large,

occur)the match should be abandoned.

Note that 11 and 12 may have multiple types, in this case, Most of the researchers use iterative methods to compute the
only major types (the boundary curves of this type are transformation between objects [9,12]. These methods suffer
longer than a specified threshold) are considered. from two problems: they may need a lof of iterations before sat-
: isfactory results can be obtained; furthermore, the convergence

2. Direction consistency: may not be guaranteed unless a good initial guess is available;
Let 01 and 02 denote the angles between the orientation of however, how to compute the good initial guess is usually un-

",< rN ,mj > and < si, aj >, and let 0 = 101 - 02 1, then the known [121.
~pair < rni, s" :> and < mj, sj > is said to be consistent in

direction if and only if 0 is less than a fixed threshold 0Otl. In this paper, a non-iterative method is introduced, in which the
Here we choose Ot.1 = 25 ° .  axis of the r( -ion is first computed using the orientation of the
: matched nodes, then the angle of the rotation is obtained using

3. Distance consistency: a two-level search. Finally, the translation is computed from the
Let L, and L2 denote the distance between the centroid of centroids of matched nodes, using a least-square method. The

inertia of rn and mj, and si and sj, respectively. Let details of the transformation computation is given later.

ILI - L21After the transformation of a match is computed, it can be used%
" L =- [ -L (3) to refine the match. Since the link-to-link constraint is not per-

max(L, L) fect, some corresponding nodes may not have fullflled the con-
! then the pairs < m, si > and < rnj, sj > are said to be con- dition imposed and may therefore have been rejected. Using the

sis entin i s an c if an on y i L s essth a a thr sh o d , tran sform ation for the ma tch allow s us to rectify this situation. P,
?Here we choose the threshold as 0.30. Let A and B be two matched objects and T the transformation

..'4. 3D Geometry consistency: from A to B, then for each unmatched nodes a in A, let a' be the #

" For all the matched pairs < Ink, Sk > other than < mi, si > node a transformed by T, if there exists a similar node (satisfying -

and < mj, sj >, let Uij, Vj, Uih Vi represent the vector the node-to-node constraint) 6 in B such that

connecting the centroid of YN to that of mj, si to sj, mi * b is the closest to a' , which means that the distance between
to mk, and si to sh, respectively. Let 01 and 02 denote the centroid of a' and b, denoted as D(a', b), is smaller than

Sthe angle between Uij and Ui, and between Vj and Vi, that of a' and any other unmatched nodes in B.

repetvey An e• a' and 6 are close enough, which means that if D(a', b) is %

0= 101 - 021 (4) smaller than the minimum of the width (the distance from .

Thei. the three pairs < 7N, si >, < mj, si >, and < Ink, Sk > the centroid to the closest boundary point) of a and b. %

are said to be mutually consistent in geometry if and only then the correspondence between a and b is added to the match.
r if 0 is less than a threshold. Here we choose the threshold

tob 2* 3.2.4 Match measure
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Axis of Revolution plane that contains k). The same reasoning can be applied to all S.

L2 J k the other < P, Qi > pairs. Thus to find the axis k, we only have
to find all the planes Li, then k is at their intersections. In our
implementation, we find all the intersections ki1 of each two pairs

LI Li and L6 , then for each ki1 we compute the sum of the angle
between all other kij, the one with the least sum is our choice of N,
axis k.

0 The angle 0 is found as follows. Let 0(a, b) denote the angle

a Q2 between vector a and b. Given a rotation 0, for each matched pair
< m4, Si >, O(R(O)P,Qi) is computed where R(O)P, represent

pQ I P2k--1 the vector of Pi after rotating an angle 0. Then the best 0 is
found by minimizing the following equation:

1 E )(R(0)Pi, Qi) (8)

Figure 4: Computing transformations. E, = k _(
Z

At the end of each path of the search tree, a match measure H After the rotation matrix R is computed, the translation T can

is computed for the current matched nodes in the path. This be obtained easily. Let < Ei, Ci > denote the centroids of each

measure is then propagated upwards and the match with the matched pair < mi, si > and C = R(6)Ei. Then the translation %

highest H is selected. T is as follows:

LetT= {< m,s > Im E M,s E S} represent the node pairs of (9)
one possible match between objects M and S. Let E represents
the transformation error of T, then for each pair < m, s > iu The rotation error E, and translation error Et is then defined as

fo rnfrainerro , hnfrec ar<MS>i l los
T, let A_,, and D_,, represent the minimum 3-D area and the follows: E
measure of the unary constraints of m and s, respectively. Then E 0 = nE9  (10)
the match measure H for T is computed as follows: 1 kz"-C"Et ICi -C i - y  (I)

E (5) The transformation error E is given by: Ct

3.3 Computing the transformation E = aE, + bet (12) 6

The rigid transformation between objects can be represented by where a and 6 are two pre-selected normalization factors. Here
a 4 x 4 matrix as follows: we choose a = 1/360 when E, is represented by degrees, and

b = 1/M where M represents the size of the longest border of
R(33) T(3 )) the scene.

O(txS) 1 (6) A simple example illustrates the accuracy of our transformation

where R represents the rotation and T the translation, respec- computation. Figure 5(a) shows two views of an object. The
tively. A rotation matrix can be represented by a rotation angle range images are obtained from an active range finding system

0 about a unit vector k located at the origin. Let k.', ky, and k, built in our group [15]. The object is placed on a rotary table,
represent the three components of axis k, then R can e com- and a first (left) view is acquired, the table is then rotated by

puted as follows [18]: precisely 250, and a second (right) view is aquired. Figure 5(b) N

shows the boundaries of the object in both views, Figure 5(c)
kkv + c kIkcv - kzs kktv + kcs " shows the boundaries of the right view after correction for the

R(k, 0) = Vckcv + k,s kkt, + c kIkcv - ks) (7) 250 rotation, and finally Figure 5(d) shows the boundaries of the
kIkv - k.s Ikkv + ks kIkcv + c right view after transformed by the computed transformation (the

rotation angle is found to be 24'). The rotation error E. and the
where s = sinG, c = cos 6, and v = 1 - c. translation error Et in this example are 2.5' and 4.0, respectively.

To find the axis k, the orientation vectors for each matched node The image size is 237 x 190 and 266 x 193, respectively. Thus

pairs are first retrieved. Let < mi, si >, i = 1,..., N be the the transformation error E is

matched node pairs between two objects A and B where m i E A, 2.5 4.0
si E B, and N is the number of matched node pairs, respectively. 360 190 6•
Let < Pi, Qi > denote the orientation vectors of the matched
node pair < mi, si >, as shown in Figure 4 for i = 1, 2, where It should be noted that there are many sources which create error

both orientation vectors have been brought to the origin 0. As- in our data, and contribute to the error in the transformation. .,,-

surning the rotated angle 0 = 2a as indicated in Figure 4, it is One of the major sources is the inaccuracy of the calibration of
easy to show that the axis of revolution k for P and QI must lie the range finding system as a whole. -
on the plane LI that equally spaced from P and Q'. In other We have developed a method to evaluate the goodness of our
words, the angle between P and its projection on L, is equal to transformation: For each matched pair of objects A and B, the
that between Q, and L1 , and this angle is equal to a (unless P transformation T is computed. Then object A is transformed by
and Q, coincide at k, in this case, however, L1 is an arbitrary T and for each node a in A, we compute the percentage of over- t
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(a) Original Images

(a) Chsoge the eons po od tilt.

(b) Boumdaries

(b) Chang. th - -t. A.

(c) The correct transform (d) The computed transform

Figure 5: The transformation computation of two views.

lap R(a, b) between a after transformation 0.0ote as. a')an

the corresponding matched node b in B. This overlap is defined
as the amount of common 2-D area between a' and 6, divided by
the maximum 2-D area of a' and b. In the example we show here, -4 "
the transformation error is quite comparable to the calibration . . " t "0
error. Figure 6 illustrates the distribution of R when we change
the pan and tilt angles of the axis k and the rotation angle 0 from." - n,

their com puted values. Figure 6(a) shows the 3-D plot of the dis- - .. ..... .... ..0 .0. ...0 .. ... ...00 -
tribution R with respective to the pan and tilt while the rotation
angle is fixed at the computed value. Figure 6(b), (c), and (d) (C) Choo. oh. sl tilt -gl. B.
show the distribution of R with respective to the pan, tilt, and
the rotation angle while the other two are fixed at the computed 1 - : _ ! i '
values, respectively. The values on the x-axes of Figure 6(b), (c),
and (d) show the amount of change from the computed value. As
we see from these figures, the best parameters according to our 0..7 - I
measure are very close to the computed ones.S Ii C

3.4 Some results 0. % i'

After the best match between two objects M and S is obtained, I
an evaluation function is applied to compute the "goodness" of
the match. A match is considered good enough if at least 70% '

of the nodes are matched for both objects, and their total 3-D
area exceeds 80% of that of the objects. Otherwise, we reject the
match between M and S. (d) Ch. og th. "'ioo sgl, %

Figure 7 shows the result of matching between the two synthetic Figure 6: Statistics on transformation computation. ,
images where different textures represent individual objects and
corresponding numbers indicate watched surface patches. objects are touching, it is very possible that we consider them as 4

one object instead of two. One example is shown in Figure 8

3.5 Split Objects where 8(a) shows two views of a table and a chair, 8(b) shows
their segmentation with the surface number for each patch. The

As we have mentioned before, the object inference step may not table and the chair in the left scene are actually touching each
have producel perfect results: in some cases, especially when two other, i.e., surface 6 is touching surfaces 4 and 7 (and the small
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(a) Original images (a) Original images

3 3

1 3 4 3 1 7
(b) The match (b) Segmentation

Figure 7: Match between two synthetic images.

surface 12), the object inference gives us a unique object, as /
shown in Figure 8(c), which is the graph of the left scene, where
the numbers on the nodes represent the corresponding surface
numbers. Figure 8(d) shows two possible matches of these two
scenes. Without further processing, we would have to infer that
there is only one object in the left scene and we have to reject
one of the matches because two objects in the right scene can not
simultaneously match the same object in the left scene.

However, by examining the graphs and the matches, it is possible
to split the two objects in the left scene. First of all, from the
graph, we know that the only way to separate two objects is
to cut the links between nodes (surfaces) 6-4, 6-7, and either
6-12 or 12-4, since all other links except 4-3 have a probability _

1.0 which means they are not separable, and cutting 4-3 does
not separate the object, thus cutting links 6-4, 6-7, 6-12, and
12-4 results in two major objects composed of surfaces 1, 2, 6,.
9, and surfaces 3, 4, 5, 7, 8, 10, 11, respectively (surface 12 is
too small and can be ignored). Second, by looking at the two (.I,
possible matches we notice that the two matched surface sets on
the left scene (surfaces l and 2 in the first match, 3, 4, 7, and
8 in the second) are disjoint, and they are contained in the first
and second splitted objects, respectively. Thus it gives us a very _ _ _ _

strong clue that the split is reasonable.

From the above reasoning, we have derived a general rule to .
split objects, the idea being that we first split objects as much
as possible, then reconnect those pieces already belonging to a
certain match.

1. Find all possible matches, then independently for each of
the two scenes: 0

2. Find all the matched surface (node) sets M.

3. Split the object(s) by removing all the links with probabil- (d) Two possible matches before splitting
ity less than 1.0, i.e., split them as much as possible, let S F 8 c e ndenote te split bjects.Figure 8: Match between furniture..,- -

denote the split objects.

4. For each pair of si and sj in S, if there exists a matched surfaces that are already being recognized as belonging to
node set m4 in M that contains some surfaces in s, and some o b
surfaces in as, reconnect si and s3 , this means si and sj are one object.
not separable, i.e., we do not want to separate matched The idea in the last rule can be explained in Figure 8(e) which %
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(a) Original images

6 -6

(e) Graph of the nght scene

=4 (b) Segmentation

(f) Final match
[ (c) object inference

Figure 8: Match between furniture (cont'd).

shows the graph of the right scene. We do want to split the left

scene by cutting the links 6-12 (or 12-4), 6-4, and 6-7; however, we oo
don't want to cut the right scene at links 3-4 and 7-4 to separate 000
the already matched surfaces 3, 4, 5, and 6. By the third rule 00.

above we temporarily cut the links 3-4 and 7-4 in the right scene, 0 0

but we find them back by the last rule. Figure 8(f) shows the l5

final (correct) match.

3.6 Merge Objects_

Due to occlusions, shadows, or special view points, objects may 000 %

appear as separate pieces in range images. One example is shown 00.
in Figure 9 where 9(a) shows a telephone set viewed from two
different angles and 9(b) shows the segmentation. Note that the
earpiece (nodes 5 and 8 in the left scene and nodes 7, 8, and 9
in the right scene) and the handle (nodes 4 and 6, respectively)
are completely disjoint in both views, furthermore, the speaker ( [77 :
(node 5) and the handle (node 6) in the right view are con-
nected by a very large jump, therefore the object inference step 000

failed to infer them as parts of the same object. The results of 00
the object inference step are shown in Figure 9(c) where differ-

ent textures represent different objects. Figure 9(d) shows three _ _ _

possible matches based on the objects found so far.

To refine the correspondence, a merging technique is implemented (d) Three possible matches before merging

which brings t jgether separate pieces that actually belong to the

same objects. The idea is that by merging two sets of nodes M1  Figure 9: Match between telephones.

and M 2 in the first scene to the two sets of nodes S1 and S2 in the
second scene, not only should the similarity constraint (or node-
to-node) between corresponding matched nodes in M = M1 U M 2

and S = S1 U S2 be satisfied, but the rigidity constraint (or link- al (correct) matches, including the match between the bodyset

to-link) and the transformation constraint between each pair of of the phone, which is the same as before merging.
matched nodes should also be satisfied. Figure 9(e) shows the fi-
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(a) model 'carOl, (b) model "car02"

Figure 9: Match between telephones (cont'd).

4 Object Recognition
(c) model 'car03' (d) model "caO4"

Recognizing objects is one of the major application in computer Figure 10: Four views of the model car.

vision. In general, it requires two steps: building models and
recognizing scenes. We think that a good recognition system
should provide the following:

" It should automatically build object models.

t The descriptions used for models and for scenes of unknown
objects should be compatible, or at least it should be easy
to go from one to the other.

" The search should be efficient. (a) model "chaixO1 (b) model chair0?

In this paper, we develope a recognition system, using the de-
scription and matching techniques mentioned before. The system
automatically builds multi-view models and recognizes them in
scenes of unknown objects.

4.1 Building models

In this paper, each object model consists of several views (6 to 8). (c) model "chair03" (d) model 'chair4

These views are taken so that most of the significant surfaces of m

the model object will be contained in at least one of these views. Figure 11: Four views of the model chair.

Range images are generated for each of these views. Each image
is processed and described independently and finally stored as
part of the model. Several things should be noted:

" It would be ideal if one complete description instead of mul- tages:
tiple views were available for each model. For example, a * Each view can be processed and described independently,
description similar to boundary representation in computer
graphics [201 may be a good choice; however, generating * The description of the model views is compatible with that
such a description is very difficult from range images. Fur- of scene objects.
thermore, since scene objects are represented using visible In this paper, the following objects were chosen to build the mod-
surface information only, there would be inconsistency be- els: V
tween this representation and the one used for models, thus
a translation process would be necessary before recognition 1. A toy car: which contains a lot of curved surfaces, as shown

B could be attemped. in Figure 10.

* Using more views would reduce the possibility of missing 2. A chair: whose bottom view is very complicated, as shown

significant model surfaces, for example, 60 views are used in Figure 11.

in [14] for the model of a telescope; however, this would 3. A telephone: which consists of many tiny buttons that
generate an enormous search space during the recognition makes segmentation difficult, as shown in Figure 12.tha

process. In our implementation, missing one or two signif-

icant surfaces should not affect the recognition result too 4. A table: which contains as few as two surfaces viewed from
much. some particular angle that would introduce ambiguities in

The multiple-view models used here have the following advan- the matching, as shown in Figure 13. l
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0

M
(a) model 'phone0l' (b) model 'phoneO2"

M atched Nodes

o Unmatched Nodes

Figure 14: Merge objects.

(c) model "phone03" (d) model "phoneO4

Figure 12: Four views of the model telephone.

Shadowa
A

;Laser 
0C

(a) model 'table0l3 (b) model 'table0=" A

Rotary Table
Camera A

Figure IS: Shadow problems of the rotary table

discarded, and the search is terminated. The scene object is
recognized as the model object which contains the matched
view. Otherwise, the ratio of the nodes (N) and area (A)
are stored, and the second view is matched.

(c) model 'table3* (d) model a table At the end of Step 2, the view with largest N +A is selected

Figure 13: Four views of the model table, as the matched view. However, if N + A is less than 1, the
match is discarded.

4.2 Recognition 3. Step 3:
Th mtccIn this step, those unmatched objects are splt or megcd

Th m atchg aoithm mderiews i eorderbsen therrevoustheinnumbdaccording to their number of nodes. 
here to recognize scene objects. There are three steps in the

recogntion rocess e Ifthe number of nodes is large (more than theavrg
number of nodes of all the models), the object is split,

1. Step 1: each split object is rematched using step 1 and 2.
For each object, model views are ordered based on their eIthnubrof nodes for the unmatched object is
similarities to the scene object, as described in section 3.1, small, then this object is merged to one of its adja-
then at most 5 views are selected. cent matched objects. Each of the adjacent matched

2. Step 2: objects is selected one at a time. Let 0 and Q rep-
Graph searching is applied to find the best match between resent the unmatched scene object and the selected
the scene object and the preferred view. The match is adjacent matched object, respectively, and let M de-
considered "good enough" if: note the matched model view for Q. At first, Q and

0 are merged into a new object P, as shown in Fig-
(a) At least 70% of the s.ene nodes or model nodes are ure 14. Then P is matched against M without break-

matched, ing the originally matched correspondences between

(b) The total 3-D area of the matched nodes exceeds 80% Q and M. If a new match can be found between the
of that of the total nodes in the scene object and the nodes of 0 and unmatched nodes of M, and if the new
model. match is at least as good as the original one, then the

match result is updated, i.e., Q and 0 are merged and
If the match is good enough, the rest of the model views are the merged object P is considered to match M.
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a .

M~odel: phorne91
AMcde/: car~l

Figure 18: First swene. ,

Moet: Chatrol M46del.. czblej01

Figure 18: (a) The matched model views for the first scene.

Figure 17: Second scene. %

We have tested our method on two complex scenes shown in Fig- k
ure 16 and 17. These scenes were obtained by first scanning eachobject in an arbitrary position and orientation, then generating m
(synthetically) the scene as it would have appeared if we had .V-__
scanned it. This is necessary because of the technical difficulty Figure 18: (b) The matched objects of the first waene.
in actually scanning the scene using a rotary table, as illustrated ..%-
in Figure 15, which shows an object (0) surrounded by four other
objects (A, B, C, and D) which are taller than the object 0. As -Object M odel I Expanded Nodes ]Max. Dept-h ]Max. Width [Decisio P
the rotary table rotates, either the laser beam or the camera Is The phone phoneol 20 to 4 ... Matched "'[
blocked by these four objects most of the time. This creates a lot --hair03 [SInored
of shadows that makes the sutrface of object 0 almost completely phone02 Ignore

cheer0U Ignored %fmissing. In order to scan these objects without casting too much table02 Ignored .
shadow, we have to scan them individually. The car chi0 7 3 3 : lami e,

Iao 8 4 $ { MatchedAs we may see from Figure 16 and 17 that these scenes contain atbe2 IgnoredIlot of occlusion and missing surface patches. The recognition re_ The cbeir ] hair0t 7 4 3 "'[Matched ]
suits are shown in Figure 18 and 19 where (a) shows the matched The table I.table~l 1 2 2 1 1 .. Mat-ched I

model views and (b) shows the matched objects. Corresponding
textures represent corresponding objects and numbers matchedTbe T saitc osen 1.
nodes.,

T ables I an d 2 list th e statistics of the recogn ition . T h e item s1 . M t h d T e ob ct a d h e m el v w is on d r d
ar nerrtd sfllw:matched (good enough in step 2). if this happens, the._

" Object: The object in the scene. remaining selected model views are ignored.

" Model: The selected model views in Step 1. The views are 2. Ignored The view is ignored because a 'match' has
sorte,, in the order of selection. been found.

" Nodes Ezpanded: The number of search nodes expanded in 3. Rejected The match is so poor that should be re-
the search tree. It is limited to 100. jected.

4. Plausible: The match between the object and the view .
9 Maz. Depth: The maximum depth of the search tree. is .fair, which means that it is not good enough to ig- ,

nore following selections, but not bad enough to be re-IMaz. Width: The maximum width of the search tree, it is jected. In this case, the match and its 'goodness' value '
limited to 5. (computed in Step 2) are kept for further comparison. ,

Is Decision: The final decision of the recognition: If a true 'match' (case 1) is found during the subse-

A:'
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Scene time
S(en- Description Recognition { Total

Scene 1 103 min. 15 min. 118 min.
Scene 2 134 min. 45 min. 179 min.

Table 3: Time for describing and recognizing the two scenes.

. In all the cases except the car in the second scene, the

Model: chatr03 correct match is found at the first or second selected views, ':y/: hest- . Model: ca~ble -'2 this proves that our heuristic indexing (Step 1) is powerfl."-

The car in the second scene takes longer because all four
model views are very similar.

'Whenever a correct view is selected, the number of ex-
panded nodes is very small. This proves our graph search-

ing is efficient. The largest one (100), which is the case
of the car in the second scene, is due to the many similar
patches which produce ambiguity.

J The objects are all segmented correctly, this proves our
object inference and splitting/merging method (Step 3) are

Model: car,04 Model: phoneO4 powerful.

It should be noted that if a 'good enough' match can not be
Figure 19: (a) The matched model viewe for the second scene, found during Step 2, further analysis may be necessary to find

the best match from the plausible matches. Several possibili-
ties include increasing the resolution, focusing on one part, or
changing viewing angles.

5 Conclusions

We have presented a matching technique and succesfully used it
to recognize scenes of objects. It can also be used in other vision
tasks such as acquisition of a complete 3-D object from various
view-points. Our technique is not model-specific in the sense that

the description and matching processes are not directly driven by
any model; however, it can be used to build models and recognize

Figure 19: (h) The watched object oi the second ene, objects. The main achievements of this system are summarized
as follows:

I Object Model L Expanded Nodes -Max. Depth [ Max. Width Decision It provides a complete system to describe and match 3-D
The chair chair03 34 5 Matched

cha ..04 Ignored objects,tbe2Ignored 4

phone0l " _ _ _ - Ignored " It is data-driven so that no a priori knowledge is necessary,
car0 " Igo!!ed

Te e Rejeted Moderately complex objects can be fully described and

table02 38 6 Matched matched,
IIchair03 - - -- ignored

faeO5 Ignored * Partially occluded objects can be fully described and matched,
Saj04 ,,*- ] IgnoredThe car carol 100 454 PlausibleT chaurol 130 3 3 Rejected Information about the 3-D objects can be directly retrieved

carO4 100 4 5 Matched from the description,
table02 "-- ignored

[ chair03 -.. Ignored a Objects can be inferred by grouping of surface information.
The phone 1 phone04 1 2 7 2 1 Matched

Table 2: The statistics for scene 2.

quent exploration, this plausible match is discarded,

otherwise, the plausible match with the largest value

is selected as the final match.

The images are processed on a Symbolics 3640, Table 3 shows

the approximate time spent for the two scenes.

Several conclusions can be drawn from the above statistics:
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SELF CALIBRATION OF MOTION AND STEREO VISION
FOR MOBILE ROBOT NAVIGATION%

'tiiiriig. I 0213

J 'o

ABSTRACT We begin with three ofbservations:

W~e report oti expeirimlenit ss w ih ii,oilit rotbot iiim ii ltnt vi- i

sum p~t't~~(I'trarlilltti~n sut Iit alitrti' aitiitr tl't't Humnans are able to extract ilearigin Ili inforiiitition froiii

BothI are rtl~ibtrait) Il ;Ibitt o r1't, %,IIl

alii hia ui 'Iiuj oi l t'';ur ita l
t ru't-i .\- it. mairtu Iir ( t im itecoj i d, I n 'irgi' ra i iooi s in it. - not o i iu-Fti 'inl ritq r pru ii

Thl par i con t-tit .Vl itu ir ga i ixt il r ittt il I- o ut bolit i'ti~ i fitr lw gmt' of t lt tit ittittrt'i tilt~iia r ttr ,i Ittaw'4'ti

bofild aI mttiletat otai. b~ r tbt ( ) ij t vut f ,oooIoi hit it'bl tos aiiii I-cri -. t'titi j iiiIi- ito itilthiaVtl i u h~ iSi 

Iit- el pa'i rllutel i i " tu-tiatrit, lecin ' is- t .~t rmit dr t it a ilitl il rt ar'

like~~~~~~~~~~~~~~~~~~~ seitrpo tti. A lrab--''tii i tIrtttltti' i ari thi 1%x2tt' a- i'pit' olituI h i t ithii~i' ho',ti t'tt 1 tilt-;

trade~~~~~~~~~~~~~~~~~~~~ cha 'tlhuthttt i i itt i sltlinv'(rtt Ivuuit I~j hoiiuriit tjbriiit til tithi- ;u'iiil t i e, - ilr -I - i

A cn o wx~ e d gms e n t'sri m 'I Ili, tititi.t t1-- i' - u i t'u rIfn - Irt tit ,- ~ jud emortj' ii' tti le ht (Iii ti i t fro m 'i ai i n,leitii v.rii s% tt i1

:krlii398t lrt-Sge t, L b~ a o %ttiI, m .ii IlIi 1,(;l , o o n e tn 1 im l n ld n l

S i p o i 1 t, ,- -- r I r i ,krit.5v i5 5I , r e m . o c .5 r, 4.- ( .i- -r i i ,1),-



-it It . % . -

11' lit- d it iii tili 1i1 titittMiOt, lr Itt - . 1r.

rIt i e I o I- l-I ri tu

Fot-warotio a sis ha' li some supsn iti nte

mr i i i oiti i If j- t a i iieIt i rIt Ieiti r w itIit rittr li

it rielituiifi tii 1 I t- jttitrtt iII tIt rli iee li i li Iiec tIn It uIttjti

lit- Irt I- per Iitu-i -t Ii, rvtt I It - ~ r, to i oIta l a iatie vas on the1 r o It a V.AIi Ijtit i ISI (ri II

I t ii..rt~itttt it. it~tt t ii iit 'i'iCi tti Ill
t e ai d n iititer 4it it on hardwcolare d wh c l sup ort onely 16 hit

forziied~~~~~~~~~ ~~~~~~ la.ii lile the rao Bok 18) sas-hirpafri tl il , & It ut,- 6r-i ltl s itti 'i t)t' it tlt' ii tti- v v ii 'r

ant a oihari is mchtu asth C tt~iittitil ngne Th irtw can in tie-In h e oi t. in- -Ii i-ntI'i itI lit i revtt I

riubtit ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ,I ha.t-mprwta eyfrat-okrg(C)rhir, A. 1 ii it t tvi it it ti i 
t

~pm t ire -t i chiet- ti-vr. t he

'tatutiartI raieert itotn at ise to aIath thtt tI ae tilt heal.t re tt-ittt I in IJ- ,t iI itt he(-rc o tinI

0 ti I ttIuli t -I I .l , ~,Ili ~ rc sttlip ~ c la lifc

i , itiw a it !i - i ~ w- ia d sd 1 1- iv I.tr c e e t r , i, illite is' 'l-' il

.... , ) I llm lt f -th tIl, 111 -l ,th t;tltit I il iti, ~ il- n erfra e ti e in e %1,
p~rdI h~, 1 1-1 11- 1t~k;) ,WII, ., T ee rprte ak owadm tin399 0 ielaNalirpl

'I M ," III, d i l c a tm 411 s w A i- r -p ii* - ti, t a b tce a od n e t s n t e r b t d iin l ti



P

V.2 F i/, w, I,,fil 'I.i,,I~t'loo 1 2. FORW*ARD MOTION VISION

%ianiale indoor eiivirmiotiiet give rise, to itoage with stroiig In thk section we fir,( dlerive the equtatioi' of forward miotjoni

vertical edg'l We call make lisp of tlik fact in ulesigtinug )fir vision withiouit regard to senitvi to noke ;tid samiilg rr-r,.
alg liti'. e then de~cribe omie [tractical igotrithm litti oiverft irol,

T heti triot he tooiwi al Io-triiio t,r ith Iii mli.iligi t r, -,tft, lt-t oi n zw im,-r-

thl l. a'. ra %itb ilt po r l ku flldb I fw imago.ti i alI

Hnl Bac andi NI ii [iotr~ it jtit, cjirr iit el ntrimwii, i

w If titla I..i.:ri i 1) ctl r~t ;tfill). avii o it 1i1ii ' li

Fcnln tr-ti t, i i s. 1, iii ill- ai h ,i gi , tn tt

is F, i F r-t ---s I , Fo l. l I., F i, ari oratu fr i t i

Iii o 1.5 2'n~ lia ck r,~' SFi .~ ii: i ~ v i

Two amer, wre iiourted idvbv ide acin foward -p

aratd b ap rox mati A nch s. he amer s w re oi)-

prxi aelo alg e 'tefr arSieto .O raravi eo r

all wu 1 Ito a - 5' n i~a ig I Ifel Ifof ac cam ra.I t a.,s Ii I it, the i ll

cam ra -rt retice toa fedo iw o 6 n tii-

fi1. d*%,I e , I ipit h wa ra i .& I v m wl IIl-..



camera I

optical direction
axsof 49

motion
of camera p,

optical Poio / aPo.r

pixel coordinate /1center of view

plane

image

0 ,. -~P plane

------ ----- optical

center
plane

I git ~ ittt'ttitt~il ~ Il~~T~~ i~it~lcenter of expanxsion

tf tr a. i t 'I-- afit i tni ro It lzitlt;, orgtig p rt t r a iiiiiH I, (itfi'tftcit ..a r. - ot N ti 'itril l~i it ttlllf'f ti

2. 'i 22 ''I ,i i,, t' ... !p o it bt L ~ ' it I Itt 1Ii flt1tti~ ' ittt i f , f lt ii il it titt %% t It - it l6tr i, t'- rdil' t

\ ,il% . . f gu n - 1. t I it iew frm .f t ciim - a i -m i w ii lol - Ii ii~i.I 6I

401r

Opti al xis k o l' e so nt- h at fro m th e d ir cti ri o milio of lle tirrii _- nfm , o ,I an ;tid i o r-iiw tla k qj all '-5ill

came it. 'I'l+-ca m e it un erg ing iir t ait lal on ll t c n~ta t - im tt t drll ,-- o-r lk litl % o l,[ ikto oo%



e.

directionIi 1.
Of
motion
of camera - Sn pp. , %% ca n 'di aii rt I? anti I? ,tt is o%, i .1 i,-i' i inw..

Pandi fl. Then ill heeltitiate to timle to colikioi hlotldd lecrea~e

caer -v - ''/il we thn 
t
o. \%rt rig ouir estimate, as Itirict iris of lttlie

we11 t' hen 1 ge I (at

M lot I CE t I- l

- whence

- - - ~ imge fi(t0 )R( t, ) - (t, )R(to) + R(t1 )i(to W(tI - to) (4

oI'lPlane R ft) (t1 )

of liit iiarY thlen wre cat easily (given perfect IlleastirejielitI

r ofoptical estimuate Cl. and tLiertittrl coifipute the lttme tio ol)iiioti of tile

/ gcenter opticat ceter plant,
plane R~

.... 1hop~tlto .- _ i- i,' xactl% till nfcirtn i t.t aessao,%%ttit '

-~~ tIel caniera hat. been iijaligii'tI lit otrder to caliltrate our ter''o

- vbtieni in 'ectioti 1 'tI )fllis p~aper We Will needl 1ePIht e~tilates in .

a commnon coordlinate svstehi for the two camteras. Therefore w

really want z 1v where zis the comiponent of distance fromth

center of the camiera in the d irection of oot inn an(]

1icfi ,ll.' *A,* ce ti tr t oe f'tranM. ar i ~it 1, 11 1 itt vwti l.' tiit -, Ch in

di',tari,t t. a t'tJil J a, '-an he seen fromt figure 5.

Let Cv-(~ P e2. the dlistanice in p)ixel. alforig tile ititage

plaite froti te lietiter of view too lie center ''Iexpaliionl. the

referritiis to litotir, To

We can then observe that: 1%ojmia 2

r zi :

The lat te. i is the timie it will take for the o~ptical vec llant andi. itt' ilo''

t ictI cenittr plant, and t hie physical feat lire, who tt~ inuuS' is wi,

'tltr it' I.(7)

l~w co-jr~o-v (if for~tr nitim ;t~dv~, i %v N il, i~i~i ii,, t, onl kii ,% r-m pilio

to Ile "' ili t. %. 11 , ,I ll, v it r ifiic r i f l, 111 i e l . . % li h it o ,t, 4-q0 ;t %

t o i . Ill, p o~ lio of ,,lt 4%,, t t i int re- iii, t t~ jij i h l % w ll- fro



hield of view of the camrera as our ai piori knowledge (which is tmos? recent itixi'l,. II thle dlirectiori is riot clear then the trace cart
easily- gained by rotat ing the camrera a rough Is knownt amtouirt ). be abandoned as there is rio obvjou, depth iriformjatloll itt it.

Since timte to collision is precisely the right quantity to know for However, rmost edge traces have only one possible direction
obstacle aviodaace we don't need to try to corrpute the robot's even considering only the first row in which it appears. If CE
velocity r at all. In fact we don't even need to know how our is known then edges on the left niove leftwards. and edges on
mieasitre of passage of tirtie t relates to external units. All we the right tmove rightwards. Even when CE is not known, an a

need is a steady onl hoard clock and we cart do obstacle aviodanice priori knowledge of f and the rmaximriitm llettnissill range of it
visually. dleteriiits a strip within the irtage where it is possible that ('E
2.3 Tr'ock-iniyf/ ftuv na iight fall, arid] edge trares startig ouitsirde that strill have- thi'

The above analysis suggests the idea of detect ing itage featucies ovosdrcin

at-c! tracking therm over miany irmages. The kes hieuristic uised Iv thle above edge tracking tigorithti

We track edges. We simrplv convolve the iii age wit h a den - to hiantdle ic is- is iterlials newt Obivi ous at litrst glaitce. In atilt

tive of a Gaussian (the actual' mask is 1, 3. 5. 9, 14. 18. 20. 18. the miait ide~a is ito abtandoni ati edge trace "lieni conlditiotis p-i

11, 0, -11, -18, -20, -18, - 14, -9, -5, -3. -1) and then look compulicuated. (Chanuces are that the dil crlortiuc', will last oillt a

for local tmaximunm absolute values (Horn (1986)). We threshold fesw imiapesa it most and t it', trace cot ibe' ri-vCs t! iieI ilas a lbratnd

the edges based on their strength of convolution with the mask. niew tract' a less iticages later. .
We accept only edges which have a convolution value greater

thrant ')00l We do riot arrermpt sub-pixel lircalicanioti of edge, as 2. ( rtist (rnd , Illril

our robot shakes enough as it rolls foward to imipose at least

:1 pixel erroc -)tt tril of arty locah-izatioti noise due to dliscrete The atialisis of sectiott 2.1 assiumtes (Icc tirre arid perfe~ct un-a-

est iirat es. uiremreti of carius (traal itii's. Re al irtage serpliet cs oiffer front

Figure N(i a dlata set shoust edge traces fromt a run srwibh idigitizatiorn eff'ct, antI large souirce o'cf noise dfire to unrstabrle

th e mrobrile robo).t v' the, robot tmovei forraril. It is a 2-D hiilrv cairiera pllatformis. urrconistatit velocin c arid ciirccr rathecr thou -W

array %%htece each rita 5, a rlite rditienisirrnral imiage' arid tittie flosss straight line, tiritiori. We trust thetrefort' lit aill ou ir'ist.itii

losutissrrd. \As c-Inti s re- I Ibar kii %%lit airv~e tip- sis user ntiais iritages. '
dletecrtedl ;tinl(F 0s-l cci Fraie l-rli i (1 and' tih' conistat Toe'stitratr' the renter if expatisirr w, need itoI krirrs UI ail

velocits oft II.- robot tell is, liar (eachl cp, traie- is aI Fliperlrila. Iat tmirre than Oric place alonug anit erdge trare. Toi rlrcrr-as tw i

If tltr iitazes arc' ttk.'i siieuiri'rvs clors. toge.their I such is itt this effects rof' noise it is clearly best ti use' mtort' than uiir' irlt' trot-i.

Flataset l il is ver\ n p itjle icr track i'rlgs wsithiout litin hr refir Wks' tie ever'; edg e tracetI rml mwiurFIS rebut' our rs hnc c

it the iorigitnal grey levsei- iitities. (- 1

It ~iflii-ut n Itilerrut tio rrss n tir'arry rir ke'tQuati yl R is mneasured idirectly froti the edge plixel array.

tratck of' i lie di rr'ct inn andr selnicitv o f ani edlge track itt orider tci To estirrate R?. the eudge velocity. we- trarde off localization i ime nit
of our estirmate with accuracy of the estirriate through the choice .

ptreidict a -ii tall eiarchi sItcl,w,\ anid I liroi'- iont olI search 1itt tie ser- .

a trce .t Tiere, reirtwito ifair idi rarci'g sfor-i thlito,:it-cgeciii used 1' = 4. Wse applroximnate h? by the slope of a chorid betweeni
wi te i a- i thebg' livin h kf ian dg, trice ltr sith tlie I io two points on a hyperbolic trace V images ap~art. By Rolle's

tin ,kFlit altie the of ni- it Ill- ed, theorem sorte point on the hyperbola between those two points
tutu s kisic.At al tuu's hit'has exactly that slope. We arbitrarily choose the miiploinit itt

mtion rousIt het takentito aic-oiiiiit

\Vlc'i ht'cirictccp s io ktcs~i iifitltsiitti lc til- tite. A larger V redures the mragnritirde effe'cts of miii - on the N
WlwnIII, irvcton s nt ko%:na dfaut %mietic ill est itiat e blr increases our loicalizationt error. We see th l ~iar

element F s:fouidi-sat is ta ken to hei u rte Fitceeoii trw If is simiply the idistance traselleid lv the eidge- trace oser V tunte

If mtore r hu Onei edge is fourndl ther currn traci' is ahalnit'c. initerstls. 0 1

lit tire explerimtirss repurteid iii this papt'r wet t'stimteii VA! at
'Aheir tre dlirticur of mti itiFlt'ft ocr right ) is knoiswn sir

keep track of the edge velil-it v at ieachl sit'ep of'tIr i, tract.i' -Tlit- every pcai r of poi itts oin a t rare st'parat eid h% :;V s it'eps itt tittit'. antI

trace is p~rt'itedl to tios-c tire saine amoiunrrt at the net' step icr tiri toitttte(-uigeta itFI h 'rtrtrgI

plus or irirsis a smrall ainrioia of tmargini iii ordepr ito acrorrirclate rathIe r it ir. ontv Isotne cli siir is isecessar v Fur earls estiiateWo

noise in the imiage and edge velocity increases: - I pixel short of Of CE - . Otir estimiates over allI nitric antI all traces are their
prediction through -+3 pixels extra. The search prosceeds iii the avrgdtehr.W cose3 sohtRwilaehdrueo
direction oif irotion. and the first cidge erirunritereid is taken as the change significantly and render the estimate for CE nmore stable.

correct cidgi'. If rio etdge' is enicoiuntr-d siirin the ssitslcrs thn-ri A tmocre srijhisticarteid algritiri ucildi cstntitmc;tl% (.1 ... l,

rite irdgi' trait' i abandroired'. NO attittlitu is iraili- ic h IrsIt-it sti'Il si/c fur t hit iciiiliirriiii Fiursi -it itit d--, %cIccit s

a trissing edge, ini tie girth cult clittirtticial imtagt- andic t rs tic Otric (' har s-t eetnrcii~ it jsi,i ti icciti'iilit- iii'

looik iii ii- aprloprcriarte pilarce ini thi tnixi itiiagei. tic cillisici r ;Ikit dt-i i-rig' c it, ;ti a-% iut rl-- iisuiw2 1 . .. Fir

Then- urn- we r-n %s, in siih fir dlire'ctionr ,cI idg,- t1itrtiit ei l ti 1icr ? irs 111"ksc - %' 11 It'ci - r . r -ti -ci r u - - ci

i-alr lie lit-nt citw,il 'Thus each estimait relies crn Ircict points aloncg thre edge, trai, Ilciri

Altr ali's r,-iccrt -Furt rci'ha.' riri Iricsic t ii lir(19t87) hias suggested as itc'rative sclci'cii fir srthin for a Feat t

cii shlcli Fe u-n cutIt ciulnurittg 'It- poli i J lit- First urtic qurei' fit nitrig a ccruciflctt trart
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It is worth asin ho wel thi s n doe for copuin depth

nu.e5 o ppixetlsivioon (-rc asireuton(I) r fosdd6

Figure 6. iage strips averaged to a single scall tilte and~ ordlered li to the nearest integer. anti the edge velocitv est ittates are univ

tinte for 100 imiages front the left cantera differetnce approxitmat ions to ilvris at i ce. With realist v catiteta
paramteter, artd using V - I and S 4 we have experititials

found accitracY out syntthet ic edge arravs t it e ablout 2'

3. CALIBRATING STEREO

Recall that motion vision does not get good results close to the

direction of motion since estimates for R are necessarily small

Figure 7. ltiage strips. averaged to a sittgie callt lttte atnd ordleredi and therefore susceptible to noise problems. Also it is useless

lite fir too ittage, frotin tite right camtera. when the robot is still, or not moving in straight lines. Stereo
vision suffers froms none of these problents. Our stereo algorithms

matches ediges itt two one dimtensiottal iinagis. If all the cattiera
paramter r are k nown iii advance we cott 1(1then coinip t. tiept it.

Anr acoitrate iodel of' the caitera geotntrv is it offtticient le

1I~~~ cattse stereo is verv susceptible ito smrall cttira iniisaiignttri.-Irt

- -s-~ .,...Otte i.pjtrtaiit to this irohili is Io rolt; ailihtrati,-tt

cedire prittr to ruttnning rite- r,,l.I (..g. Ftttgi ra- andt "fI.~

_______ ________________---- -- _____ - test ptterni andl u'xatttiltng tit-,i-ies paitirii aiit tfliett,i -o~

Itemt. It is titiall% net-'csarv. to run the cirtii ii linriceiir.-

0fotre ever% run oi' tire ritit..ir btecaiuse di tieit;ttivl (tritl .,iii

1 tit h~~(Aler) tI rift ini t 1e re lativ i tisititti i of rIIt,-41 ,, i i n, 1th it.- rdt -

a runi. Lttntguie-Iliggiris ( I sitois Ititti I-- ric-- r alil totter,,i9

plaramtleters save a scaie [actor from a itngl, pair df iilugis. lit%

Figm- lt- dge lteced litivirt 7ever we also tneedi to know the plaramreters &f tI, l i oer ,s ri-itt k,

gin.i It. eh~esiti'erttt it titir _____tit rthe itlotiolt of' tihe ritlitt. as itt gertiral thle tatitera jiiiat-iii, i

inerhaniiralls drift reiative to rite, irist ptil frtii. I %%triir

P since. eiiiii correspontdi iripfills I,, a iiigii three pae l--i ri ifse rthe results f ipith foirwarild iii alg.-ri, tills , ii iljttt iur

tile liii tttl1) oliin sititild It, r-iing it% onei evi'r% )tl t\- camneras.

A~ least quar-t'lit i -th a litw i-tiot, toi averaginlg Il ii.- t- .3.1 The (Ilyotitltit

*ititigi'. W~e use t he saite -edge opieratir as. 1fir forcwarii nto ion ai, ;fil)]

* ~ ~~ )iit iur est it an's for rtI It. cliii re %in taii*iftr an iriag- the operator to each of rthe left anti right iliagi's.

Ii - St1 2 piriiir to tihe trust ric-iny iirii.--di iititigi. Martciting of edges in the two~ itruages is ac-comtplishied its-

Itt all ittir e:Iterirlilnts rui,)tititl litre it- liatt ii,e m . ueans of a dvhynatiti' progratiutuntg algitritlir sitmilar to that de-

this aigi)rir rniii tiririrstr of af~rlit re e,tluitted veloped by Ohta and Kanade ( 19815) for t wo dimrenisional irtiages

;it pixt-1, 21:1 ati, 271 in li-_ilri-s and
1 

'I r1110.is- ".Flt-i and by Serey anid Matthies ( 1987) for sinrgle scatiline imiages. ex-

dilfiatt )f tdge't~o irae art t f-io ari-ret. 1tir ii -Il tt1- rin~ii celit that the cost functions here arte diffetrenrt.

i-aiitirat ioitud. til titr nwill nuti. lit- corn ir, Woi TFhe dvlrnic trograniting ainturit hut sarcrth- for a init

pi~xel, ile st thiese estlimt- i o st I It -iih tnwilraii i- .k, %%-I tiiti cust path llt it) right acrts, fite ru-i ittiai's M ire iter'. is

siightl% tri the rigiht. swith t.- li-t "It" 4k-1- iSi thbittTit. a coist assocriated swith nuti.titg twit tigis. andl a cIt iisr it skipt,

the ratriera ttoiitll at tiit( iti-gnirittg if Iti.-- xliriwi rn somitethting else'.

Figures f; anti 7 showu rite- gre 5 lievet ont t4- ruit ticht lust lit,- -i- -(,ti i.t is at tutursut t t 21110i in Ii-i q),.rillt-Ill

edige ;rravs u-ere extractedl. riliirri-i itt this Inttir I-
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g.0

The matching cost is a larger niumbier leffhctixelv -) litilev.___

the signs of the gradients of the two edges are the samne (i.e.. optical

unless the grey levels of both edges go fromt dark to light orLA

vice versa). Otherwise the miatching cost is the sumt of squares

of differences of pixel grey levels on a small window around the/

edge (we used 7 pixels centered on the edge. in the experimenits motion motion

reported here). opit

.2 H -hat ii ,ds to bo, culihex tdd &-os
feature

]'here are it large numbtier of' paramieters- needed to ilescrilw ti( ...li............e. ......... .......

op~t ical vs~tetii tiet for stereo vision. Each of the twoicamiera, hit 4"

aI focal rat i.,. and e'achiIla, ix jioitiimial an, Irnot l iorial ilegre., .dI

firecilni relat ive to I t-i.'r,,lt . We are frIe~ ,, crili,rat'. fir 'b

of die, tarairieter'. weo canLi :;,;.rv )I, v oe u hi e~( r

ah-,trilethtli' heirl- 'k-fect11 are

'II e r 1li- c- r-Ii iitt, , ,te-ii Ii ay tIe, : -ax i , ),itit In i i it tn 11.di-
reiti ''i -I travel -f thle rfi..t. [lie YI-;xi- i- c, rtiictl attld Iii. .
axi- i- iierpotimlicuilar i,) the dlirectin If[ imotioni. d,

t- ittiie that ihe two. iatti.'rai have tie -atiti' f toal r Jt '

ir field &I view) Our forwarid noiim algorithlt ai:wi i II" ~.Ii / i"zo1

pi.,.., i aln if tlw' tarainieter andi we utgg-'tedl ;I imuple wy ;i%

I-) deterinte a rmiigh estimiate for it. Rdathier than re-lv filitl .- -- -- -- -- -

an . at lv.. w iclilirat e thle -te re()~ %,teiiaiitii !ti.. tro-iwti

NtwI-, ,ii'lr 1Ili t -- a t i ric c etre, iof' freed- mtt ;ill r-Ir Ii Figire 10. W hfeii there at,- twcita ..a Ole, hlao, ,.i. III I", .III.alIetI..f

fiwire 11) Itr I finitiia )I' -,ettttric (lfitit ie-. relative to the ,firecti,,it of mt.tim.i Thev have a *eparatiii 11 tper-

x Otir I alifhrari-ti a-,ini,~ the oave line epitratiwi of* IIIe pentificitlar to the direcltioif ntt.tiott ;ltif a iialigiiett ill the

cattiera', H it. thle x ilirectitin iv diltaii.iirectioii oftiotioti. Againi we are mtierevte1 Ii the f..rwardf itatice

y lit ge-neral ..ti. wouild assuute tlti, paraitet er to lie yitlklL to somie poinit.

it it ati v cay. oiir use of Itlie average o~f I li li ne. o.f grvey

level dItta in the cuirretit experimets, atiilouir initention .;(.l.,in, .iii /tT..

to) I,, cvlitidricail letises mean that larger ilie- of yj will lhiir.. 1ll .lm,iw a iw frioii alw ' it ter.,i. lair if' caitiwrt-

not effect thle t ereo meavitret iet s at all. IlIi'. iit,. iii iii' ii, ti...t i i it a I tiat it' i tie Iir -

There mia 'vlie siniall error., in mititling the( canmeras which I i'l -I' nit im.\ ;t-mIota lIt I a;imirai, Iave f.; ;I r;,i I-, f. lI I,,

lead to a non-zero zo. We show below that fur small .)l cal idixi' i lit .t ,I mioi-r;t 1, 1)% Fait.ll iilirint t lie

the effects are ttinimtal and cant he igncore..iietiti i, ii iith.rii aie; it.itilIiail

pitch A-gain the averaging o~f scatilinte, or the ise oif cvlittdricail i. Ii ;,,.alitl tmf i Ht t. Ii. itwa.;~i -il firidili ar ti- tlo-1.

leni~e' take., care of t hi paramtteter. ir,,t iii it t-lIwii m. i , i i ii itr i il -, I If if..,) .i.;tl

toil Otie wmtll expect this paranmeter to lie 'mtiall. Onte C .,.iter diii li liv.. it ,I mt iii.

til-Avitre tin liiii ofeidges ( ince I te ititag.- is really aI Ih it, ,is-urn. Ilit t ii. I I ho, lit. par.. t.tr, .. 5 .
verricill% a-rioui.. liginal ior .. iticallv. ittagil) to vsti- iir~. i kri'm ii to tiii..i .. \\v. will. I i. oi- til That it.- %it

mtie th fn iati et o' rol pr-v. ii. titi carn rar Wi wil to fit I t ixi.i ci i ~Ii' ar- r* .

im tw Fiil, camteri. .-at sitig froimi iflo- to. sil- Iii t statndard tliati, V th.- widith I [ I h, m m-,# itia at-. , 1-1it c.itifih:ir-I ti. -7tp1 i -

era cotulid easily drift nnecltaniciillv frot the ..renttationl if h. 1 in~.i-a -i lv.ti ttima .lc- i hed-i

the robot's wheels. (It certainily does oti our rob~ot,.) Our ['Iat Iire Ii iit Ii. ti) mii. -L- ;irt- o ino. 1w. It .i-t;u c- iti tixils -

c;lit ure.I,tuI si t ie st1 1o alIIIl itktr I wt Ii t w aige , rini acl frim I 1w - --tit r f -- u-io o .In1w I,-It ;owl rIi, t i--u' r- lw [.u ivi, Ik .%

'it is possifble to relax this assinntpti..ni bitt the initro'hictiot. of the i if i itie tC it, (Ii ti nc _-i f iigls i ii i tt die ti -l o fea o ii.

tiecessarv extra paratmeter Ii otir ,alibrati,tiu ii. seeiis, nto i ii nur'i jvii ii iitleiirc it . tii'i

mnake iItc calif)rat iolt levy vtafle. We do t.,it have a th.,.tetieal han.. F-igtire Ill Alimwv thfat is inia-stretl frooithle opticasl center of tfte

ftit rhii ru-.iarf. u, lv emnpirical left camera. The cn] utllher paramtiater we ciiildl coimiptute is r.
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the displaceinit of the feature perpendicular to the direction of bottom of equation (10) through by f cos l .3) we get
motion. We use ' in derv ing equations for but do not conlpltte A

it explicitlv in any of our experitents. Given an estimate off it - (11)
can easily bie recowr',d for u.e in obstacle avoidance, where A and [ are constants to he deterridned by calibration.

Consider the (uantities labelled It and 1) in the figure. They Suppose we have a collection of stereo images of features
both relate to the - distance of the fearture fron the left camera. with known distance z. i.e.. we have a collection of n triple,

can write ( l. .,,.,. For a given A arrdl 1'. we coihl write a- a rtr.r,

o.f cl r. .. s of fit f'o.r each t riple

b rI1 sinn (12 ,4,

where : is the distance of the feature in the direction of the This is both lihiuar in .\ and I atll a good'1 
ima.,ir, of 'rr-,r it,

optical axis of the left camera and x, is the feature's transverse the iitiag, plane..
distance front that axis. Now, because we are using perspective \\h,,r w, tiitt.' I Ire ,,1' sqt atr,..I' tii.;i-cr', 11 ,r a
projection we can write calilrat ii triple, w t irt

i dl ,, '/,t* '1 ,) I\ ( :,J~ _ ,_ I,)

Il f II-( I,: Il :i S

giviriga i al expression for 4' in terins of :l and so we can rewrite [ t\ Il" ' ' : 1-, "12 1

as
whfter' ;.]l Ithe msi i rat,ti er lr i rtl oal ti

- (t - 6 s :lcas o in ,) (!ni
f

wlriclh i, a linear vxpr.'"sir in :ll . \V,, can get a siriilar Iitrar '14a ('hir'tin P.,t'Yr/r
ex rs ion for inl terms .f :- (it involv,' I he c'lltsant ft l -I
air ! fhnur get a linear eqaiair l I relatinm :- a d .,. \Ve coll,ic triplh, lo ii-e ftr 'alibrating It, -t,.r,,, - ilt Iv is-

Ve car. do the atiro analy i, hr r agettim.z t -'c l -iirllati.- ing 6,rwarl mtii,ot analv i, thr rlr (e'tllrirt iii 7 7 t -,I,,t ,llth

r,it. liretir 'q ttintr relating : aid :2. S..lvitrg and sul)IiIliIIg esttirat- tor poritt', vii.iblh itt Itlt IIre it-it 'tillr. uld right
hack in eqIiati rn (') we ollair camera. For each pair (of imago, wt '' k Iw I. pix,,l c,dirdiralt

p :,, io) IoI f each p 'int for whic .'t welar,' a i lhpth ,'-i i ,'. V\t' r,. i ,i rl
stereo algorithi rr each flair of iriages awll I'r each trialbh it

wlenr, finds we check to see whether forward tlt ti.r delivered a depth
11 f1, cot ,r, .f il l 'i ll fi tf',o , 'ill I estimate for both the edge in the fl illlta,

, arid Oil, erlge' itl thIl

s i1, t, il o c,tr to right intage. If so. and if those est imthtes are close ( within : l)';
I, P - did . I /,,o inIof their average in our exleriments) we list' their averag' a' Ithe

fillc iho , I third eletent of a triple which inchlue, tire left andl right edge

1d .jti'll~ ' <,pixel coordinates.

it ink - , it(,, 1) ' f.,lt It ",, I). When a few tens of triples have been collected we pltg then

\i-' i w,' ha ' itt v'qtlatimti lr :. the (tpiitiit ii , w' h It , -'tio into the least squtares formulation to get estirttate, of A ail 1'.

pi t'. ill terrlll it" l alr l 1. t*, l lit i ti + we cl l ill asl i r'. We
wntI i. derive t calillrrai<.n p~roc'-Jlr+- r. id~ttifi thell.. . %l J5t+..v~fi I( til.1.: a'cp. rirrr it hr t'. stit.
paraiutlr't'r, itl thi via.r tin . W ,\' begii Ii', it itlg I i rat we call
sallIn igrrll re stoti1i' lt''nts.' inoe o l tire.t To test itIi' prec'eding algorithits we set t i,.ir rrbot All'n to

l the tine, of" , ard 'J ar e th l., ttan i .1. The r',itt os are rii ll itt a roxirrate'v straight line with larrz' objet (ii
tIer sid' rf its path. Figire, II and 12 ar' t It.' ,'ft and right full

fd, w hich I' eulation ( I) is less than half the do ntinig trit

f" in v. Since we also are assum ing that -rr is imutch sitaller then fra t e ca tt ra vi.w s t'r,,rt alhlirilxit li t hr trt ..f it' t It IN
B we will siniplv ignore tie 1L term. We can also ignore all but The caieras were clinected via Cables t. a Lisp Inachit.' atd

the f2 terni in u as the other three are each at least 20 thies an image was digitized every 1, 15 ofa second giving a stereo lpair

smaller. every 2/15 of a second. The robot was toving at approxitiately

Turnirig atten'tion to p w first t.s.'rv,. that (il d,) can be 1.5 feet per second. Thus the contribution to z0 (in figure 10)

arhit raril inall. antI that sitr A) call be large'r ti 0.17. due to robot ot ion is aplroxiitately 1.2 inche., which is small

'hus irie e'ithtr reit call dlritmlitnate bohft terts are importpant. cotmpared to our stereo baseline 13 of alplproxintatlY 8 incl's atr(l

T hie rel ' r e,'r airtirtg q ueti i is w hether ill the l'ft ha t! teri ju.tifiv.' oirr d iir.'gard of t in etu a t i n n (I 1.

i ' ' ('art ig nol re dtt ,t' a s it ik nte v e r m otire t h t I Il th e . ' fi. l 'i rf2 .. tral- a, I m r I. ' t h e fe ll an l ri g ht , ri- v lti rtl nl i -. i tf

V' chi , s' to igll.r.' it fo.r it x ill oir ivliri at in of' ,I calibra a,- , g ' f]tl ,,I Iro 1it I ,rlt -s rr i pair, I s4* l li iird l 't '- I t- L

tiin prorcedlure, bit liter w' r%, rcompare it, i lui , t i anint e'xcli'-uitstio s a llitl,' i, f,;mr.'- ; tll -" llrr'slnltll- ill ii t i'' I '. trtli

exlp ritteritaliv and rtio clitl tht it is insitiliicant . fr ill ti, t- , w ,r Ill' f . ri-iu.,I iiihrt, J ii'IP . Il, it Ih .,,.
V%%ith thesre applroiximti ons.>i, and dividing both the Ioll.,i i+q liia_,- tlIi tlll, h !tJ, I ,,,iI ll ,p andh,
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['igirt It i~ eff ffigi'tif ~frii airit lit hetitiiti ola 'tr~ii~li fgur I he igli ii.. 'fr',pr i li' t'. ritlit' iiI "cx,''h

line ~ ~ ~ ~ ~ ~ ~ ~ ~ . ..o .....h oo, t'liiiiifI u

lFigiire . 3ri eltt i mag t e (rgftal it ara h I heb giiit
1

a 1ri't Fgje1 h right iviragit tli'll Ii~t ;If Ill"t est Ilo

itelo i l o f filace t b ti'. hiii tuft~ ofti righ itiig'. i' triitlor7.1

ldsis tititt'tXjand ' o %% aIll" fromt'iie Owga icei unsu'priting thelt of th i rcd r ntetpfu o so h

caira- re- not Iagt I t o he ' lir '. I~t t'I jt Iit it'-.-l'i tart' rillil' tv' litatii'. le. t i tti f itr

'co teI the'- Wtre then~iiti toe tthei samei fiut tiaur' anditi seacre fortti' Ownit 20'r
re li ttilifi Ii kitiwi i1),e-'t li-1 It'i' 1w' od'_,t itmagtts laewhir.'g eq e cs F eh lo lafo f'

i'l i .li ~t ii'. f I tt' k it l t i ott I it' lt in aid If Itt if-c t.io 11 ii i'jli iit it itc'Ifi i.td
to ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t itil,, I iloto Iniai aii- itrl1; 4 Iiiti it~ %t1 1

teist c iittS.1 . 20.i t i. 1n if. t eut lorniat th tir fII,,,1,1i

aroo' veloct t t I 4111 feeriI t pe cit, L ['Iiguri' I o In st% w lt .1 11 Iii ritl ic i hil tt11 (ttil'r otl f i e ( iii:lt

It#-~~~~ ~ ~ ~ ~ ~ Aei ,, 1 x a~,i n iba ,-tT eI-mr -. I.tA ~ c hIon I, kI. ,- di,- it -r ill I - Ihl %%,".1 't e~ J4.
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/ r dip motion stereo r lzl) motion stereo %

63 1 ') 14 i6' F ~ i 3

525 551) 25 60 it 521 515 21 ill VI

169 197 28 5-1 filN .lf, 1 25 1,0 61

170 198 -28 62 ,5 1J2 517 25, t0 II1

507 532 25 to fi I 172 202 :ii 71 73

503 5:30 - 27 60 Ii.5 171 203 2'' f i
9  

70

17.1 204 -30 74 73 I P9 137 12 2, 28

175 205 30 63 7.1 17,; 112 II 2s 29

155 146 9 30 30 73 #is 7, 32 :12

7 : 73 4 32 32 s I 79 2 33 33

85 85 0 34 31 90 90 u1 36 3 1
9:3 96 3 36 :; It [ lfill 10, :1, 37

105 111 -6 36 38 9 4) 3T i 112 109

11 51 -40 115 115 135 III f; 4; :8

13 54 -41 122 123 .130 419 I Is 11,

426 435 -9 49 41

Figure 13. Display of tie stereo calibrailon aid results. Left two

columns are pixel coordinates of edges in the left and right images,

third colunin is their difference, fourth column is the average depth

estimate from the motion algorithmits running on tie left and right

image sequmences and tie fifth coluni is tie depth estimate produced

by the stereo system calibrated with this data.

A 1957.6881. F r 56.864 132. 1) 2.360905 0
-6,

r
I c lispt knownl tte est

an estimate of 0.1.669 feet per imiage step (within 0.3'7 of the

previous estilmiate) or robot velocity of 1.401 feet per second, and 194 216 -22 10.5 51i ..5

ahiot identical result, on the check with kitwi disioanes as -,-I :1347 33 I.5.5 
T  17.1

shown iu figure 11. 263 300 :37 19.1 IS Is. I
:31Yx 11 1 11 1f ",. 1', .1)

Th-e .xperimei' convinced its that (l ) is certainly sufli- .. .I . ...

cient. But is it tecessary? To check we tried calibrating with 173 1791 ii l.7 Is 7.1

the same data to a model of stereo that assunies the cameras are :36 3I 2N I 1., tx 12.7

perfectly aligned, i.e.. using a calibration equation of the form: 273 :10.5 :12 I 1j; 7 I I.(,

A 18-5 179 4, -.2 : 1

di - d2 Figuire II. I'll' first foiur ri,, . lh,m f:-ai r..- with ki,'. , i ditaI'.

The results were: (forth flim[liI ill feel. their dIepth ili't coh llitil)i I ii Il if' cilliIn/ti

A 1213.290:3. mit a i de i ered Ii tie calilrai t te r i l ht , ,riti ant F hF r dhpj i ht
Ini Feet (sixth c 'iFlh n) lk calthrating ll- [re ~ ,% /ra F,,hFu - iF

ott est hunt e '(fI 0.121 fee+,t her ittiage step) tor ro it eltihcit v- of 2.150 lie seco t ftr ro"s, the attoi nts are diiphs;d tfrFnF ttiages 20t

lalnmost a f(actir ,if 2 oIfl). and neaningl'-s results II known dit litt e utits later This titte the f, rth cFlimin F- ti' ipr,'liht l ditanF'

tiow. i. t, mltitaui itt 16. ('lea y this naive iodel is nit lllfici'ill . hased i lhe i ixth cohi iti al/iF/e and the 'j\1h coIlu lt iF F' F li llii hi

4. Conclusions

Iii thi i;tlr %.' h 1.+ , ,I+m ,i .t ratt I ttli ,'r ,,f . -l,,' t ,, f r / F li.Iip k no w n ttc est

s,.ar- I(t. o o aralv-i- anid tirvo iiitm 1)1 2FIf, 22 10. 7 , rFf .FI II.."

I hi' r,-,p . t - ,,f r%%;mrlr iFFiit ia v.- r' ir, i 't t 1 3 1 1317 33 1 . 2 15.3

,irFnttiral r;FiFl;trFI , t hkv imist , ' rk,.r in c imi liF iF r % 'ki- m tidFF 263 :(10 37 1'1.1 ')' Is

t 1
,,' r,,II- . ji- p l 1) o r %.' firsit r ', I t li ,,i I ' it i1.ir, 39 s 414 1; N.7, I'l .0 N

itre ii' t PI I I Ir i ti/ i k failt ir'' loI~t FFF i i I ii. I II IF1F'''t 'I -. . . . . .

17:1 179 f .7 18 7. I
whi'i I Fr' r;iF' I %%r,' l I wel ts ii ti itFF -I 11iFhFF -. Il36iii1S'

27:3 :105 :12 I 1.S 7' 1 .S
r,,h,,II ,h , . ,, , . 485 479 6 5.2 31 5.8

1)rjFulrti,
-  

r iI a itI r-F11ir- is;t aIl niuhiii i'r 'if II1. hit Ix'' I r,'i Figure 15. S oi ,e- for figure 1 bitt using a titFlnI more coilplex lereeo
- I, r t , i. , ' 

t  
n, - t ,, r 1,-l 11t i i i t ,,,r,lIT.tI - , , calibration i pr- edh r. There is alm,,- n-, ,if''r,'ii e in reils.
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AUTONOMOUS NAVIGATION IN CROSS-COUNTRY TERRAIN*

David M. Keirsey, David W. Payton, and J. Kenneth Rosenblatt
p.

Hughes Artificial Intelligence Center
Calabasas, CA. 91302

A large amount of recent progress has been made in the area of
ABSTRACT autonomous operation on roads (Wailace et. al. 1985) (Turk et.

al. 1987). However, autonomous operation in an unstructured
This paper describes further progress and experimentation with environment such as cross-country terrain presents a
an autonomous robotic vehicle in cross-country terrain, significantly different set of problems than road-following. In 0
Experiments on the Autonomous Land Vehicle in natural terrain road-following applications, knowledge and expectations of the
were performed. An overview of the software architecture used traversable surface simplify the otherwise difficult task of
for this achievement is discussed; descriptions of experiments processing video data to detect roads. Included among the
and details of planning techniques are presented. We describe perceptual expectations are surface continuity and fairly well
experiments where the vehicle avoided known and unknown constrained surface properties such as width, color, and slope.
obstacles in its path. In cross-country applications, there are no comparable structural

expectations, but advantages are gained through the use of
1. INTRODUCTION significantly different range-finding sensors. S
The first cross-country map and sensor-based autonomous This paper will first summarize our hierarchical system %
operation of a robotic vehicle in natural terrain was achieved in architecture for autonomous vehicle navigation, then present the
August 1987 (Daily et.al. 1987). Further experiments during latest planning methods used in our December experiments.
December 1987 demonstrated improved performance. The Lastly, the details of the experiments are described.
vehicle reliably avoided difficult obstacles such as bushes,
gullies, rock outcrops, and steep slopes as seen in Figure 1. 2. SOFTWARE ARCHITECTURE OVERVIEW
This success was attained by Hughes through a series of
experiments performed on the Autonomous Land Vehicle (ALV) The software system that was used in the experiments was a %
at the Martin Marietta Denver test site. This paper presents a subset of a hierarchical control system developed by Hughes
summary of experiments, the planning architecture and (Mitchell, Payton, Keirsey 1987) (Olin et. al. 1987). This ,p
techniques used in these experiments. A detailed discussion of system is designed to provide real-time vehicle control while
the perception part of the system is in a companion paper in maintaining the flexibility needed for operation in realistic
these proceedings (Daily, Harris, Reiser 1988). environments. The hierarchical structure of the system reflects

the need to segregate real-time planning processes from those
that must assimilate a great deal of data. The four levels defined
are shown in Figure 2. Higher levels in this hierarchy generate
plans on the basis of highly assimilated data, relying on the..
lower levels to exploit more immediate data in order to execute ,, ,.

these plans. A failure at one of the lower levels is signalled to,,
the next higher level, which then re-assesses the situation and
adjusts accordingly. At the highest level, the mission planner is
used to define mission goals and constraints. At this level, the
planner may interact extensively with human mission analysts to
best describe the requirements for a given scenario. The
mission module for the perception system is employed by the
mission planner to configure sensors and predict perception
system performance for various segments of the mission. The
resulting mission constraints are then passed down to the map- "
based planner. If, at any point during mission execution, the
map-based planner should indicate an inability to satisfy
mission constraints, the mission planner is invoked to re-assess
its initial constraints.

Figure 1. The ALV in Cross-Country Terrain The map-based planner uses digital maps to plan the best route ,
which satisfies the mission constraints. The world model for the Po
perception system is responsible for predicting the landmarks
needed to confirm the route and for marking map locations of
landmarks sighted during path execution. The resulting map-
based route plan is then translated into a symbolic form and 0
passed down to the local planner. Should the local planner be : ',.

This research was supported in part by the Defense Advanced unable to execute this route plan, the map-based planner may be
Projects Agency under contract DACA76-85-0017 invokc2 to replan the route.
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No single behavior and virtual sensor combination is ever
Perception Planner expected to be able to handle vehicle navigation problems in

general; but rather, many behaviors and virtual sensors are used
in conjunction, each designed to handle a specific sub-problem

Mwithin the overall range of navigation tasks. In order for these
specialized units to work properly, it is the responsibility of the
local planner to guarantee that the selected behaviors are
appropriate for the current environment. The majority of our
recent experimentation with the ALV was concerned with
evaluating the perception and planning systems at the level of
behaviors and virtual sensors.

3. PLANNING

Because the primary objective of the cross-country navigation
experiments was to test critical real-time perception and planning
interfaces, the planning system used in the experiments
consisted only of a map-based planner and a reflexive planner.
The map-based planner was used to provide a description of the
intended route to the reflexive planner. The reflexive planner
was used to steer the vehicle in response to perceptual data

Autonomous Vehicle received, and could be operated either with or without a route
plan for guidance.

Sensors Action
Subsystems 3.1 Map-based Planning

The map-based planner was used to decide the course that the
Figure 2 ALV Hierarchical Cor.rol System vehicle would follow. The start and goal locations were

specified by the user, and the planner used knowledge of the
terrain to generate a route which best satisfied mission
parameters. It then created a series of sub-goals along the path
which were used to guide the reflexive planner through the area.

The local planning module selects and monitors reflexive The digital map data available for the ,.irtin Marietta test site
behavior activities in order to execute a symbolic route plan was furnished by the Engineering Topographic Laboratories.
within the context of the current local environment. The The data included landcover, elevation, hydrology, roads, and
corresponding local level for perception performs sensor and landforms. The map-based planner used these maps, as well as
data fusion to accomplish object recognition and to characterize information derived from them, to plan the best route. Thelocal environmental conditions. The local planning module uses planner also generated a description of regions visible from the
this perceptual data in conjunction with map-based expectations communications tower. This visibility analysis was based on
about the local environment and knowledge of the strengths and elevation, landcover, and landforms map data; it was used by
weaknesses of various reflexive behavior activities to perform the planner to ensure that the route generated met the mission
its selection task. constraint that line of sight with the communications tower be

maintained, lest the radio link be broken. The output from the
At the lowest level, virtual sensors and reflexive behaviors are map-based planner to the reflexive planner was a series of sub-
used as the real-time operating primitives for the rest of the goals which described the preferred route from start to goal.
system (Payton 1986). Virtual sensors are sensing and The map-based planner was originally exercised on the ALV in
processing units which can detect very specialized environmental November 1986, as described in Mitchell et. al. (1987).
features. At this level, knowledge assimilation is minimized in
order to provide the fastest possible vehicle response. Reflexive 3.2 Reflexive Planning
behaviors are highly procedural units that operate on virtual
sensor data to provide real-time control. In the design of The reflexive planning module, guided by the map-based
reflexive behaviors and virtual sensors, various assumptions planner, used the output of the perception module to decide how
about the operating environment are made to permit faster to control the vehicle. The behaviors used in these experimentsprocessing. A virtual sensor is "contracted" by a behavior to are built expressly to interface with the perception algorithms
provide specific information at a requested processing rate and based on laser range imagery. The perception algorithms
accuracy. The virtual sensor provides the information by transform each range image into a Cartesian Elevation Map
combining physical sensor output with appropriate processing (CEM) (Daily, Harris, Reiser 1987). Once a CEM is produced,
algorithms in a manner transparent to the requestor. The an algorithm which models the slope, suspension, and clearance
behavior can then react to that information to issue speed and of the vehicle is applied over this data to determine how far the
turn-rate commands to the vehicle, vehicle may travel in various directions. The vehicle model is

applied from the current location of the vehicle in the CEM ABehaviors and virtual sensors are grouped into activities so that reference frame forward in several directions. The resultingmultiple behaviors can operate concurrently to produce control output is called a set of Vehicle Model Trajectories (VMT). N.decisions. In practice, behaviors are independent processes Figure 3 illustrates typical output from this vehicle model N.which are compatibly configured within an activity. Activities algorithm. As shown in the figure, each scan yields a fan of
are scheduled by the local planner as deemed necessary to potential path rays, each of varying length. Each path ray ends
achieve current goals. when the CEM data indicates either an obstacle or unknown

terrain.
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I ' ' running the latter activity with a predetermined fixed weight for
the goal. In the curr-ent implementation, the relative importanceof the goal automatically decreases as the difficulty of the terrain

increases, which is desirable because as the vehicle's movement S
becomes more restricted it becomes more important to get clear
of the rough area than to make progress directly toward the goal.

Scan 1 Scan 2 Scan 3 Also, when the vehicle is in an obstacle-free area, the goal
Clearing to Clearing Forward weight becomes predominant, so that this activity properly

the right straight ahead blocked handles the entire spectrum of terrain difficulty making it
unnecessary to switch into another activity, and thereby avoiding

Figure 3. Several vehicle model trajectory scans. the overhead associated with switching.

The reflexive planner in August was sufficiently developed to The activity using map-based goals consisted of the following . .
provide for the first successful cross-country run as described behaviors: -.
(Daily et. al. 1987). However, the vehicle still took some
actions which did not seem to reflect intelligent decision making. Monitor-Sub-Goals: Responsible for determining when
One of the main reasons for this was that the vehicle model a map-based goal is achieved and selecting the next goal. If,
trajectory (VMT) virtual sensor specified how far the vehicle while attempting to satisfy the current goal, the vehicle enters
could safely travel in a certain direction, but did not indicate an ellipse which has the current goal and the next goal as
whether there was an obstacle detected in that direction or if we foci, then this behavior decides that it is best to go on to the
simply couldn't "see" any further. This meant that the planner next goal and bypass the current one.
had to trade off between getting close to an obstacle before
judging that it had to turn and turning every time a different Monitor-Final-Goal: When the last of the map-based
direction looked slightly more promising. The virtual sensor goals has been achieved, this behavior will inform the
now contains information about why it is not safe to travel reflexive planner that the current activity has accomplished
further than indicated, so that the vehicle can turn from an its task.
obstacle ahead of it as soon as the obstacle is detected, yet
continue forward if the area further ahead is unknown. Each Seek-Best-Path-To-Goal: Selects which VMT the
VMT is classified according to the reason it terminated, and can vehicle should follow, taking into consideration the length of
be a slope obstacle, suspension obstacle, clearance obstacle, a VMT, whether it terminates at an obstacle or an unknown
unknown area, or any combination of the above; however, the area, the length and classification of adjacent VMTs,
planner currently does not distinguish between the three types of previously detected obstacles, and the location of the current
obstacles, goal.

Another advantage of being explicitly told of known obstacles is Adjust-Safe-Distance: Determines the safe distance
that the behaviors can remember previously seen obstacles remaining along the VMT which has been selected,
which are no longer apparent, for example if they are no longer decrementing this value as the vehicle moves forward.
within the field of view of the laser scanner. This is especially
beneficial when near a gully, since gullies are difficult to detect. Adjust-Speed-For-Distance: Sets the vehicle speed
An obstacle is assumed to have a certain radius, and any VMT based on the safe distance remaining, at first slowing
which passes through it is shortened to be no longer than the gradually, then more abruptly as the vehicle approaches an
distance to the obstacle. If no VMT passes directly through an area not known to be traversable.
obstacle, then the VMT closest to it is treated as though it does
intersect the obstacle. However, if an obstacle is at an obtuse Slow-For-Turn: Determines the maximum speed at
angle from the vehicle and its distance is great enough so that it which the vehicle may safely travel based on the current
does not pose a threat, then that obstacle is ignored. When an turn-rate and the lengths of the VMTs between the vehicle's
obstacle is no longer in the area surrounding the vehicle, then the current position and the VMT chosen as the one to follow.
planner ceases to remember it since inaccuracies in the inertial
reference system make the obstacle's relative position unreliable. Slow-For-Goal: As the vehicle approaches the current

goal, this behavior makes sure that, given the current turn-
In earlier implementations, VMT's were considered in clusters, rate, the vehicle is not travelling so fast that it will pass by 0
with the intent being to avoid having the vehicle try to thread its the goal without satisfying it. Without this behavior, the
way between obstacles when other alternatives are available, vehicle could pass the goal, turn back and pass it again, and
The current implementation carries out this intent by considering continue circling the goal in this way without ever reaching
the merits of each VMT individually, but penalizing a VMT if it.
either of the two adjacent VMTs is not safe. Thus, a VMT is
affected by its immediate neighbors but not by any other VMT. Stop-And-Turn-When-Blocked: Stops the vehicle if all
A VMT which has only one neighbor is treated as though it has non-obstacle VMTs are below a certain threshold, and
another neighbor whose length is a function of the VMT and the rotates the vehicle a specific number of degrees in the
first neighbor. direction which appears more promising. It will then wait to

receive a set of VMT's based on a laser range scan taken
Another important change in the behaviors is the way in which a from the vehicle's new heading, and if all piths are still .'
map-based goal point affects the choice of which VMT to blocked, it will rotate further in the same direction as before
follow. Previously, the reflexive planner would either determine and repeat the process. Once a clear path is detected, this
that the vehicle was in a clear area and run an activity that would behavior will relinquish control.
simply head the vehicle straight for the goal, or it would run an
activity which would choose a VMT direction based on a The behaviors described above provide the planner with the 0
weighting of the length of the VMT and how much that direction capability to react to the nearest obstacles in a consistently
deviated from the heading toward the goal. In our experiments reasonable manner. Thus, higher levels in the planning 'r
in the field, the terrain was difficult and so the planner was often hierarchy can now perform more abstract reasoning with the
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assu'ance that the reflexive planner will be able to carry out the Among the more challenging obstacles were some gullies
assigned task and safely navigate the vehicle through cross- (typically three feet wide and two feet deep) which could only be
country terrain, crossed at a few locations, yet they were not easily seen from a

distance. The most prominent feature of this hillside was a large
rock outcrop which came to be known as the Eiger, and hence,
the hillside itself was called the Eiger Field. To one side of the
Eiger was a gully, and beyond this gully the hillside leveled off

4. EXPERIMENTS into a fairly flat area.

Our primary mission objective in the experiments that followed
The December ALV experiments performed by Hughes were was to make the vehicle travel from the hillside, across the gully,
intended to improve autonomous cross-country navigation with into the field where we had placed some trash can and traffic
the ALV and correct various problems that were encountered cone obstacles, and then turn around and return to its original
during the earlier August experiments. As a result, we were able starting point. The Eiger played an important part in this
to demonstrate significant improvements such as higher speed scenario, because it could block radio communication between
(up to 3 km/hour), longer distances (exceeding 500 meters), the vehicle and the romputers in the lab. Because of this
longer running times (averaging 20 minutes), and increased problem, it was necessary that the vehicle go around the Eiger
difficulty of terrain. In addition, improvements in our recording on the high side, and then traverse between the Eiger and the
capabilities have allowed us to retain a wealth of information that gully until it got to a point where the gully could be crossed. A
wi!l help us make further refinements to our planning and route which met these requirements was generated automatically -,
perception systems. by our map-based planner and used line-of-sight criteria to

ensure reliable radio communication.

After the August experiments, we realized that various aspects of
our simulation were not accurate, and that as a result, some of The first set of Eiger Field experiments was intended simply to
the reflexive behaviors for controlling the vehicle would fail in repeat similar runs performed in August. The map-based plan
certain situations. We found that during development, we had was expressed in terms of a sequence of goal points placed S
used an incorrect model of how the vehicle was allowed to turn approximately fifty meters apart for which goal satisfaction
and how it responded to turn commands, leading to some entailed passing within a five meter radius of each successive
serious control failures when the vehicle encountered situations point. The first point in the plan was at the bottom of the
requiring careful maneuvering. The August experiments were hillside, near a clump of trees. The plan then specified a series
followed by various enhancements to our simulation and a of four points which curved around the high side of the Eiger.
significant re-design of many of the reflexive behaviors. After There was then a goal point near the low side of the Eiger,
performing extensive simulations using these new behaviors, we indicating the correct location for crossing the gully. A final
were ready to go back to Martin Marietta with confidence that we point was located at the far side of the flat obstacle field. An S
could perform our cross-country experiments with greater identical set of points, listed in reverse order, was used to
reliability while also increasing the overall level of difficulty, specify the return route.

In our first set of experiments, we tested our new control In the first two experiments in this terrain, the vehicle navigated
interface by teleoperating the vehicle through a road intersection successfully up the hill, avoided a few obstacles, and went
and in various patterns of circles and zig-zags on an empty flat around the high end of the Eiger with no problem. The vehicle
field. Satisfied that our control methods were correct, we then then proceeded back down the hill with the gully on its left and
performed ten runs in the flat field using traffic cones and trash the Eiger on its right. As it approached the goal point at the
cans as obstacles. These tests were primarily to isolate and desired gully crossing, the vehicle encountered a three-foot high,
verify reflexive planning obstacle avoidance and control two-inch wide post used for marking an underground pipe. In
capabilities. We performed tests both with and without goals, both runs, the vehicle made a left turn to avoid the post. In the
and found that goals were necessary to keep the vehicle from first run, the vehicle continued straight toward the gully, forcing
wandering off to the side of the field. With a maximum speed of the run to be aborted. We later found this problem to be related
2 km per hour, and an average speed of 1 km per hour, the to an incompatibility between our setting for the clearance
vehicle had a tendency to slip and get stuck in the muddy soil. threshold and the cautiousness of the vehicle operators. In the
Also, we found that a cement foundation with some metal spikes second run, the vehicle passed between the post and the gully
was not detected as an obstacle by our perception algorithm. and began entering the flat area. However, it had failed to
This was no surprise, since the five-inch spikes did not violate satisfy a goal located to the right of the pole and therefore
the twelve-inch clearance threshold used in the perception attempted to turn around and head back to the missed goal. The
algorithm, but it was seen as a problem since they could vehicle made a series of sharp left turns, digging its left wheels
possibly have punctured a tire. Despite these problems, the into the soft soil and becoming stuck so that it was unable to
vehicle traveled through the obstacles, usually meeting its goals complete the route.
without much difficulty. These tests convinced us that our
behaviors for obstacle avoidance were suitable for medium- As a result of this experiment, we realized that there was a
density obstacle fields. problem with constraining the vehicle to achieve all the goals in

their proper sequence, regardless of how the vehicle deviated

After these experiments were completed, the vehicle was from its intended path. In situations where the vehicle has failed
refueled, and moved from the flat field to a hillside. This to achieve its current goal but is already making progress toward
hillside was selected because it offered many challenges which the next one, the current goal should be abandoned and the
were not present in the ordinary flat field. The general slope of vehicle allowed to pursue the next goal. We needed to modify
the hillside was close to fifteen degrees, just bordering on the the goal-selection algorithm so that it would detect these
specified eighteen degree maximum slope for the vehicle. The situations and respoad accordingly. To do this, an ellipse was
hillside also contained numerous small and mid-sized rocks, defined with the current and next goals as the foci; should the
many of which would serve as natural obstacles. In addition, vehicle enter this ellipse, then the current goal would be
there were both small and large clumps of trees to be avoided, bypassed and the next goal would become the current goal.
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Usia, this new goal-selection algorithm in the next run, the problem witn the operator, we came to the conclusion mat our
vehicle smoothly went up and around the Eiger, but then perception algorithm should use a six inch threshold to ensure
surprised us by turning around at the gully crossing, heading vehicle safety. We were concerned about using such a small
back up alongside the Eiger, and back to its original starting threshold because of the possibility that an excessive number of
point. After a brief analysis of this run, we realized that the spurious obstacles would be detected, and because it was very
vehicle skipped a portion of its route because of an error in the close to the three-inch resolution iimit of the data, making it
rule for ignoring the current goal and selecting its successor. In highly sensitive to noise. Having no other viable alternatives,
this case, the problem arose due to the configuration of the we used the six inch clearance threshold in all -'ns that
goals. Since the route doubled back on itself, the points in the followed.
loop were ignored. Although this problem was corrected by
making the goal in the field a required goal, this confirmed our After two more false starts with this new threshold, the final run
belief that symbolic route description techniques would be of the day was very successful. Again, we started at the base of
needed for future missions because the simple description lacks the gully and headed out into the field. As in the previous run,
critical knowledge about the purpose and meaning of various the vehicle started off to the left and then turned to the right to
sub-goals. meet its goal. It then continued to the right, heading back to the

gully crossing. In doing so, it encountered a sewer pole and
With this correction in place, we tried :hc r',:- again. This time, rock, causing it to make a much wider turn than might otherwise
the vehicle got around the Eiger, crossed the gully successfully, have been desired. Finally, it made a sharper turn to head more
and avoided several obstacles in the flat area to reach its farthest directly toward the gully crossing, slipping some and digging
goal. Then, the vehicle made a gradual left turn to make the deeply into the earth. As a precaution, the operator had to
return trip to the starting point. Because of obstacles in the field, briefly stop the vehicle as it was turning to remove a dirt clod
the vehicle made an excessively wide turn, causing it to from its path. Once autonomous mode was resumed, the vehicle
approach the gully at point that was intraversable. The gully continued toward the gully and passed over the survey marker
was not detected as an obstacle, so the run had to be aborted, goal point with its left tires. The vehicle then turned right,
We tried this run again, this time extending the route by moving headed up alongside the Eiger, and passed to the right of the
the start position. The extended route began near a road, and pipe marker. It was apparent that by starting off to the left at the
went down the hill and around the large clump of trees before beginning of this run, the vehicle had a better approach angle for
joining with the previous route. Again, the first half of the run crossing the gully and making the right-hand turn to go around
was completely successful, but on the return trip, the vehicle the Eiger. The vehicle turned left at the high side of the Eiger,
failed to avoid the gully. and then headed down the hill to reach the final goal.,

Gullies are difficult terrain obstacles to detect and avoid for a Having success at the gully crossing, we decided to try the
number of reasons. Since they represent depressions in local extended run again. This too was a fairly successful run,
terrain, at further distances and more oblique viewing angles starting near the road, going down the hill to get around the
gullies are often not detectable even to humans. The full depth clump of trees, then back up and around the high side of the
(and therefore the degree of danger and classification as an Eiger, crossing the gully, traversing the obstacle field, then
obstacle) is not visible until the viewing angle and distance allow taking a broad left-hand turn to get back to the gully, and this
the sensor to look down to the bottom of the gully. The laser time it crossed the gully on the way back. Unfortunately, it .e
range scanner is further hampered by lower resolution at further failed to turn right at this point, going left behind the Eiger
distances and average-reflectance weighted footprints at oblique instead. Radio contact was poor, but sufficient to keep the
angles. The transformation to the CEM can also produce experiment going. The vehicle then looped back up around the ,,,..
inaccuracies depending on the resolution and method of high end of the Eiger again, attempting to reach a goal that A '

determining elevation at a given pixel. For example, a CEM hadn't been attained yet. Finally, it got too close to the gully and •
with 12 inch per pixel resolution which keeps only tI' ,aximum had to be stopped. The failure of the right-hand turn was later
elevation at a pixel can easily obscure a narrow gully less than traced to an error in our algorithm for translating turn-rate ,
12 inches wide. To further compound the difficulty of gully commands into the control trajectories required by the ALV pilot
detection, grass and vegetation often obscure portions of the software. The fact that the vehicle went back up the hill to reach
gully, forcing confident detection to occur at dangerously close goals that were no longer relevant again illustrates the deficiency
distances. For the cases mentioned above, it is also likely that of the simple goal-point method for describing a route, but it , .

the clearance threshold set for 12 inches was not safe enough for also provides some insight into how a local planning level might
the actual vehicle clearance and conservative oversight of the intervene when the reflexive planner encounters unexpected 0
operators. circumstances.

Suspecting that our obstacle arrangement was preventing the A number of runs followed in which we experimented with
vehicle from reaching the gully crossing on its return trip, we reduced goal lists. Since we had found no real problem in
charged the obstacle layout and performed several more runs maintaining radio communications as the vehicle traversed on the
sta ang at the gully and heading out into the flat area. The first low side of the Eiger, we started with a very simple goal list
tme we tried this, the vehicle started off to the left and then containing the starting point up near the road, an intermediate
made a wide right-hand turn to head back to the gully. This point at the gully crossing, and then a final point out in the flat 0
time, it successfully crossed the gully, but instead of turning area. In the first of these runs, the vehicle started out i,,.ding
right to go up around the high the side of the Eiger, it turned left straight for the gully crossing as expected, but instead of
and went on the low side. Radio contact was not lost, but the detecting the rough terrain above the large clump of trees, the
vehicle failed to avoid a small rock so the run was aborted. vehicle headed directly into an area with numerous deep and

narrow gullies. The gullies were detected after the vehicle was
too close to turn away. If perception had detected the gullies

After repeated incidents of the ALV operator stopping the vehicle sooner, or if the vehicle cou!d have been backed up
for rocks or gullies which were not detected as obstacles by our autonomously, this problem might have been overcome.
perception algorithm, we came to realize that the twelve inch
clearance threshold we ,,ere using was not consistent with the In a second try, we added another goal point near the base of the
AIN operator's clearance requirements. After discussing the clump of trees, but again, the vehicle got stuck in the gullies near
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the beginning of the run. We then moved the goal point at the We learned a great deal about problems with planning,
base of the clump of trees in order to guide the vehicle away perception, and the vehicle itself from these experiments. We
from the troublesome area. This time, the vehicle successfully expect to be able to return with many of these problems
went around the clump of trees, but as it went toward the resolved. Also, using new techniques and faster hardware we
intermediatc goal at the gully crossing, it was unable to avoid a expect to increase the complexity of our scenarios and improve
tree. As the vehicle approached the tree, it saw a clear path overall performance. In making these improvements, much
slightly to its right, but in attempting to make the turn, the faulty attention will have to be devoted to compensating in software for
algorithm for converting turn-rates into trajectories caused it to inherent mobility problems of the ALV. Problems such as the
continue straight ahead. Finally, the vehicle found itself limited clearance, inability to back up, and tendency to slip when
completely blocked by the tree. turning will require special attention in both the planning and

perception systems. Any correction of these problems in
In our next experiment, we retained the reduced goal list and hardware would greatly enhance potential ALV operations.
corrected an error which had been effectively cutting our Meanwhile, perception development must focus on improved
maximum speed from 2 kilometers per hour to 1 kilometer per detection of gullies and detection of rocks surrounded by brush.
hour. This test constituted our first complete run from the goal For planning, local planning issues must receive greater attention
near the road to the flat area and back. The higher speed, to improve subgoal selection, and to help cope with unexpected
averaging about 1.8 kilometers per hour, actually seemed to situations. In general, we hope to work closely with Martin
result in smoother overall control. The vehicle passed below the Marietta to try more complex scenarios, merging ALV road-
clump of trees with no problem, and then went straight for the following capabilities with our off-road capabilities, and
other tree that had previously caused problems, but this time it demonstrating various mission-related behaviors.
avoided it. The vehicle went between two rocks and then
avoided the Eiger, coming fairly close, but still missing it. REFERENCES
Radio transmissions were poor, but it got past this area and
proceeded across the gully. Once in the flat area, the vehicle M. Daily, J. Harris, D. Keirsey, K. Olin, D. Payton, K.Reiser,
avoided a few trash cans and traffic cones to reach its farthest J. Rosenblatt, D. Tseng, and V. Wong, "Autonomous
goal, then made a wide left turn to come back. Again avoiding a Cross-Country Navigation with the ALV," Proceedings of
few obstacles, it crossed the gully somewhat higher than DARPA Knowledge-Based Planning Workshop, Austin,
intended, then headed down between the Eiger and pipe-marker Texas, December 1987.
post. Passing through this area, the vehicle then turned right e
and headed toward the base of the clump of trees. Along this M.J. Daily, J.G. Harris and K. Reiser, "Detecting Obstacles in
segment of its path, the vehicle came upon an eight inch high Range Imagery," Proc. Image Understanding Workshop,
rock with surrounding grass of about the same height. Because pp. 87-97, Feb. 1987.
there was no significant height discontinuity in the range
imagery, this obstacle was not detected. The operator removed M. J. Daily, John G. Harris, and Kurt Reiser, "An Operational
the rock for safety, but felt the vehicle could likely traverse over Perception System for Cross-Country Navigation," DARPA
it. The run continued around the clump of trees and back up the Image Understanding Workshop, 1988.
hill to the starting point. Despite a great deal of slippage on this
final leg of the journey, the vehicle ended up only thirteen feet J.S.B. Mitchell, D.W. Payton, and D.M. Keirsey, "Planning
away from the survey point where it started and only six feet and Reasoning for Autonomous Vehicle Control,"
away from where the planner thought it was. International Journalfor Intelligent Systems 2(2), John

For our final run, we used the complete goal list, and increased Wiley & Sons,1987.

the maximum speed from 2 to 3 kilometers per hour. We also K.E. Olin, F.M. Vilnrotter, M.J. Daily, and K. Reiser,
increased the radius for goal satisfaction from five meters to ten "Developments in Knowledge-Based Vision for Obstacle
so that cumulative errors in position would have less Detection and Avoidance," Proc. Image Understanding
significance. The run started out noticeably faster, and turns Workshop, pp. 78-83, 1987.
were more abrupt as well, appearing somewhat jerky. The W , 8
vehicle proceeded without difficulty around the clump of trees, D.W. Payton, "An Architecture for Autonomous Vehicle
up the hill, around the Eiger, and then across the gully. Because Reflexive Control," Proceedings of the IEEE International
of the larger goal radius, the vehicle crossed the gully sooner Conference on Robotics and Automation, San Francisco,
than it had on previous runs. Avoiding a few obstacles in the CA. 1986.
flat area, the speed dropped to 2.5 km per hour. The vehicle
reached its goal in the field and then made a broad left-hand turn M.A. Turk, D.G. Morgenthaler, K.D. Gremban, and M. Marra,
to get back across the gully. As in previous runs, the vehicle "Video Road-Following for the Autonomous Land Vehicle,"
came back to the gully on the high side, but this time it saw the Proceedings of IEEE International Conference on Robotics
gully as an obstacle. The vehicle continued parallel to the gully, and Automation, Raleigh, North Carolina, 1987
went past the desired crossing point but then got stuck in the
mud while trying to turn right to reach its next goal. R. Wallace, A. Stentz, C. Thorpe, H. Moravec, W. Whittaker,

T. Kanade, "First Results in Robot Road-Following," Ninth5. CONCLUSIONS International Joint Conference on Artificial Intelligence, Los
WtooAngeles, California, pp. 1089-1095, August 18-23, 1985.-', We have demonstrated autonomous navigation of a robotic

vehicle in natural terrain. Major performance improvements
were accomplished between the August and December
experiments. In the near future, implementation of the
perception algorithms on the Warp systolic processor will
hopefully provide an order of magnitude speedup in the
processing time; and therefore, increase vehicle operating speeds
and allow faster and more accurate detection of obstacles.
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Integration Effort in Knowledge-Based
Vision Techniques for the S

Autonomous Land Vehicle Program 1

Keith Price and Igor Pavlin

Instit-te for Robotics and Intelligent Systems
Univer.-t- ' Southern California

Los Angeles, CA 90089-0273

ABSTRACT gram current modules into a coherent and unified computer
vision program. Even if we would succeed in this effort, we

In this paper we present a methodology and demonstrate would lose the generality of using the same basic modules

some early results in the integration of knowledge-based for multiple applications. By using a variety of modules for

image analysis programs. We specifically address the do- similar operations (e.g., feature matching) we will develop

main of complete three-dimensional motion analysis in the techniques that can more easily accept other, newer, mod-

context of the Autonomous Land Vehicle. The integrated ules for the same or related processing steps. Therefore,
system exploits the strengths and minimizes the weaknesses we prefer using the current modules, at the expense of de-
of the individual tehniques, resultn inim performance which signing a control structure for them. In order to create the

of he ndiidul tchiqus, esutin i peforanc whch task configurations we must understand how the modules'A
is considerably improved over the performance of any of the tact ndute t e o es nded beween modules
independently developed programs. interact and the type of interfaces needed between modules.

The problem we face is not the problem of the top-down
design which had divided the task into subtasks that will

1 INTRODUCTION be later linked together. There, predetermined data struc- SZ

tures enable easy module integration. We did not influence
the design and the interaction of modules, although the

Over the past several years the USC Computer Vision group modules may had been developed for similar domains end
has developed a number of component programs that can therefore could share similar input data. ,

be applied to motion analysis in the Autonomous Land Ve-
hicle (ALV). Thus, we have a number of separate programs There are several important issues we had to address in
(or collection of programs) developed by different people the integration effort. We chose not to create a completely
for different computer vision tasks [1], j2], 13], IS. Gazit general control structure and interface (such as a black-
these proceedings] with no strict requirements imposed on board) because of the desire to quickly incorporate current
the developers as to what input, output and program pa- results in component development. Here we present these ',

rameters should be used. We will use the word module to issues in general terms and will later give some examples
refer to a collection of programs that are solving a partic- and initial results.
ular task from the computer vision domain (for example,
a collection of programs that find depth of environmental 1. If we know how to combine different modules (in prin-
points using a pair of stereo images). Our current task is ciple) what is it that we have to do (in practice)
to construct a control structure that will use these different to make the combination of the modules work to-
modules and enable them to cooperate in visual guidance gether? We call this an interface problem. The ques-
of an ALV using general motion analyzing techniques. tion is then to design interfaces in a manner that

hides details of implementation of one module from
We consider the integration to be an important effort for another module without loosing the capabilities al-

several reasons. Different feature extraction or matching ready present in either module.
techniques may work best in specific circumstances, thus 2. How are we going to judge the performance of the

a variety of modules for similar operations are necessary.
Additionally, it is too costly and time-consuming to repro-

a human operator must assess the performance of the

'This research was supported, in part, by the Defense Advanced Re-

search Projects Agency contract DACA76-85-C-0009 monitored by
the U.S. Army Engineer Topographic Laboratories. .3
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modules on a particular subtask, we will be not able e The set of routines that create history of data and

to combine several modules to work automatically on control flow. The user can then examine intermedi-

a more complex task. ate results, and rerun tasks perhaps using different
modules or data. "e,

3. Can the system suggest (and eventually generate au-

tomatically) a configuration of the modules that will oA user-friendly interface that allows the easy modifi-

be the best for a given task? How can we incorporate cation of input and output parameters and the easy

the knowledge that people use when choosing a set of design of new task configurations. It also helps in dis-

programs to perform some visual perception task? playing the history of the run using images and data

4. Somewhat related to the previous two issues is: should tables.

we strive for a static or dynamic integration? In a For each module we define the module components, func-

static integration two modules are "'hardwired" feed- Frecmouewdfieteoulcmpntsfn-
sti o odesa ohriredb e tion and required input and output data. We separate func-

ing input or output t hthe r f ed k it tionality of the module from its domain and range, so that ,.
used) but essentially they are forced to work together we can create separate data and control flows [5]. This de-

independently of the input domain. Dynamic integra- cision helps the user create a task configuration and build

tion links modules at the run-time depending on the a control structure on top of the latter. Knowledge-based

domain, module performances and the task in ques- scheduling and execution require the separation of data and

tion. Dynamic integration is a much more complex control flow for the same reason.
problem and we are not in the position yet to attack

this problem. Task configurations are represented as graphs in which

modules are nodes and paths are data and/or control flows.

Each node (module) can have several input and/or output

2 CONTROL STRUCTURE data ports because the type of the data required by mod-
ules greatly varies. In addition to the input and output
data required for the module, there are also parameters for

In this section we outline the major design decisions that

are made in the integration effort of different motion mod- internal graphic displays and debugging information from

ules. In the next section we will present our results and the the module. One of the important module characteristics

current state of the integrated software. is that they can be implemented in different programming

languages (like C and Lisp in our case) and the data ports

In the design of an integrated software for a particular provide a convenient interface between these modules.

task, the first step is to define module's input, output,

its preconditions (range of parameters), purpose, efficiency, Modules can be configured using different control struc-

end expected quality of the results. The next step is the de- tures (loops, sequences, concurrent execution, conditional

sign of the control program, that will synchronize the work constructs, etc.). This means that we can use data feedback

of motion modules. We have used a similar design strategy between modules, use several machines to run modules con-

for our motion integration package as those found in design currently if needed, and make choices about module execu-

of software for automatic programming, in particular those tion depending on the data they use. The design allows

found in work by Kant 14]. Although the task system is de- both forward-chaining and goal-directed reasoning which is

signed for the domain of motion analysis of the ALV, most needed in a more sophisticated task scheduling and execu-

tion environment. .
of the decisions are equally applicable to a general purpose

vision system. The task history is a very helpful tool for rerunning the

same set of module executions, examining the data (images,

parameters) at each stage of execution, perhaps selecting afailty 1
2.1 Design Decisions new set of parameters for a new run, and serving as a quick

demonstration facility.

The system has four major components: Task configuration, execution and history are accessible v

" The set of routines that specify modules and create a to the user through the graphic interface. A powerful graphic

module configuration needed for particular task (task editor is used to help the user to: compose and decompose

task configurations; enable task interruption or execution;
definitions). examine, edit or save data used or produced at different

" The set of routines that schedule and execute a par- stages of task execution; edit the global knowledge base; S

ticular task (task execution). and enable task rerun. The graphics editor also has tools

for data smoothing and data routing and conversion to and

from different computational machines. %
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All the above program decisions are made in order to 3 RESULTS
allow an interactive, user-friendly, problem-solving motion
package that can be later used in a semi-automatic or au-
tomatic way to detect the environmental changes from im- Our initial implementation provides a working prototype

ages. Modularity of the design enables easy incremental and a baseline system for testing of the integration frame-

addition or change of modules or data, and a greater flex- work. It is implemented in an object-oriented language (fla-

ibility and efficiency of the whole knowledge-based motion vors). In this implementation, the initial control program

system. that drives different modules is "hardwired," thus avoiding
several important issues that usually appear in automatic

2.2 Interface Problem programming. However, we still had to solve the interface

problem. We have also implemented the most important
In this subsection we discuss issues in creating interfaces parts of the user-interface.
between different modules. We initially have developed a
set of specific module interfaces rather than a single data As the initial step to integration, and to provide a conve-
transfer mechanism so that we can concentrate on computer nient method to more easily test the motion estimation sys-

vision rather than general system building. The other rea- tern, we have combined modules for feature extraction using

son is that we currently have only a few modules for each the region segmentation techniques [6], feature matching
subproblem and the design of interfaces between each pair using our region based matching system [2], three-dimensionE
of modules is not a costly design decision. motion estimation [3], and feedback of the image location

prediction to the matching programs. These programs were
The long term effort requires that the interfaces between written by different authors, without considering the need

the two modules are general enough to handle not only the to integrate these specific programs into one system, thus
particular pair of modules, but a pair of classes of modules. some of the effort is required to transform the data pro-
A class of modules has elements that solve one specific prob- duced by one system into data expected by the next. For
lem of the vision, for example, all the modules that perform example, the matching system provides a symbolic descrip- '.
straight line extraction will be one class (say class A), and tion of the two input images with links between them and
all the modules that find line correspondences will be in an- the motion estimation program only requires a list of point . -

other class (say class B). The interface between any module correspondences for several frames. The lis't of points can
from class A and any module from class B will be the same. be derived from the matching output.
The reason for such a design is that we would like to han-
dle lines as semantic entities and not be concerned with This initial integrated system demonstrates the ability to
detailed representation of the line. combine different subsystems into one unified system. This

prototype system has the following tasks (see Figure 1 for
The other important issue'is a need to design these inter- a description of the current system):

faces for possible use in a feedback loop. In these situations
the output of the second module might be used to improve o Image input: Read the image sequence.
the performance of the modules that provided its input. * Image segmentation: With large images and for

Interfaces hide details between the different requirements time considerations, a subimage is segmented into re-
of different modules. In the example that we present in the' gions by the histogram based segmentation program.

These regions may, or may not, correspond to actualnext section, a motion estimation module requires the p- real-world objects, but are assumed to be single ob-
sition of a region in several frames. On the other hand, a jects for the purpose of motion segmentation. All p
region matching module returns corresponding regions be- the images in the sequence are initially segmented.
tween two frames. The interface between matching and mo- Features of individual regions and relations between
tion estimation modules accumulates the pairwise matches regions are also computed. One of the features, the

un i e o g o n f r h m to e tm to m odule.re i n ar al o c m u e . O e o th fe t r s t e
until enough are found for the motion estimation center of mass, is used later in the motion estimation
In other situations, the interfaces hide the details of data module. This forms the symbolic description of the
representation for different modules because we are only image.
concerned with semantic notion of features and not its rep-
resentation. * Match the first image description to the sec-

ond: Initially, there is no information to guide the
Sometimes an interface must account for missing data, match, so the first few matching steps must use the

and sometimes it should discard data that are not consid- general techniques with features such as intensity, size,
ered to be essential. We plan to equip the input and output shape, adjacencies, relative positions, etc. This pro-
data structures with procedures that will signal the absence duces a set of corresponding regions where a region
of necessary data, so that the missing data could be recov- in the first view is paired with a region in the second
ered by calling some other module, or the user. view.
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e Match the second image description to the third: 4 FUTURE WORK
This step is the same as the previous one where gen-
eral features must be used. At this point the trans-
lation estimation module used for generating predic- As we have seen in the previous section the initial motion in-

tions of future image plane locations for those regions tegration package performs region segmentation, evaluates

that are tracked from image 1 to 2 to 3 (i.e., region X region correspondences not for a single pair but for many

in image 1 is matched to region Y in image 2 which pairs of frames. Then an estimation motion module is called
is then matched to region Z in image 3). The gen- that determines the motion parameters of the ALV. Major

eral motion estimation system requires one point in areas for future work include using more feedback from mo-

five consecutive frames, but three dimensional trans- tion estimation to matching and using feedback from both
" motion and matching to segmentation. "

lation can be computed using only one point in three m

frames. Thus, the matching through three frames al- We also plan to add in the motion detection system an-
lows the prediction of the region location in the forth other subsystem that uses a Hough-transform based module
and future frames. to detect preliminary line correspondences. The later will L

* Continue the matching process for descriptions provide input to a module for more precise line-corresponden
of image N to image N+1: Since a motion esti- (these two might be connected via a feedback loop). The re-
mate has been computed for some of the regions, the suits of these two modules are to be fed into a third module
predicted position of the region in the next image that uses line-correspondences in several frames to detect
can be used as a feature (the position) in the match- motion of objects in the scene. The results on this subsys-
ing process. This allows greater motions to be easily tem will be reported later.
handled by the later matches. The motion estimation
programs (general estimation for 5 or more frames in We will use the contour based matching approach [S. Gazit. r,
a sequence and translation estimation for 3 or 4) are these proceedings] for direct input to the motion estimation

applied on each sequence of matching regions. programs and plan to combine it with the region based IX
matching system. This will allow the detailed matching a

The motion estimation results are displayed in several results using contours to be computed when the motion

forms at each stage, including the trajectory mapped back between frames is large.

onto the image plane (using perspective projection), an or- These three examples demonstrate that we have different
thographic projection of the trajectory viewed from the top, input situations in mind (some images suitable for region p.and another viewed from the side. These three displays are matching, some for straight, some for curved line match-

" given in Figure 2, with the perspective view showing the '
g i g , h p c v s g ing), and that each group of modules will be used depend- ,
motion of the four regions (grill (3,6), bumper (2,7), front ing on the input data. That is an example of what is needed
shadow (1,4) and side shadow (4)) drawn for the six frames i an
in the sequence and drawn on the next-to-last (fifth) frame. in a more general purpose visin guidance system.
The computed motion projections for all the regions, except
the side shadow, are shown for frames 1 through 5 (labeled
1, 2 and 3) and for frames 2 through 6 (labeled 4, 5, 6 ACKNOWLEDGMENTS .

and 7). The two orthographic views show that the motion
is completely in the Z and X directions (see the side view
motion where Y is almost constant for each region) and We would like to thank Jasmina Pavlin for careful reading b
shows the trajectories of the regions in the correct relative of the article and for useful discussions.
positions. These three-dimensional trajectories are scaled
to the dimensions of the focal plane of the camera since

* absolute scale can not be derived. The positions are also References
adjusted for the computed relative depth of the points as
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4-6 are closer to the camera (i.e., Z is smaller) than the and description. Computer Graphics and Image Pro-

a, beginning locations for points 1-3. ceasing, 13:257-269, 1980.
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the current component interfacing and to provide an outline aerial images using stochastic labeling. IEEE Trans-
for the future system. actions on Pattern Analysis and Machine Intelligence,

3(6):633-642, November 1981.

420

4



[3] H. Shariat and K. Price. Results of motion estima-
tion with more than two frames. In Proceedings of the

DARPA Image Understanding Workshop, Los Angeles, -

California, 1987.

[4] E. Kant. Interactive Problem Solving with a Task
Configuration and Control System. Technical Report, 0"Y

Schlumberger-Doll Research, December 1987. e, *

[5] D.R. Barstow. Automatic Programming for Streams I:
Transformational Implementation. Technical Report,

Schlumberger-Doll Research, August 1987.

16] R. Ohlander, K. Price, and R. Reddy. Picture segmen-
tation by a recursive region splitting method. Computer

Graphics and Image Processing, 8:313-333, 1978.
O

IMAGE INPUT
AND DISPLAY

IMAGE

SEGMENTATION

AND DESCRIPTION

MATCH FRAME 1 DESCRIPTION ...i

TO FRAME 2 DESCRIPTION

GO TO NEXT FRAME -
COMPUTE IMAGE PLANE

POSITION FOR MATCHED
REGIONS IN FUTURE
FRAMES

MATCH CURRENT FRAME DESCRIPTIO N

TO NEXT FRAME USING PREDICTED
LOCATIONS IF AVAILABLE

COMPUTE 3-D MOTION
ESTIMATES FOR MATCHED 0
REGION SEQUENCES I

Figure 1: Description of Current System

I.421

~mA~ ~'%



'I.

66

4

63.1 - 116.5...... ......

2

56.63.92 %

59 6

36.9,
11 .9 5.3 -1.3 -7.8 -14. 63.1 56.6 50.0 43.4 36.9

Xef-ight Z d~pt

ton Viewed from Topef Motion from Left Sd

Figure 2: Results

422 I

tI



Contour Correspondences in dynamic imagery1

S.L. Gazit and G. Medioni

Institute for Robotics and Intelligent Systems
Depts of Electrical Engineering and Computer Science

PHE 204, MC0273
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Los Angeles, California 90089-0273

Abstract for making global correspondences. A local point or area in
one image may match equally well with a number of points

One o the fundamental problems in Computer Vision or areas in the other image. These ambiguities in local
is the problem of establishing correspondences between two matches can only be resolved by considering sets of local
(or more) images. This paper addresses this problem and matches globally and imposing some preference criterion.
differs from previous approaches in the choice of match- The various matching algorithms differ in the primi-
ing primitives and criterion. We use super-segments, which tives used for matching, the method used for local match-
are objects that can dually be represented either as groups ing and the method used for global matching, if any. The
of connected line segments or as chains of points, and we basic primitive in our algorithm is a section of a super-
match sections of super-segments. The correspondence is segment, where a super-segment is an object dually defined
based on similar shape and translation of matching sections. as both a connected list of edgel points and a connected list
We use segment matching to limit search space, then ap- of line segments, and a section is some arbitrary portion of
ply a "chain matching" algorithm on sections. The method a super-segment. We use segment matching merely as an
seems very robust, as demonstrated by the examples. initial guide to section matching, so unlike other segment

matching algorithms [15,16,1], we are able to use impor-
tant features such as continuity along the super-segments
and sections of arbitrary (not only linear) shape and length 4
for matching.

Motion analysis is an important research area within For local matching we use shape similarity between se-
the field of Computer Vision, and plays a central role in bi- tions of super-segments and for global matching we use re-
ological systems. Sophisticated mechanisms for observing, laxation in the translation space. We believe that using
extracting and utilizing motion exist even in simple ani- sections of super-segments removes many of the problems
mals. Processing image sequence via computers has various resulting from segment or edgel matching, since the onti-
applications in the medical, biological, industrial, military
and other fields. Several approaches have been tried for nuity information can be better preserved than in segments,cno tatfinalds. an alysi ofamop rom iae euenies, f which have the collinearity constraint, or edgels which docom putational analysis of m otion from im age sequences, no c nt i a y c n i u ty nf r t on nd he r a b -and many of them need a set of matching points or match- not contain any continuity information and the area be-

tween sections is much more reliable than merely "similar
ing features for the motion analysis. Therefore matching orientation". Using sections of arbitrary shape yields, we c
features between consecutive frames is an important step
in motion analysis. This problem is more difficult than believe, a better match than using only linear segments,
nmoelior analysis.athing probm asmoe aditiol tan- since curvature implies a much stricter constraint on themodel or stereo matching which assume additional con- match. We allow these sections to grow as long as the area 2

straints such as shape preservance or epipolar lines, since betWe the e small, so w g v long rea
obecs aymoe cane haedsaperet.between them remains small, so we get very long reliable ,2objects may move, change shape, disappear, etc. macewihcorsodt bjconais

-'This paper is devoted to the problem of identifying cor- matches, which correspond to object boundaries.
Thsondig ppeis d to te paroblgiagem of ing or- Section 2 describes previous methods, section 3 contains

responding points in two time varying images of a moving the description of the algorithm and section 4 presents our
object (or objects). We assume that the maximal distance results and conclusions. r
between corresponding features is known, to restrict the
search space. 2 Existing Methods

* The major difficulty in matching arises due to the need
2.1 Area Based Methods '

P

'This research was supported by DARPA contract DACA76-85-C- Given two gray-level images, one would like to find a corre-
0009, order No. 3119 and monitored by the U.S. Army Engineer sponding pixel for each pixel in each of the images, but the
Topographic Laboratories semantic information conveyed by a single pixel is too low
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to resolve ambiguous matches, so it becomes necessary to feature based systems consider much fewer points and are
consider an area or neighborhood around each pixel. Three therefore faster than area based systems. By using fea-
types of schemes can be found: tures such as edgels, curves obtained by spatially linking

Differencing Schemes (112,11,13,201 and others), a sim- these edgels, or even some approximation of these curves,
ple and fast method which is widely used. These systems the system is less susceptible to errors resulting from noise,
tend to fail if the motion is small, illumination is not con- change in illumination, etc. Curves formed of connected
stant or the moving object is not easily distinguishable, and edge] points usually correspond to object boundaries, so
can be confused by noise. the reduction in the amount of information does not neces-

Correlation Schemes were applied to measure cloud mo- sarily mean reduction in the quality of the information.

tion [14], traffic control [23] and to radar images [13]. They Edgels however seem too local to be chosen as primitives.
tend to fail in featureless or repetitive texture environment, The advantages of line segments were discussed in section 2.2.
are confused by the presence of surface discontinuity in the We use segment matching as an initial step in our algo-
correlation window, are sensitive to absolute intensity, con- rithm. When we try to evaluate matches however, the dis-
trast and illumination and their complexity heavily depends advantages of segments come into view: they are at best
on the size of the correlation window, only approximations of the "actual" curve and sometimes

Gradient Schemes [8,3,6] are widely used for calcula- a bad approximation (a circle for example). A curve may be
tion of optical flow, and assume that the motion between
successive images is very small, so they are very sensitive Sa - A super-segment
to noise. {al, a2, a3, a4} - its segments.

2.2 Feature Based Methods Sa

These systems match features derived from the two im- 0.0
ages rather than the intensity arrays directly. The com- a4
monly used features have been edgels, linear line segments 0 a3
and corners (points of high curvature). These systems are a2
usually faster than area Uused systcns since they consider
much fewer points, yet preserve significant points. On the V
other hand a lot of pre-processing is needed to extract the
features, and due to the sparse data these systems do not Figure 1: example of a super-segment
produce a dense matched map.
Existing methods include graph matching techniques [10],
relaxation [2,5], region matching [21] (useful when there is broken into segments differently depending on the segment
a significant change between frames, but tends to fail when fitting algorithm and on the amount of noise. The exact po-

sition of a match is not known because the segment matcher %
can only tells us that a line segment matches some other

Matching edgels suffers from some of the limitations of line segment but not which pixels actually match. Also
the area based systems, since edgels are still very low-level. d n t tmost segment matching algorithms do not use the continu-
One isolated edgel is not very distinguished, so groups of ity between the segments.
edgels need to be taken in order to disambiguate matches. For these reasons, we have decided to use curves or super-

A line segment (or just segment) is a linear approxima- segments which are objects each having an ordered list of
tion of connected edgel points and as such has some conti- segments belonging to the super-segment and a description
nuity information inherent to it, yet is local enough, so that of its curve as a chain of the "actual" points of the super-
the chance that a segment belongs to two physical objects sm e As achsgnt knows whi h super-n
is very small. Each segment contains information about it belongs to and the position in the super-segment chain

its length, direction and position. Line segments are easy where it fits. An example of this "dual representation" is
to represent and manipulate. Systems which match line v in figur e .
segments exist mostly for Stereo image processing [16,1,171 given in figure 1. 6_1

The input is obtained by computing zero crossings [9]
and for image-model matching [15]. The main idea in these of convolution with Laplacian of Gaussian masks [4] to get "0
systems is essentially to locally slide two descriptions over the edgels, then link the edgels and finally fit curves by
each other for maximal fit. This approach guides our algo- piecewise linear segments [7]. The curves produced in this
rithm also. .Xmethod are long, closed and relatively not noise sensitive,

but their locations and shape may not be accurate (as ex- .
3 Description of the Method plained in [4]).

Since continuity plays a very important role, we prefer zero *

3.1 Primitives crossings to other alternatives such as edgels produced by
step masks 118] which have more accurate location, but

We believe that the feature-based correspondense schemes
have strong advantages over area-based schemes, because the curves they product- are usually shorter and more noise
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sensitive. Another reason for using zero crossings of LoG 3.3 Matching segments
masks is the fact that in moving from a large mask to a
smaller mask we get additional edgels but no edgels disap- The following algorithm computes for each segment a i A 

pear, which may be useful for a top-down approach. a subset of segments bj E B that can match a,:
For each segment aj E A define a window w(a,) in which

corresponding segments from B must lie, and define a simi-
3.2 The matching algorithm lar window for segments in B. We have used a rectangular

Follows is the general outline of our algorithm; the details window parallel to the segment with width 2d and height

are presented in the next subsections. 2d + li, as w(a,). Note that bi e w(a) 4:. a, E w(bj).

We match segments initially to obtain initial section Let a. E A, b, E B be two segments with orientations

segment matches, then divide each section point list into Oi,O and length l4,li respectively. We say that a, matches

"pieces" (or sub-sections) and search for a best fit piece b. if the following conditions hold:
for each, trying to extend these pieces in the process. We b, E w(ai), a, and bi have "similar" orientation (the

evaluate these matches using relaxation in the translation similarity measure is defined by equation 1), and the middle

space, and then remove overlapping (non-unique) matches, point of the shorter segment must intersect the window of

based on similarity in both shape and translation. the other segment.

The Matching Algorithm
1. For each line segment in one image, find a subset of ?-0 - < + i. 1 1 (1)

segments in the other image that can match this seg- 2 *

ment. (See section 3.3) 0 and I are constants. We used 0 = 6E and 1 = 1. (See [19]).

2. Match super-segments sections based on similarity in Figure 2 contains an example of matching segments.

shape: /\b3

(a) For every pair of maximal connected matching / \d \ /

segment lists, define an initial match as the ini-
tial sections corresponding to these segment lists. db

(See section 3.4, step 1) \/

(b) Divide each (left) section into smaller pieces, and d'-

find for each piece the "most similar" piece in /b-

any matching section.
(See section 3.4, step 2) Left segment a matches right segments {bl,b2},

(c) Extend each match by adding adjacent points to but not b3 (orientation).

the pieces matched, so that the similarity error
measure is minimized.
(See section 3.4, step 3) Figure 2: example of matching segments

3. Relaxation step: Remove matches for which not enough
support exist, iterating until no matches are removed. 3.4 Matching super-segments based on shape
(See section 3.5) similarity

4. Remove overlapping matches. (See section 3 Note: Depending on the context, a super-segment is an

5. Repeat once again steps 3, 2c and 4 (in that order). ordered list of segments or an ordered list of edgels com-

In the next sections we discuss some of the steps in prising the segments.

Definition 1 The position of a point in a super-segment IN
is the arc length of the point. '

Notation Definition 2 A section of a super-segment is a connected . .
list of edgels, which is a part of the super-segment (Note that

Let IMAGE and IMAGE be the images to be matched, segments and super-segments are a special case of section).

A = {ai} be the set of segments in IMAGE 1 , A piece is a portion of a section.
B = {b,} be the set of segments in IMAGE 2 , See figures 3 and 5 for an example.

{s,} be the set of super-segments in IMAGE1  The following algorithm computes initial section match-

and SB {s,} be the set of super-segments in IMAGE 2. ing based on similarity in the shapes of the sections.

We use this notation since SA (SB) is actually a partition 1. Initially two super-segments s., and Shy can match

of A (B). if any of their segments match, and for each super-

Also let the maximal disparity d be the maximal distancetwo corresponding features may have (measured in pixels), segment s let Se(s) he the set of its possihle matching

sections, which are simply the maximal consecutive

sub-chains which segments correspond. (see figure 3).
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2. For every pair of matching sections (P, Q), divide P initial matches were computed in the previous section.

into pieces, so that P = {pl, P2...,Pk}. Using the seg- Let d, correspond to the expected error in the "real"

ment matches, find a corresponding piece qi to every position (after compensating for the motion) of the object

piece pi (in the same fashion as before). Note that the (d, should be 0 if no rotation, expansion or errors of the

"actual match" for pi is probably contained in q,, and edge detector occur, but is usually larger). We used a (the

therefore we need to search for it. We "slide" pi along space constant of the LoG filter) when we did not expect

qj searching for the match with the lowest similarity a major change in the shape (due to expansion), since the
eerror in the position of the edgels depends on a. Otherwise

r error measure.

The similarity error measure is the area of the match we used the maximal disparity (supplied by the user).
Let Mij = (pi, mi) be some match with with translation

over the total number of points in the two matching (Y :, Yq-) where p. is a section of a super-segment s., and mi-

pieces squared. Figure 4 illustrates the idea. Ap- isasectionofasuper-segment si,. A matchMkk (ph, in)

pendix A contains a description of an efficient algo- can support M., if [I- - T--1 -< de and j-p- - y,-,k I d,, it is

rithm to compute the area between two matching sec- not too short (its length is at least a), either 5
0 is a neigh-

tions, bor of s., or s.i has no neighbors and either sb, is a neighbor /
3. For each match (pi, mi) try to "extend" it by adding of sb, or sb, has no neighbors. Note that Mj can support

neighboring points as long as the error (computed in itself.

the same way as above) decreases. To reduce time Mij is kept if the total length of the matches that can sup-

complexity we used a binary search type extension port it is above a certain threshold or one of these matches

(see figure 5). is long enough. (our threshold was half the sum of the av-
erage length of the matches and the length of the longest

Notes match, and a match was long enough to support alone if itsNotes length was at least 2c.) i

Matching each piece is done independently, so non unique We iterate until no matches are removed.

matches are allowed, since we hope that at least one will
"catch" its correct location. Dividing the initial large sec- Sa

tion into smaller pieces is necessary since the sections often Sb

do not fully match, but portions of them do (due to motion 0

of objects, changes in illumination, occlusion or errors of a2 a bl

the edge detector). Extending the matches is necessary, as 1 Q1 b2

long matches are much more reliable than shorter ones, so P1

good matches are better distinguishable from bad ones. Q
We chose a bottom up approach, in which we break the

initial matching sections into small enough pieces and try a3

to match each such section, then try to extend the match b3

as long as the shape of the curve is similar enough (Another
option is to determine where is the best place to "break"

a super-segment, but this is complicated, since it requires 4 -

finding corners, junctions and other high level features, and

may fail when we have occlusion and motion). The size of P2 Q2

the initial pieces was chosen as , where I is the length of

the shorter of the two initially matching sections. This was

a compromise figure between having a constant number of

pieces per section (which penalized long sections) and hay- Sa, Sb - super-segments

ing a constant piece size (which penalized short sections). {al,a2,a3,a4} - segments of Sa, {bl,b2,b3} - segments of Sb.

P1, P2 - sections of Sa, Q1, Q2 - their initial matching sections.

3.5 Relaxation step Matching is based on segment matching : al-bl, a2,-b2,

In this step we evaluate matches using a global criterion, a3-b3, a4-b3.

namely similarity in 2-D translation of neighboring matches

(similar to other matching algorithms). We discard a match

if the total number of points in matches which support it Figure 3: example of matching super-segment sections

is below some threshold value (defined later). The sup-

port is based on "similar" average translation within someneighborhood.

Definition 3 sa is a neighbor of s., if the distance be-

tween their closest points is less than the maximal disparity.

The neighbors can be computed in the same way as the %
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3.7 Why repeat the previous steps ?

In the algorithm to match sections based on shape similar-
ity, each section was matched and extended independently.
Therefore we expect a lot of overlapping matches. For ex-
ample, consider the case of matching two identical super-
segments of length 1: we divide the first to log(l) sections

and then extend each independently, so we end up with
log(L) identical matches. The overlap-removal algorithm
will remove log(1) - 1 of these matches. In all our exper-

Score of the match (P, Q) is the area between iments the number of matches was significantly reduced
them (colored) over the total number of points after this step. If many matches were removed, there can
in the two sections squared. now be matches with not enough support (see section 3.5),

Figure 4: Area between two sections (P, Q) (Q translated so we need to apply the relaxation again. If two overlapping -

to start where P starts) matches were divided by the overlap-removal algorithm,
and then one of them was removed by the relaxation, the
remaining one can now be extended again. Therefore we

Sa Sb apply the step to extend matches again and then remove
the new overlaps created by extending the matches.

Theoretically we can then repeat the relaxation again,
then extending and so on. However, the changes at this

P1 stage are expected to be minor, and since we cannot guar-
antee convergence, we do it only once.

P1

Extension of the match: R2

Initially the inner sections only match, then they are _P2

extended until score becomes worse. t

FigureS5: example of matching super-segment sections :=
M1 = (P1,Q1) partially overlaps M2 =(P2,R2) '3.6 Removal of overlapping matcheso

Let M1 = (F, Q) and M2 = (0, R) be two matches. We say -- - - P..'
that M1 and M2 overlap if either P and 0 are sections of the ,'
same left super-segment s ,, and have points in common,0
or Q and R are sections of the same right super-segment

s&*, and have points in common.-- - .Assume (w.l.o.g.) the first case, then two possiblitiesexist: u overlap s bcm wrePartial overlap p a4 0r 4 M

3 C eo alete overlappn matche

The two cases are illustrated in figure 6. In both cases
the solution is to take the better match and the remain-
der of the other match. In the example of figure 6, we
take matches M e and the remainder (the non overlapping mm---,
portion) of M . In the second case, we prefer M.segmenP3.Q

To evaluate matches we try to use both the similarity The match M3 = (P3,Q3) contains the m Atch .
in shape and in translation. We say that a match M is M4 (P4,R4).

better than a match N if the score of M (as computed by
the previous step) + (1000 over the number of points in Figure 6: The two overlap possibilities
supporting matches) is lower than that of N. 6, we
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previous sections: the use of continuity and sections of ar-

4 Results bitrary shape and size in matching, the use of length of a

We applied our algorithm on a number of real images, match, evaluation of matches based both on shape and on

indoor as well as outdoor scenes. As long as the shapes common translation.

of objects in the scene (as projected in the image) did not Some comments are in order:
change much, the results were very good. The results are

shown by displaying only those points for which a match * The algorithm has a very heuristic flavor.
was found, and drawing an arrow to the closest point in the e The algorithm performs best on long curved contours,
other section (after translating to start at same location). so it seems to best fit for matching zero crossings

The arrow is drawn for every fifth point in a matching sec- curves or region contours. We plan to try applying it

tion for each matching section), for clarity, to regions and to curves of the same image, processed
We give five examples, in each of which with different LoG masks.

figures (a),(b) contain the original images, 9 We may get better results for stereo pairs by applying

figures (c),(d) contain the super-segments obtained from this algorithm with the epipolar constraint, as it can

the zero crossings of the convoived images handle sharp changes in disparity, as demonstrated

and figure (e) contains the result of the matching. by example 11. ir
1. Figures 7 contain two 512 x 512 pixels images taken

from a sequence of a road scene (a = d = 10). Both * The computation is made in 2-D only, but we can
the observer and the other car are moving, find the actually corresponding points using areas of

2. Figures 8 contain two 512 x 512 pixels images of a car high curvature or even the simple method we used

crossing the observer view-point (o= 10, d = 30). for displaying the results (a left point matches the

The algorithm performed well on the image, even closest point in the translated matching right section).

though the disparity was large, which shows that the These point-to-point matches can be used for motion

location of the match does not matter much, as long estimation in 3-D. We are currently working on using

as the shape does not change significantly between the Motion Estimation algorithm developed in 1221.

the frames. This algorithm uses matching points in three or more
frames to estimate 3-D motion and location of points

3. Figures 9 contain two 256 x 256 images of an office in frames as well as give some error measure to the
scene (a = 5, d = 10). The camera faces the direction match. Since using the Motion Estimation algorithm -

of motion, so we expect objects to expand. requires matches in multiple frames, an algorithm to

4. Figures 10 contain two 256 x 256 images of a corridor combine the results of matching pairs of images will

(or = 5, d = 10). The camera faces the direction of be useful.
motion, so we expect objects to expand.

5. Figures 11 contain two 256x 256 images of an outdoor Appendix: Computing area between
scene of trees (a = 5, d = 10). This is a lateral motion

case, which is made hard by the large disparity differ- two sections
ences, and therefore most stereo algorithms will not

match it successfully. We did not use the knowledge The following is a general idea of the computation of area

that motion is only lateral and allowed search in all between two matching sections (some of the details have

directions, yet the algorithm was able to match the been left out). The idea is to translate the right section to

scene quite well. Using the epipolar constraint would have same starting point as the left section, and add points

probably improve the result. to ensure that the last point is also the same (we might

The images in Figures 9, 10 and 11 were obtained from have to remove remaining points from the sections). We

SRI International, courtesy of Dr. Bolles. get two sections which start and end points are the same,

The program to implement our algorithm was written so we have a cycle. We find all simple cycles (cycles which

in Common LISP on a Symbolics Lisp Machine. do not cross themselves) and compute the area for each by

a simple procedure. Figure 4 illustrates the idea.

The algorithm:
5 Conclusions and Future Work Assume sections P = (PI, P 2 ,..., Pk) and Q = (Q,Q 2 ,...,Q,)

We have shown an algorithm to compute correspon- are possible matches, where P. Dfine an i Qe p %
dence between 2 frames with very few constraints. We Translate Q to start at P%. Define an intersection point

as a point P such that there is a point Qj in the trans-
suggested the use of super-segments and sections of super- lated Q, such that Pi = Q- (Note that P, = Qi). Find all
segments. Correspondence was based on shape similarity intersc th is ca be oe lar by draing

between matching sections and on translation similarity be- intersection points (this can be done linearly by drawing

tween matches, and demonstrated some results on a number the left section in the plane and traversing the translated -of rel imges.right section). The points of the two sections which lie be-

ofTrealv ages tween two adjacant intersection points form simple cycles.
The advantages of our method were discussed in the The sum of the areas of the simple cycles is the area of

NON
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the match. We compute it by assigning every cycle point 1I11 R. Jan, W. N. Martin, and J. K. Aggarwal. Segmen-

(x,y) a score s = xn - xP where x. and xP are the x co- tation through the detection of change due to motion.

ordinate of the next and previous points on the cycle. Let Computer Graphics and Image Processing, 11(I):13-

4[x = ((yi,s), . . , (y,,s,)) a sorted scan line. The area of 34, Sep. 1979.

the cycle along the scan line is the sum of all distances for 1121 R. Jain, D. Militzer, and 1.-H Nagel. Separating non-

which the accumulated score is non-zero, stationary from stationary scene components in a se-

The algorithm is linear in the number of points of the quence of real world tv-images. In Proceedings of the

two sections, except where we sort the rows. This step 5th International Joint Conference on Artificial Intel-

requires rlog(r) time, where r is the number of points of ligence, pages 612-618, Cambridge, Mass, Aug. 1977.

this scan line. It will usually be a constant though, since 1131 R. Jain and H.-H Nagel. On the analysis of accumu-

points along horizontal lines have score zero and therefore lative difference pictures from image sequences of real "-

do not affect the sum and can be eliminated, world scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1(2):204-214, Apr. 1979.
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(, a) Frame 1 (b) Frame 2 ,

.(c) Zero crossings of (a) (d) Zero crossings of (b) (e) Matches of (c),(d)

Figure 7: Advancing car
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(a) Frame 1 (b) Frame 2

'- - -,, , . - '(e) Matches of (c),(d) :'
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" "-" t • _Figure 8: Crossing car

• (c) Zero crossings of (a) (d) Zero crossings of (b) ,-
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Spatio-temporal Analysis
of an Image Sequence with Occlusion

Shou-Ling Peng and G6rard Medioni

Institute for Robotics and Intelligent Systems
School of Engineering

University of Southern California
Los Angeles, California 90089-0273

Abstract The method to perform motion detection and under- 0
We present a method to analyze a sequence of standing introduced in this paper is basically domain in-

image frames taken close apart in time, forming a dependent. It is able to calculate flow from discrete im-
spatio-temporal volume. We first detect edgels in ages and to separate objects based on their motion alone.
each spatial image, then analyze individual slice The procedure developed here is not computationally in-
centered on each edgel and taken in the tempo- tensive, and the information needed is only local in na-
ral direction. The combination of results from ture, making a VLSI implementation possible [15]. |
these multiple slices enables us to compute an es- V
timate of the velocity in the direction normal to The following assumptions and restrictions are made
the tagent to the curve. This resulting normal regarding the observed sequence of images [20] :.
velocity field may then be used to compute the
real velocity field and to perform object segmen- 1. Maximum velocity
tation. In contrast to most previous approches, the operator is only sensitive to a finite range of
the system is quite robust, it is capable of han-

dling occlusion as well as disocclusion as they are velocity. An object can move at most V.dt between

explicitely modelled. We present results on syn- two images taken dt time units apart,
thetic data consisting of two objects moving with 2. Small velocity change
occlusion and results on real image sequences. it is a consequence of physical laws and the assump-

tion of high sampling rate,

3. Small shape change
each object is either rigid or is changing its shape

1 Introduction slowly,

4. Common motion
Motion understanding is one of the most important objects are spatially coherent and therefore appear

visual functions, and has numerous applications in robotics in images as regions of points sharing a common ,.,
and industrial automation. The information extracted motion,
from this process include segmcntation, range, velocity, 5. Causality
and so on. Motion therefore plays a basic role in the un- objects cannot appear or disappear suddenly.
derstanding process. It seems very reasonable that ani-
mals have perceptual systems or subsystems purely based The principle behind our approach is to find the ve-
on motion [25]. Some animals are known to shake their locity components of an edge point along several different

heads to gather information for hunting. Visual process- directions and estimate its normal velocity, that is the ye- P -

ing is neither a pure bottom up processing nor a pure locity in the direction normal to the direction of the edge, 0ing~~~~sbjc to thehe cosrit liste abomve.ocsig o apr .'
top down one. Communication and feedback are neces- subjecttotheconstraintslistedabove.
sary between high level and low level processing. In this The next section is a brief review of previous work ,
paper, we try to identify and simulate a low level, local in motion analysis, in which three different approaches
mechanism for motion detection. are discussed and compared. In section 3, the basic idea "

of combining spatial and temporal information is intro- , "',,
'This research was supported by the Defense Advanced Re- duced. The method we are proposing to segment objects S
search Projects Agency and was monitored by the U. S. from a sequence of images is discussed and formalized in
Army Engineer Topographic Lahoratories undecr contract the section as well. Several results are given in section
DACA76-85-C-0009
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4 to illustrate how the method works. There are results the moving objects [141. This scheme prefers large mo-
on both synthetic and real image seq Icceb. Finally, , tion so that the interesting objects are far enough not to
summary of remarks is contained in section 5. overlap in position in different images, because the inte-

rior of homogeneous regions do not generate a difference.
It fails when the observer is moving or when the illumi-

2 Previous 'Work nation is not constant.

Motion analysis is a strong research area in computer The second type is a correlation scheme. A patch
vision. The key to understanding of image sequences lies of the image is used as a template and cross-correlated
in the analysis of differences and similarities between con- wgvsF ectie im raes Te prochs akndife i te with other images. The peak value indicates a match in 'secutive time frames. The approaches taken differ in the intensity and defines a disparity for the image patch [13].type of primitives used for matching, the criteria used Thscemsufrfomteolwigiitins17:

to resolve ambiguities and the number of frames in the This scheme suffers from the following limitations [171:

sequences. There can be broadly classified as follows: 1. it requires the presence of a detectable texture within
each correlation window, and therefore tends to fail
in featureless or repetitive texture environment.

2.1 Feature-based Approaches 2. it tends to be confused by the presence of a surface
discontinuity in a correlation window.

This approach is probably the most intuitive if identifi-able spatial features can be extracted and then the corre- 3. it is sensitive to absolute intensity, contrast, andL

spondences are possible to establish. A variety of possible illumination.

features have been tried: points, line segments [17], blobs, 4. it gets confused in rapidly changing depth fields p
local edges [12], vertices [2], local maxima of variability (e.g., vegetation).
[3,18], local statistics [25], extrema of the local grey value
curvature [7], corners[6,24], regions [21,27] or even recog- The third type is a gradient scheme which is widely e
nized objects. Good features are those which can min- used for the calculation of optical flow [8]. If I(x,y) de-
imize the effect of illumination and geometric changes. notes the intensity function of the image, then the fol-
The higher the level of descriptions at which matching lowing holds:
is attempted, the less ambiguous the matching process
will be, but this gain may be offset by the errors and 8I
deficiencies of the current programs producing those de- T = G, -u + G v (1)
scriptions. The sampling rate may be large as long as the 0"

features are still in present the images. The accuracy is where -O is the temporal intensity change at position
high if a sharp and localized feature is tracked, but such (xy); G. and G, represent the intensity gradient at the
desired feature may be hard to find. image point; and u, v are local velocities in the x and

y directions, respectively. Since E, G. and G, are all
The extracted features of images are then matchee to yS

calculate a set of disparity vectors for the sequence. The measurable by the observer, u and v can be determined
by the above relation.correspondence is established based on a metric af aity Anandan suggested a framework to compute dense

function as well as a group mapping criterion. The best
match is found based on an optimization criterion. Cri- fiel of Ispaee v e sithased confidence
terion functions can range from simple cross-correlation measures ]1]. In general, intensity-based approaches arefaster at the cost of high data volume. The images must[9] to sophisticated graph-matching procedures [121. The be analyzed for every few pixels of displacement, which
matching process is computational expensive. Methods
such as coarse-to-fine resolution matching [10] may be means a high sampling rate. This approach allows com-
u epplex shape changes and introduces the many-to-one match

problem. It is also very noise sensitive and less accurate
due to ambiguity of local measurements. A VLSI analog

2.2 Intensity-Based Approaches circuit was designed at Caltech to implement equation

(1) [26]. The local ambiguity due to the aperture problem
This approach can be subdivided further in three: is handled by a constraint-solving circuit.
The first type is a differencing scheme which is done by An interesting experiment demonstrates that the :
subtracting one image from the other and thresholding feature-based approach is a high level processing while 1.
the result. The clusters of points in the difference image

correspond to moving objects. By ignoring the stationary the other one is low level [22], see fig. 1. A solid square
background, the computational resources are focused on is shown in the center against a dark background and is

then replaced with an outline square on the left and a
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still gives a continuous trajectory in the spatio-temporal

data but it is not necessarily to be a straight line and, in
general, does not fall on any EPI. A new approach is to
be discussed in the next section to recover the trajectory

called a path in order to derive the motion information. In
contrast to some previous methods which require the ac- -

quisition of the complete spatio-temporal volume before
processing is done, the method described here provides
estimation after a few frames, and refining them as more
frames come in. It therfore makes better use of storage

Figure 1: Features of Objects and processing is faster. Z'

solid circle on the right.

The viewer who is confronted with these images usu- 3 Description of the Approach
ally sees the square moving toward the circle rather than
toward the outlinc zquarc, but -w.hen the images are pre- From many biological experimental evidences, the prim- •
sented slowly and there is time to scrutinize the image, itive animal visual processing can be modeled as a non-
then the perception is that the square moves to the out- linear system which is a function of time and space. The
line square. This suggests that regions of low spatial system function is basically a composition of a spatial

frequencies (smooth intensity change) are more likely to bandpass filter and a temporal bandpass filter. The cen-

be detected initially, which would suggest that intensity tral frequency and bandwidth define the range and sensi-

processing is performed by a preprocessor. tivity of its motion detection ability. The filtering effect
permits to find the highest correlations in both temporal *.,,
and spatial domain.

2.3 Image-Sequence-Based Approach The goal of this paper is trying to devise a primitive '

There is still another approach using a sequences of closely parallel process which is able to extract motion infor-

spaced images. This approach has received little atten- mation locally from the intensity image. The extracted 5.

tion until recently because of the huge amount of stor- information is passed to the higher level for a globally-9

age and computation involved. A solid of data called consistent interpretation. -

spatio-temporal data, with time as the third dimension, 3.1 Basic Idea
was introduced by Bolles and Baker [4]. It is constructed
by a sequence of images close enough that none of the In many low level biological visual systems, edges are
objects moves more than a pixel or so between frames. always one of the most useful features detected by the
The epipolar-plane image, or EPI, is a slice taken from front-end preprocessing. When we look at a scene with
the spatio-temporal data along the temporal dimension. moving objects, we are first alerted by the moving edges

They used EPI to simplify the matching phase in stereo and then the movements propagate into the interior of
analysis. Consider a simple lateral motion in which a the corresponding regions. At this moment, our internal
camera moves from right to left along a straight track and representation of the scene becomes a bunch of surface
takes pictures at constant distance with its optical axis patches associated with velocities. Those surfaces may
orthogonal to its direction of motion. Any feature point P be matched with our internal models to recognize mov-

describes a linear trajectory on the EPI because the only ing objects. Motion is not the only cue human uses to
motion is horizontal and constant. The slope of the line visualize the world, but some other life forms do rely on
determines the distance from the point to the camera. motion exclusively, e.g. the predacious activity of the
Occlusion is also immediately apparent in this represen- frog. They prey only on moving worms or insects and
tation. Those linear trajectories are then extracted by their attention is never attracted by stationary objects. ".e

a non-directional Laplacian-Gaussian filter which treats "i't"
the time domain the same as the horizontally spatial do- The motion information we want to extract is the nor-
main. Therefore the edge features are mixed with the mal flow associate with the edge elements. The aperture
intensity discontinuities due to occlusions. An extended effect restricts us so that only one component of the mo-

work using projective duality is proposed in 1161, which tion in the 2-D image can be estimated. S-' "
is expected to generalize the linear camera motion to an Assuming a dense image sequence is available, the
arbitrary one. This will still be applicable only if the method chosen for the normal flow estimation is basi-
camera path is known, and if the scene is frozen. To cally a spatio-temporal analysis on the slices constructed S
generalize this idea for motion analysis, consider the case form the image sequence. A slice is a collection of L 1-I)
where the camera is fixed. The motion of an image point images of width 2W taken from L successive frames in
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andfl be the orientation of V, then we have the following
relation

t V - s in  - )
sin (a - 0)

The orientation of the 1-D image, 0, may be arbitrary,
-_Wwe choose the most convenient four orientations: -45*,

loW Cowdi.z.s.t.= Lo-a Coordint System 0° , 450 and 900. The corresponding slices are called S- 45 ,

Figure 2: A slice from the sequence So, S 45 and S90, see fig. 4.

the sequence at the same position, see fig. 2. It can be
displayed as an image, the vertical and horizontal axes

corresponding to the time and spatial directions respec- s -46

tively.

This spatio-temporal data structure provides an easy

way to trace a line segment through frames. Assume s o

there is an edgel P on a line segment under translation

IV in frame i, it moves to P' in frame j. If we construct
a slice centered at P with inclination 0, the 1-D image s,6 s go

in the jth frame picks up another point P" because in

general the orientation of the slice is different from that
of the translation IV, see fig. 3. Figure 4: Different orientations of slices

S VY

Constraint Line

. / x v9

-Ax . v,
cc ~v.s V

V, 4

Figure 3: A path in a slice

Since we assume high sampling rate, there are points
between P and P" corresponding to the line segment in
frames in between, the sequence of those points is called Figure 5: The normal velocity and constraint line in ve-

the path of P in the slice . The slope of the path gives locity space

an estimate of the speed form P to P",

P" t P torFor each edge point detected by the Canny edge detec- .d.
tj - ti At tor [5], four slices are constructed with all the 1-D images

form frame 0 to frame L - 1 centered at the position of
The longer the path can be traced, the better the esti- the edgel in frame 0. The velocities estimated from the

mate of V9. Therefore all the V9 estimates are associated slices fall on a line in the velocity space, see fig. 5. We
with a confidence factor proportional to the length of the can simply fit a line to the velocity points based on least

corresponding path. square error weighted by the confidence factor, and find

V* alone is not enough to determine the real velocity the perpendicular vector from origin to the line. The per-

V, it only provides a constraint that the projection of V7 pendicular vector is the normal velocity N and the fitted

onto the normal of the normal of the line segment should line is called the constraint line. Although two slices are

be the same as the component of V, along the normal good enough to determine the constraint line, we use four

direction. Let a be the inc)-nation of the line segment to reduce the chance of alignment in a digitized process.
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1 Figure 8 shows some examples when a corner is encoun-
t At tered. Corners are worth noticing because they can give

both velocity components of the motion.

3.2 Segmentation Based on Motion Only
(a) (b)

Once we have the normal flows assigned to the edge
points in a frame, the next step toward image under-

t standing is the interpretation of the flow field, which can
ti4 subdivided into two stages, the first of these is to segment

- r- -- r - Ithe edge points into contours and the second stage is to
tj find the real velocities of the objects whose boundaries

-x : -j and surface markings give rise to those contours.
10 10 To segment edge points in an image frame without

(c) (d) any a priori knowledge, problems may occur when there
are more than one objects moving and occlusion and/or
disocclusion take place. If one object is moving in front of

Figure 6: Paths with Occlusion another object then edge points on the boundaries of the
rear surface will either be occluded or disoccluded during

Besides the slope, the topology of paths in a slice also this movement, depending on whether the front object is
gives important information. In fig. 6 (a), the line seg- moving to cover or uncover the object behind it.
ment to which the edgel P initially belongs, will occlude The contours close to where the occlusion or disocclu-
some other line segment x. unit length away from P along sion takes place will always form a three-way junction, -\

the direction 0 at time t1. The Same message is carried where 2 branches belong to the front object while the
in figure 6 (b) except that the two lines are moving in op- third belongs to the rear one. One image frame along
posite direction in (a) while both are moving in the same is not enough to tell which two branches go together. "
direction at different speed in (b). Figure 6 (c) and (d) When we process the slices as mentioned in the previ-
show that P is on a line segment about to be occluded. ous section, the particular Y or A shape paths will be

noticed. Therefore, we can predict where and when the

occlusions or disocclusions will happen, and send mes-
sages to the image frames to mark the places to watch
out for occlusion or disocclusion.1 1 theEach frame will receive several messages from earlier
image frame if there exists occlusion or disocclusion in

(a) (b) (c) the frame. Besides the location, the messages also give
the dominant velocities within the spots of occlusion orFigure 7: Paths with Disocclusion
disocclusion. The dominant velocities is the velocity of
the motion of the front object along the inclination of the

slice, i.e. the slope of the crossing path which terminates
the other.

' H I [ ]Now the segmentation becomes easier because thee
, ["j ambiguity of the three-way junctions is resolved. When-

ever we trace a contour and get into an occlusion or disoc-
(a) (b) (c) clusion spot, we can use the similarities among the three

Figure 8: Slice with Corner branches to the dominant velocities to determine whether
to break or extend the contour. Our segmentation pro-
gram tries to generate contours as long as possible.

Figure 7 shows the cases of disocclusion, in which a ,
new line segment shows up at the position Zd unit length
away from P along the direction 0 in the jth frame. The 3.3 Computing the Correct Velocity Field

new line segment is slower than the current one in (a), along a Contour
faster in (b) and moving in a different direction in (c). The segmented contours are associated with the aormal V
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I

flow estimates of each point. An additional constraint To loosen the constraints, equation (3) does not have
is used for the integration of local motion measurement to be exactly satisfied. Therefore the energy function,
to compute the two-dimensional velocity filed: the con- 0, is defined as a linear combination of the above two
straint is a smoothness constraint to minimize the vari- equations, which is
ation of the velocity measurement along the contours,
because the velocity field across a physical surface is gen-
erally expected to be smooth. The velocity field of least n-1

variation is in general not the physical correct one, how- 4 = Z [(Vxi - Vxi) 2 + (Vy - Vyi.q)2]
ever it is often qualitatively similar to the true velocity n-1

field. When the two velocity fields differ significantly, it . [Vx n. + Vyi . nvi - Nil2  (4)
appears that the smoothest velocity field may be more i=0
consistent with human motion perception [11]. The par- TesVr l a 12To find out the set of velocities { (Vxo, Vyo), (Vxi, VyI),
ticular measure of variation we choose is j> I -iI ds : the ... , (Vx._ 1 , Vyn-) } which minimizes the energy function
integral of the square of velocity change along the con- in equation (4), one can take partial derivatives of q5 with
tour. respect to Vxi and Vyi, where

If there exists at least two edge points at which the

local orientation of the contour is different, then there
exists an unique velocity field that satisfies the known 0 = =0, and

8 a 2 avxi
normal velocities and minimize f¢, . Sn wh
only discrete points, the first in the design of the algo- 04k = 0, fori= 0... n-1 (5)
rithm is to convert the continuous formulation into a dis- aVyi

crete one. From equaon 5 we have 2n linear equations for 2n S
unknowns. We can use any method to solve the linear
system as long as not all the edge points are on a straight 4v, vy I line. The method we choose is a conjugate gradient at-

/ gorithm, which finds a solution in 2n iterations with the

initial guess Vxi = Nin i and Vy = Ningi.

A3.4 Higher Level Motion Processing

x i 
Yi , y

After the segmentation and variation minimization, we
have a set of contours associated with velocity estimate J,

L along them to represent the optical flow field in the dy-
Figue :namic scene. A great deal of information could be picked
Figure 9: Illustration of the notations up from the flow field even without invocation of high

level processing like object recognition. For example, the
flow field is rich enough to support the inference of colli-

Assume that the contour has n edge points on it, { sion when a robot is moving in an unknown place, or to
(xO,YO), (x 1,y 1 ), ..., (x1_1,ynr) }. For each edge point, locate the focus of expansion for navigation. p
(xi,y), see fig. 9, we have an estimate of the normal The contours also outline the surface patches. With
velocity represented by the magnitude of the normal ve- the velocities of the surfaces and their spatial relations in
locity, Ni, and the direction normal, [nzi, n,,,j, perpendic- the two-dimensional scene, their three-dimensional struc-
ular to the contour. We want to find a list of velocities, { tures and the three-dimensional motion may be deter-
(Vxo,Vyo), (Vx,Vy) .... (Vxni,Vyn) } which min- mined.
imize the variation,

In particular, it should follow that, away from the
* n-I boundaries, adjacent pixels should have similar motion,

[(Vx, - Vx,_1 )2 + (Vy, - Vy,_)2] (2) pixels corresponding to the same physical location should
have similar intensities, and the resulting path should be

and satisfies the constraint that the component of the smooth 123]. Therefore the velocities assigned to the con- :
velocity in the normal direction equals the estimated nor- tours can be propagated into the interior of the surface,
mal velocity, using Nagel's formulation [19] for instance, to generate

a dense velocity field. We still have to make sure that

Vx, •n2 + Vy, • n Ni, i= 0 ... n-1 (3) the contour segments correspond to correct object bound-
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aries. Otherwise the velocity fields might bleed into other ,
irrelevant regions, which happens often if occlusion or... .
disocclusion are not handled correctly... .

4 Results ,
We have generated a sequence of synthetic images for ";.:...

the purpose of testing and illustration, in which there are -
two rectangles, see fig. 10. The longer axis of the leftmost. : .
rectangle makes a 30* with the x axis. It is moving in the : K
north east direction half a pixel per frame, while the right , 0.... :.. .. ... .. . ..
rectangle is moving in the north west direction with the i. ' .. '.....

same speed. The first and twelfth frames are shown in Figure 11: Slice Analysis
fig. 10 (a) and (b). A typical example of the slice anal-
ysis is shown in fig. 11, in which an edge point on the
lower left boundary of the left rectangle in the fourth
frame is processed. The four slices are in the upper right T, .'. ,

pane while the right hand side shows the result of edge .. . ...........deteciononth sices Telower rgtpaesovw the..............
velocity points in the velocity space and the constraint .........
line fitted to them, and the normal velocity assigned to -

the edge point. Figure 12 shows the normal flow by col- ......
lecting all the estimates of normal velocity for edge points ......
in the fourth frame. Figure 13 shows the result after seg- .::: .. ,,'!

mentation and variation minimization. The fourth frame -' '* ***'' ::

got several messages passed from previous frames and lo-
cated the places of occlusion so that physically related Figure 12: Normal Flow Field of the Fourth Frame
edge points are grouped together. In this example, there :

are only two contours and the variation minimization al-
gorithm is applied to both of them separately with -y= ,
0.01. The constructed velocity field is very close to the ,.,
real value both quantitatively and qualitatively. ., ':

%

Figiee.1OtherwisettheCvelocityafieldsomightFbleedwinto other

irrelevantreregionsegwhichthappens voftenoifmiocclusion"or

disccesinx eare hade ore tly.esqecsfo om on otergto h wno hltmvsu- .

- - - - - - - - - - - - - - -

4.... Reslt .......

Weehvqunne erat dkenthe s ns aof enoie igd fth

the puros f testigta n ilustaionaor in hich theraae-

two ur r 0 ytei euneo w ectangles, seen fig 10.w The longe axis ofnc the leftmostoitina
rectangle makes ao 300 witht the xh axis.w wht is movigeisth

nThe eat iectionlhalf a piel pmae frae ie hes righ SR' th seqenc lok ietelaeaemvnoadh
renglehis temin i the in n orth wt dicin wit th. e vee n asn yhslf adsd ihaltlx

only use a 32 by 32 window containing some palm leaves,%se s is ad e on pansion. The last example is an image sequence taken by

si ce a m il wi d w s l ea y oo no gh t d m o - a robot w hile it is m oving dow n a hallw ay. W e choose a 64 'strate this local process. The first frame of the sequence by 64 window of the scene containing a chair against the
with the window boundary highlighted is shown in fig. 14.

framel ise proesed The four sliceste areour ind therpperrigh

vCourtesy of Dr. Baker and Dr. Bolles minimized velocity flow is shown in figure 17.
l t h t m c i

th4depit iue1 hw h omlfo ycl 3, ' %

lectng al th estmate of orma velcityfor-dge oint -'",



Figure 14: SRI Sequence: Zoom Figure 16: SRI Sequence: IIaI. ,ay

-%

Figure 15: Segmented Contours and Velocity Field with Figure 17: Segmented Contours and Velocity Field with

-=0.01 /=0.01

there is a 2-D SIMI) array as large as the image "''

with each entry of the array an identical processing .
5 Conclusion element, each processing element has a memory L .- '

words long and is able to talk to its neighbors W ""'..

We have presented a spatio-temporal approach to solve steps away in eight directions. All the processing _

VTM

the early processing problem of motion analysis, which elements can construct their slices at the same time ,,

can handle scenes of mt i'" :e moving objects with occlu- via local communication and analyze the slices con-,- ,

sion and/or disocclusion. The characteristics and advan- currently. This property promises a hardware im- " " "

tages of this method are as follows: plementation with identical units performing the -''

same operations in parallel. ,-.,

1. Parallel Processing in the Spatial Domain 2. Pipeline Processing in the time dimension

the slice analyses of the edge points are indepen- the slice analysis only takes L frames. Each time we ,

dent so they can proceed in parallel. Assuming that pump in a new image frame, it is distributed over-*e',440
"
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NATURAL REPRESENTATION OF MOTION IN SPACE-TIME

Wolfgang 0. Franzen '

,,N

Institute for Robotics and Intelligent Systems
School of Engineering

University of Southern California-""

Los Angeles, California 90089-0273 #.u_

Abstract 1 Introduction

This paper describes a new approach to tGe representation of The analysis of motion in time-varying imagery is an artive re-

rigid and nonrigid 3D motion in time-varying imagery. The ho- search area in computer vision. There are a number of good
mogeneous coordinate representation of rigid transformations is surveys on the subject, such as [Nag86].

extended by adding time as an explicit component. We charac- Over the last few years, there has been an increasing trend of
terize the classes of motion and/or structural change that have imposing constraints in addition to rigidity, such as constancy
a constant matrix representation under this new notation. The of motion, to facilitate the analysis of motion, or to solve the 7-.
coefficients of this matrix representation have a natural interpre- structure from motion problem. In his now classic work, Ullman .,
tation as the constant coefficients of a certain nonhomogeneous I U1179] originally solved the structure from motion problem (or- 1.41%' "

system of linear difference equations. thograhic projection) for four points in three frames, using no as- ",€
Amon th clasesof ojec moton avin a onstnt epreen- sumption other than rigidity. The best recent work, that imposes%""-

taton rethefolowng:a contanlydefrmng"objctundr- additional contraints, is that of Shariat [Sha86], who studied ob- % '.
ggt asation roloingid objcotatiny defomng objiecxit uner jects undergoing uniform traslation and rotation. Among other

gongtrnsaton ariidobec ottig bot fxe aisata cases, he solved the structure from motion problem (perspective -constant angular velocity while undergoing translation in any di- poeto)uigol he on:, he rms
rection and acceleration in the direction of the axis of rotation; a prjcio)uinny he pitmtrerms
nonrotating rigid object undergoing constant translation and/or The approach presented in this paper is somewhat different. %..
acceleration in any direction. Rather than explicitly putting contraints on motion, we start _,

Camea moionobjct mtion orsimutaneus amer andob- with systems of equations whose solution leads to nontrivial, but r

ject motion, may all be described using this representation. How- mathematically tractable, classes of motion. The proper selec-
eesimultaneous camera and object motion is not equivalent to tion of such a system is a matter of physical and mathematical C_.

ever,.

either object motion alone, or to camera motion alone. We derive inito.igdminofheordscidintsparis,' -,.
a vector equation which expresses the position of a point on an more general than the motion studied by Shariat, and often al- a

object, at an arbitrary juncture in time, as a funmction of its initial lw h ouino h tutr rmmto rbe o h ,,
position, and the matrices describing the motion of the camera, saen brofpit nhesenu erffrm ,a nhs
and the motion of the object. case. What is more important, this representation also allows the -

study of structure firom nonrigid motion. With the notable ex-
The matrix representation presented in this paper is compact and ception of [Che85], [HP86], [Sub86), and [CP86], relatively little
should allow the efficient computation of the motion of computer work has been done on the quantitative analysis and representa- - .
generated objects. It is straightforward to calculate the matrix tion of nonrigid motion. .. ,
representation given the underlying motion parameters, and vice ..,
versa. In the following, we begin with a brief review of homogeneous .,

coordinates. Then a generalization of homogeneous coordinates,- --
As an application of the methodology developed in this paper, we that we call chronogeneous coordinates, is described. (The term'"
present the following novel result. If a rigid object, undergoing chronogeneous is actually a contraction of chrono-homogeneous).
constant motion of the form described in this paper, is accel- Afe nrdcn oeadtoalnttow eieavco
erating solely due to a constant external force of known magni- Pquation that expresses the position of a point, at an arbitrary,,e-
tude, we show how the absolute distances to points on the object, juncture in time, in te, ms of its initial position and the matrices - -
and the absolute parameters of motion, may be recovered from describing the motion of the object and the motion of the camera. .e

. ,j, C-

Wmonocular image sequence. Then a characterization of chronogeneous motion is given, with
particular emphasis on rigid motion. A novel result involving

the recovery of absolute depth from a monocular image sequence
is presented. Finally, we summarize what we believe to be the

major contributions of this work, and discuss future research. '
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Abstract 1 Introdu.to 0

Thi paer escibe a ew ppoac tot~erepesetaton f he nalsisof otin i tie-aryng magry s a acivere
rigi an norii 3D moio intm-aynmgr.Tehr sac rai optrvso.Teeaeanme fgo

mogeeou cordiaterepesenatin o riid ranformtios i suvey onthe ubjctsuc as[NaS6]



F%
* The motion of a spinning top that is rolling across the floor %2 Homogeneous Coordinates (assume no precession). 0

Rigid transformations of bodies are typically represented using e The motion of a wheel of a car moving at a constant veloc-

homogeneous coordinates. Homogeneous coordinates were in- ity, when viewed from the side.
troduced by Roberts in [Rob68]. [Pau8l] also provides a good Ideally, one would like to describe motion in such a way that the 1%.
overview of homogeneous transformations. The usefulness of this motion parameters corresponding to commonly occuring types
representation stems form the fact that rigid transformation and of motion are constant over time. This motivates the following
perspective are expressible in matrix form. The homogeneous co- extension to homogeneous coordinates, which allows the natural
ordinate representation of the 3D point (z, y, z)T is any 4D point description of the above types of motion, as well as other types,
of the form (wz,..g,wz,w) T 

where w $ 0. The value of the even nonrigid motion.
last component, w, is normally taken to be 1, until a perspective
projection operator is applied.

In the following, let ;3D be the 3D position of a point, and let F4D 3 Chronogeneous Coordinates
be its corresponding homogeneous representation. Also, let 3D N

and ?4D represent corresponding transformed positions of these This section describes a generalization of homogeneous coordi-
points. A general homogeneous transformation may be expressed nates in the time domain, which we call chronogeneous coordi-
as nates. The homogeneous coordinate representation is extended

4D Z4D by augmenting it to encode time explicitly. The chronogeneous ..4 coordinate representation of the 3D point (z, y, z)T at time t is
where any 5D point of the form (wz,wy,wz,t,w) T where w $ 0. Thehil h12 h13 hl, value of the last component, w, is normally taken to be 1, until a e,h21 h22 h23 h24  perspective projection operator is applied. Note that the factor

h3, h2 33 h 4  w does not multiply the time component. Whereas the spatial
h41 h42 h43 h44 components of a point, at least conceptually, range over a contin-is the homogeneous transformation matrix. uous set of values, the time component Is discrete and only takes

A general rigid 3D tranformation may be expressed as on values which are multiples of AT, where 1/AT is the fru.-
rate of the imaging system. The frame rate is assumed to be a

;3D = R3D + T known c~nstant. "'

where Except for the perspective projection matrix discussed below, we S[rl r 1 2 r 131 will consider only chronogeneous transformation matrices of the

7 r21  f 2 2 r23 following form, which we cal' standard chronogeneous matrices:
r
3 1  r

3 2  r
3 3  ."

is a rotation matrix, and T=(tl, t 2 , t 3 )T is a translation vector. [21 322 8 23 72 P2 S 1 PC 311 S32 S33 73 P3

The same transformation is expressed more succinctly in homo- C 0 0 3 3 0 0 0 1 6t (1)
geneous :cordinates as 0 0 0 1 6t 00 0 0

4D ?1!Z4D Since almost all the chronogeneous matrices we discuss are stan-

dard, we often drop this designation.

where The value of the element bt, of C, is restricted to being an integertr r
12 r

13 tl ] multiple of AT. In fact, the value will always be a known multiple
r
2 1 

r22  r2 3 12 of AT. Therefore, this representation has 15 degrees of freedomr31 T 32 T 33 13 and, in general, represents nonrigid motion. We sometimes refer0 0 0 1 J to the submatrix, S, of C, as the structural deformation subma-
trir, or simply the deformaticu submatrtx. If S is a rotation

Despi;e the usefulness of homogeneous coordinates for represent- matrix, then C represents a rigid transforiaation and has only 9
ing a rigid transformation between two frames, this representa- degrees of freedom. The subvector f - (,_ 712, 7

_
3 T has units

tion does not lend itself to describing motion in nmultiframe im- of velocity, but roughly encodes information abou' acceleration,
agery. This is due to the fact that even for relatively simple kinds and the subvector P5 (p1 ,p 2 ,p 3 )T has units of isplacement,
of motion, the homogeneous transformation matrix changes from but roughly encodes information about velocitv.
one frame to the next. Some examples of simple types of motion Tst.
that yield changing -f-matrices a-e: rhe matrix, C, is equivalent to the following 3D transformation:

T The balhtic motion of a (nonrotating) ball accelerating Z~r(t i .51) Si D(t) tI + 1' (2)
due to the force of gravity.

In addition, it causes 'he time to be incremented by the amount" The motion of a (nonrot;iting) camera on a unifclnly ac bt. If 5 i,. a rotation matrix, and if we drop the (Iepeidence on
celerating vehicle. tim e and view [f 1; as the translation %ctor, then the abo e

N'e 
'w- '.e_ it -- i- er



vector equation reduces to the general rigid 3D transformation. The following operator, P, is used in conjunction with P to def.e

Vector equation (2) is a nonhomogeneous system of first order the image plane coordinates of a point in terms of its camera
linear difference equations with constant coefficents. Therefore, chronogeneous coordinates. The operator V is defined as
the theory of linear difference equations may be used to studyz
solutions of this equation. I~Y ( /

zr

4 Common Notation and Assumptions t Y/W 7

This section defines some common notation and assumptions that
are used throughout the remainder of the document. 4.2 Coordinate Notations ,,

4. Seia hrngeeusMarce ndOer- Consider an image sequence, taken by a moving camera, consist-."-
tors ing of "nf " images (0 through n! - 1), and consider a moving
tosobject having "np" points (0 through np - 1) that are visible in '

This section introduces some often used chronogeneous matrices, each of these images. We assume that both AT, the interframe
as well as the perspective division operator. The (5 x 5) identity time interval, and f, the focal length of the camera, are known

matrix is denoted by I"s. Similarly, the (3 x 3) identity matrix is constants. Let Qij refer to the position of the jth point at the

denoted by 13. i
h discrete instant in time. We add a superscript to indicate s

The ~ ~ ~ ~ ~ ~ ~ ~ L folwn arxwlae h saillcto fapit .- ich efrence frame and in what type of coordinates the
The ollwin matixT, eavs th sptia loatio ofa pint position of the point is expressed.

unaltered, but advances the time component by one interframe .
time interval: (i is a point expressed in chronogeneous coordinates in the

1 0 0 0 0 camera reference frame.
0 1 0 0 0

T= 0010 0(3) 0.,! is the spatial (31)) part of the point ( 5 '-

0 0 0 01 AT( Pj is a point expressed in image plane 2D coordinates. It is"
the exact projection of the point ( ij onto the image plane. '

The following equation holds: Q is the actually measured location of the point Q . (in image .

z X plane 2D coordinates). It includes any "correspondence

Y Y noise". .,
T z : z (4) The following relationshidp expresses exact image plane coordi-

t t + AT nates in terms of camera chronogeneos coordinates:

J.. 1 1,

Wp = S J] (8)
We now define the perspective projection matrix, P. In our work,
we use left-handed coordinate systems. For the camera coordinate where P is the perspective projection matrix, and V) is the per-
system, the z-axis points in such a way that positive distances spectiv- division operator.•..

are in front of the camera. For simplicity, and without loss of
Assume that both the object and the camera are undergoing uni-

generality, we assum e that all distan ces are m easured in the sam e fo m c r n g e us ot n.L t A b th ( i id r n g n o s
units (this includes image plane coordinates). Then, with the

matrix that describes the motion of the camera. It describes a
ctmera coordinate system centered on the camera lens center,

new camera position relative to the current instantaneous cam-

1 0 0 0 0 era position. Let 8 be the chronogeneous matrix descfibing the

0 1 0 0 0 motion of the object. Note that etA =/ N3 = AT.

P' 0 0 1 0 0 (5)
0 0 0 1 0 5 Derivation of the "Coordinate Trans-
0 0 1/f 0 0

formation Vector Equation"
where f is the focal length of the camera. Alternatively, if the Teproeo hsscini odrv h oriaetas

camera coordinate system is centered on the image plane, then0.
formation vector equation. This equation expresses the current

1 0 0 0 0 chronogeneous position of a point in terms of its initial posi-
0 1 0 0 0 tion, and the matrices describing the motion of the camera and

• P = 0 0 1 0 0 (6) the motion of the object. We first consider two subclasses of
* 0 0 0 1 0 motion, and then derive the general coordinate transformation
Ss0 0 luo of 0 t ivector equation.

% %
4 ComnNttoen supin I~) 7
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" 6 A Characterization of Constant Chrono- "
5.1 The Case of a Camera Moving Through a Static 6o

Environment geneous Motion ?

Consider a camera undergoing chronogeneous motion through a This section gives a characterization of the classes of motion that

static environment. Motion of the camera has an inverse effect are representable by constant coefficient standard chronogeneous

on object coordinates. Let us be more specific. Let us intro- matrices. The following subsections discuss specific subcases in
duce the chronogeneous matrix AR such that A = TAR, that is more detail. In each case we show how the components of the
AR = T-1 A. The matrix T was defined previously, and causes chronogeneous matrix are determined by the underlying param-
time to advance by one "tick". The matrix AR represents the eters of motion, and how the motion parameters may be corn-
spatial transformation that takes place between successive posi- puted, given a chronogeneous matrix. At the end of this section,
tions of the camera. Then the following relationships hold: we briefly touch on the structure from chronogeneous motion a

problem.
i+ I Consider an arbitrary constant coefficient standard chronogeneous

and matrix, with deformation submatrix S. This matrix represents W.

Q+]. : -1A) _ % = T, the motion of some object, which is translating through space
c TARQ, - T(TA.) = , and structurally deforming according to the matrix S. In addi-

and therefore tion if the matrix expression (13 - S) is singular, the object may
N'.= _ -'(9) also be accelerating in a direction orthogonal to the subspace (of-1II (T A -T ) 0 j ( ) 3-space) spanned by (73 - Sq).

If the camera is stationary, then AR = l", A = T, and To make the foregoing more concrete, consider the case of a rigid-= rQ0,j. object. In this case, the deformation submatrix S is a rotation

matrix, call it 1Z. The matrix expression (73 - 7Z) is singular.
This is. easily seen as follows. Let X be the (unit length) axis of

5.2 The Case of a Stationary Camera Viewing a rotation vector associated with 7?. Then
Moving Object

Consider a stationary camera viewing an object that is under- (=

going constant chronogeneous motion. The new camera chrono- As the null space of (13 - 7?) contains a nonzero vector, this
geneous coordinates of a point on the object are simply obtained matrix expression is singular. Although we do not prove it here,
by multiplying the current coordinates by B, that is: (13 - 7Z) is actually of rank 2, unless 7? = 13. Therefore, if

7 1 "3, A spans the nullspace of (13 - 7Z), and the general
,+I,j = 13Qj case of rigid 6-ronogeneous motion corresponds to a rigid object

and in general rotating with fixed angular velocity, translating through space,d = B'QJ (10) and accelerating in the direction of the axis of rotation.

Figure 1 gives a taxonomy of the classes of rigid chronogeneous
I t, , motion. These are discussed in the remainder of this section, after

a discussion of the case of general deformation, with (13 - S)

5.3 Simultaneous Camera and Object Motion noningular.

After considering the previous two cases, derivation of the coor- rigid chronogeneous motion
dinate transformation vector equation is straightforward. If the
camera were stationary, then the chronogeneous position corre-
sponding to the i"' image of a point would be B'Q',,. If we uniform translation and rotation

consider only the spatial transformation involved, then the new
position of the pr'nt due to object motion is T-'BQ.i ,. How-
ever, this point is viewed by a camera that has undergone motion.
Therefore the composite effect is given by:

(11) pure acceleration rigid homogeneous motion

The matrices in equation (11), the coordinate transformation "erotation]
vector equation, do not commute, and so the equation cannot pore r
he simplified. The implication of this vector equation is that, in
general, simultaneous camera and object motion is not correctly
modeled by either camera motion alone or object motion alone.
"lhis is due to the fact that, in general, there is no matrix, C. L
such th,.t C' - (". T)'T '. lHowever, for every pure can- pure translation
era motion there is a pure object motion that has an identical L ..
effect on coordinate positions, and vice versa. Figure 1: Taxonomy of Rigid Chronogeneous Mlotion

%'.'ra
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6.1 A Translating Deforming Object for some initial center of rotation, 8o, initial velocity vector, I,
and signed magnitude of acceleration -y. The axis of rotaiiui, '--

Consider an object undergoing "constant deformation" about a i4, is determined by 1R. Substituting the formula for the posi- S
center of deformation that is undergoing pure translation. Let '/ tion of the center of rotation into the recursive relationship, and
be the position of the center of deformation at the ih discrete simplifying, we obtain: %k
instant in time. Then the following equation recursively deter- 40
mines the 3D position of a given point on the object, for a given+ = 7Z1¢Q: + t(( " - 7Z)V - 7 iAT)
deformation matrix S: + (2"3 - R)F0 + VAT - '-yi(AT)2

(QI +R,,+ A+ ) A2

- 441) = S(Q: - 'F) The chronogeneous matrix representing the same motion is:

For a translating object, e4 =~ ±o +V = c'o + i1VAT, for some [ 1, (I--c±A 1Z)
initial center of deformation, F0, and velocity vector, IV. The B = -- fAAT I - I( (15),
above equation may then be rewritten as follows: 0 00 0 1 AT

0 01
Q! S ) +

o( ! oF + oA) + 'e ( IV

= S(O! - (c' + iVAT)) + (c' + (i + 1),AT) We now derive expressions for the motion parameters, c, V, and •

= SQ -4 - iSIVAT + eo + i1VAT + VAT -y, in terms of 7?, X1, f, 15, and AT. The following relation-
= Sol + i(13 - S)IVAT + (13 - S)eo + VAT ships express the vector components of B in terms of the motion ./,

SQ + t(13, - S)IV + (I3 - S)c' + VAT parameters: ,, s
= (." - ?)IV - 7 AAT (16)

The chronogeneous matrix representing the same motion is: = (13 - R)c0 + IVAT - 1-yX(AT) (17) £
S (13 - S)IV (17, - S)o + VATAT 0 0 0 1 (12) We first derive an expression for 7. From equation (16):

01010 0 1 A.F = A-(("- 7?)1V - -yAT)

- .(( 3 -7Z)V) -7 (,fi)AT

0 --7AT,We assume (13 - S) is nonsingular. Then given an arbitrary 0AT '

matrix a -yAT
0 0 0 and therefore0-O1 I AT 

7 -(' /T''

In the above, the symbol "." indicates dot product.
we may compute the parameters of motion, V and go, as follows: Next, we derive an expression for IV. From equation (17):

V = (1 - S)-If (13) P = 14((, - 7Z)o + VAT - 174(AT) 2 )

co = (13 -- 5)-(f 3 - VAT) (14) = ((23 - 7Z)o) + A(VAT) - '7 (,kA)(AT)2

= 0+ (X V)AT - (- )1AT)(AT)2
6.2 Rigid Chronogeneous Motion: General Case (A)AT +(

Consider the case where the deformation is actually a rigid rota- and therefore
tion, R. Assume R / 13. The case R = 3 corresponds to pure
acceleration, and is treated elsewhere. . .

As discussed in the introductory remarks to this section, the A.(/AT f)
general case of rigid chronogeneous motion corresponds to a rigid 2

object rotating with fixed angular velocity, translating through In the following, the symbol "±" used as an exponent denotes
space, akd accelerating in the direction of the axis of rotation, the pseudoinverse operation. Readers who are unfamiliar with
The following recursive relationship holds the pseudoinverse are referred to 11,11741. The pseudoinverse is

a generalization of the inverse that also applies when the matrix
m0, --(Q:, c), is not square, or not of full rank (as in the following). We make

use of the fact that (13 7Z)' , . The initial velocity vector,
where we may write V, is determined as follows:

C r ( t X i tV A T 2i r(AT)2  (1R )'(1., 7?)V I (.1 2 ),
(7 3 1 ) ( ' € 7 A A T ) i (A . )A ' " "

(T, R) l' 7(1I 7?A)' r (A.(I;/AT 1 '))A"

%5
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Finally, we derive an expression for 80. The initial center of ro- 6.5 Pure Rotation
tation, 40, is not uniquely determined. Adding any real multiple
of A to 0 rcs.ults in a physically indistinguishable motion. The Pure rotation is a subclass of rigid homogeneous motion, with
derived value of 4o is the minimum length solution. From equa- v' = 0. This class of motion has five degrees of freedom. There are
tion (17): three degrees of rotational freedom, and two degrees of freedom

for the center of rotation. The recursive relationship simplifies
6= (13 - R)+(P - VAT + 17X(AT) to

(Is - 7?Z)+( - 7AT) (Qi+l,j - 4) = ( -4)
= (3Z - R)+(P - ((13 - 7Z)+f + (A.(P/AT - lf))A)AT) and the chronogeneous matrix corresponding to this motion is

2o

= ( - )+(-(13- 7)AT - (4.(P/AT - 6 (3 - 7?)0

(2"3 - "R)+ - ( 3 - )+ AT) B 0 0 0 1 AT (25) -

0 0 0 0 1
In summary, the motion parameters may be computed as follows: -

'

7 = -(X.P)/AT (18) 6.6 Pure Acceleration

V = (Is - 7?)+t + (A.(P/AT - )). (19) For this subclass of rigid chronogeneous motion, 7 = 13. This

o = (Is - I)+(fi - (13 - IZ)+fAT) (20) class of motion has six degrees of freedom. The following rela-
tionships hold:

6.3 Uniform Translation and Rotation Qfj= Q , + tit - 17t A

For this subclass of rigid chronogeneous motion, 7 = 0. This class =0j + iVAT - li27X(AT)22|
of motion has eight degrees of freedom. There are three degrees
of rotational freedom, three degrees of freedom for the velocity for some initial velocity vector, V, magnitude of acceleration, 7,
vector, and two degrees of freedom for the center of rotation. The and axis of acceleration, S. When comparing this subclass of ;
chronogeneous matrix representing this motion is: motion to the general case, we see that there is no reference to p

a center of rotation, and the axis of rotation has been replaced
(13 - 1?)IV I1(I3 - I)4 + IVAT by an axis of acceleration, that is free to point in. Any direction.

S 00 1 0 0 1 AT (21) The recursive relationship for this motion is
0 10 10 0 1
* = ~~~- yXAT + VAT-[A T)-

6.4 Rigid Homogeneous Motion and the chronogeneous matrix representing this motion is
This case corresponds to the class of motion representable by ho- - 13 - 7SAT 2AT- 1

r~~~. O-this andT thi clasX(AT) .
mogeneous transformations. r in this case, and this class of B - | 0 100 1 AT (26)
motion has six degrees of freedom. For 7? $I 13, a general motion 0 00 1
of this class consists of rotation, coupled with a restricted form
of translation. Translation, if any, occurs in the direction of the Given a chronogeneous matrix, with S = I = 2", the motion
axis of rotation. This may more comnmonly be described as heli- parameters, 7, A, and V, may be computed as follows:
cal or "barberpole" motion. The following recursive relationship

holds 4 = ifII/AT (27)

- 4+x) = ?(tj -4) X --- riliI (28)

V = PAT- if (29)
where2

- co + WA - co + iwAAT The signs of equations (27) and (28) are chosen to be consistent
for some initial center of rotation, 4o, and (signed) magnitude of with equation (18), and so that 7 is nonnegative.

velocity, v. The chronogeneous matrix representing this motion

is: 6.7 Pure Translation

B 0 0 0 1 AT (22) For pure translation, ?? = 1 s, and f = 6. This class of motion has
0 0 0 0 1 three degrees of freedom, The recursive relationship simplifies to p

Given a chronogeneous matrix of the above form, the motion+ . + IVAT
parameters, u and o, may be computed as follows: :+0

= (.P)/AT (23) which implies jp,

FO = (13 X 7)+15 (24) Q' + tV Q = + iVAT I

'ea
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The chronogeneous matrix corresponding to this motion is where A > 0 is an unknown scale factor. The above relationships

reflect the fact that, without additiona assumptions, the depth
[ "3 0 'AT] can only be determined to within an unknown (positive) scale 0

0100 1 AT (30) factor.

0 0 10 0 1 J We now make the additional assumption that the object is accel-

erating solely due to a constant external force of known magni-
and the following relationship expresses IV in terms of the tude, and show how the scale factor may be recovered. This, in

suhvector of B: turn, allows the true chronogeneous matrix, and hence the abso-
= PlAT (31) lute parameters of motion, and the absolute distances to points

on the object to be recovered. This assumption is reasonable

6.8 Structure from Chronogeneous Motion for certain objects, such as a falling apple, or a cannonball (ne-
glecting air resistance). Such objects are undergoing "ballistic"

The author is currently working on solving the structure from motion. The object may be rotating, but in order for the motion
motion problem for an object undergoing constant chronogeneous to be chronogeneous, the direction of the axis of rotation must

motion. Details of the solutions will be presented in a future be aligned with the direction of the external force (gravity in this

paper. Table 1 summarizes the number of frames required to case). In other words, the axis of rotation must point either "up-
solve this problem for a given number of points, for both rigid ward" or "downward", with respect to the force vector. In order
and nonrigid motion. to determine the scale factor, we use the fact that the magnitude

Rid rof the acceleration is the same in all inertial reference frames. In
Rigid Chronogeneous Motion I nts raChmonogeneous Motion the following, let g be the acceleration due to the external force.Points rames Points Frames

1 6 1 9 For the general case of rigid chronogeneous motion, we have from
2 4 2 5 equation (18):
3 3 3 4t

5 3 g = hVTI Ir -W.

Table 1: Number of Frames Required to Solve SFM Problem = I - (.T.1iT)/ATJ
= I - (1s.(Af s))/ATI ',',

= A(Xs.s)/ATI

7 Recovery of Absolute Depth from a and therefore

Monocular Image Sequence A = JgAT/(1s.-s) = gAT/IAs.isl (35)

In this section, we present a novel application of the methodol- For the subcase of pure acceleration, the above equation holds if

ogy developed in this paper. We show how, under certain cir- we identify the axis of rotation, and the axis of acceleration. How-

inmstances, absolute depth may be recovered from a monocular ever, a mor, direct derivation is possible. From equation (27):

image sequence. g = 1
YTI " 1ITII/AT = IAfsII/AT = AI~rsl[/AT

Assume that a (rigid) object, undergoing constant chronogeneous •

motion, is imaged by a stationary camera (perspective projec- and therefore
tion). Let us ignore any measurement or correspondence error, A = gAT/lrsI (36)
and assume that the structure from motion problem has been
solved for chronogeneous motion. (We will present a solution to
this problem in an upcoming paper). Let 8 Conclusion and Future Research

[ ZT IFT PT In this section, we present what we see as the major contributions S
B 0 0 0 1 AT of this research. In addition, we discuss related current and future %- r

01 o 0 0 1 j research of the author.

be the "true" matrix representing the motion of the object, and The first contribution of this research is the general nature of the

let representation. A fairly large and interesting class of motion may
[ 1Zs rs Ps 1 be represenLed. Rotation, translation, and fixed axis motion, as

B 0 0 1 AT well as (possibly restricted forms of) acceleration are all repre-

0 0 0 0 1 j sentable. Furthermore, the represention of rigid and nonrigid
motion is unified.

be the computed solution to the structure from motion problem. Chronogeneous transformation matrices also provide a compact

Then the following relationships hold representation of a fairly large class of camera/object motion, and
allow the efficient computation of the motion of computer gener-

lT = S (32) ated objects. It is straightforward to calculate a chronogeneous

FT = Afs1 (33) matrix given the underlying motion parameters, and vice versa. 0
f'T A fs (34) Chronogeneous coordinates should thus prove very useful in the -

fields of computer graphics and animation.
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Next, this research niies the representation of camera and object and let P
motion. The coordinate transformation vector equation provides SB

the connection between the two. Previous researchers have stud- CB OTO0 0 0 1 l rB [
i ~ led problems involving either camera motion, or object motion, [01 0 1 0 0 1J 0

but not both simultaneously. Sometimes the distinction between Then
the two has been ignored. This is mainly because so much re-
search has been devoted to the analysis of the two frames case, [ AS 0S0fB I8F+ A SAPB + AtB+/IPA .

where camera and object motion are confouded. It is only when CACB----- 0 0 1 tB + RA.

at least three frames are available that these two motions can, to 0 10 0 0 1
a large extent, (locally) be disambiguated.anFinally, this representation models physically natural motion. and let

The importance of this fact is that, by taking advantage of the r SBfA +B 8BPA'fB'tA+PB

constraints imposed by the spatio-temporal continuity of such A 
0 

0 0 0 01 A t

motion, we may be able to (and for chronogeneous motion are1 0 0 0 1
able to) solve the structure from motion problem using fewer

points and/or frames than when only rigidity is imposed. Fur- Standard chronogeneous matrices are, in general, not commuta- I
thermore, structure from nonrigid motion may also be studied- ti-e.

The author is currently working on solving the structure from For the special case of the matrix T,

wheorbe m cam r an object erotio n conundt is only enu 1

motion. Details of the solutions will be presented in a future T 0 0 0 1 1t + ATB+t

ipaper - 0 10 0 10 1 1-
Also, the coordinate transformation vector equation expresses themotion of a point in terms of the camera chronogeneous matrix, and -

oand the object chronogeneous matrix. Solutions to this equation

will allow the simultaneous recovery of camera and object motion, f ewO 1r 1 AT+ bt

to withincertain inh~erent am1biguit ies. 01 01

Finally, as a further research problem, it should be possible to es- The matrix T does not, in general, commute with other standard '
otinate the coefficients of the chronogeneous matrix using Kalman chronogeneous matrices. However, it does commute if f

filtering techniques. The parameters of motion could then be de- tv
eatermined using the equations developed in th er For e s ilae f the Inverse of a Matrix

motoIf the deformation submatrix, S, of a standard chronogeneous
mtAcknowledgement matrix, C, is invertible, then the inverse of C exists and

Special thanks go to Dr. G[rard Medioni, who supervised this ae.-1 000 0 - 1 ( - _ ft)

research. His comments and suggestions resulted in very signif- C-s es0 0 0 1 -6t

icant improvement in the organization and understandability of 0 0 0 0 1

tnis paper. Any "rough edges" that remain are my own.
willThe above formula may be verified btr multiplying the matrix and

Ftbeits inverse. Remember that for a rotation matrix, the inverse
tiAppendices of the matrix is simply its transpose. Therefore, when S is a

rotation matrix, call it , the formula for the inverse becomes:
fA Useful Formulae Involving Standard t rT su7 Tf asT( r ut)s

Chronogeneous Matrices 0-: 0 0 - -t
,0 0 0 0 I  1 .

. lh this appendix, we derive formulae for the product of two stn- If S :13, the formula simplifies to: -dard chronogeneous matrices, the inverse of a standard chrono-
Secialmatrix, and the powers of a standard chronogeneous r - _-q + f t I

matrix.e Standard chronogeneous matrices are closed under each C - = 0 0 0 1 -t

of these operations, and therefore forin a group under matrix 0 0 0 0 0 1 J

rmultipication. As a special case, the inverse of the matrix T is given by

n1 M 0 00 %,e
A.1 Formulae for Matrix Products 0 1 0 0 0

T - 1 0 0 1 0 0 .

atch m i alo s e[ 0 0 0 1 -T
SA f PA0 0 0 1

CA=L 000 r A01-AT I
CA 0A01 00 A

-10010 0 1]
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A.3 Formulae for Integer Powers of a Matrix ZTS I f 7T(j / % ) - 1

The formula for an arbitrary integer power (> 2) of a stan- 7--C 0 0 1 6t ,

dard chronogeneous matrix is given below. This formula is easily L 0 10 0 1 1

proved by induction. r 7ZSRT I (.T,- 7.ITY)P+ 7Z13

r. p| 0[-c [ 0 0 1 1/
- --0 1 1- L 0 0 I 0-1

L 0 10O10 1 0 1 lt.-ol I , - 7ZI RN Z~;_( .3f
0 0 0 1 1

If S = 13, then the last two equations may be simplified as

where we use the convention that the Oh power of a (3 x 3) follows:
matrix is the (3 x 3) identity matrix, 13, and the following recur-

rence relations hold: r 73 7& 'R 1
7=7C1 = I° 0 1 6t l

L 0 10 0 0  1J

Pij+1  = SA + f (it) + f ,-.C. = 0 0 0 1 5tp

If S = 13, then the above formula simplifies to L 0 I0 0 0 -

= 0130 i if + zi(i - 1)f 6t The following form is useful when bte = AT:

0 1010 0 1 1b

SC-'T 0 0 °1°0 1 AT /

and holds for all i > -1. Here we use the convention that the 0 0 0 1 1T

0th power of a (5 X 5) matrix is the (5 x 5) identity matrix, 7. R
The following analogous formula holds when i < 0: References
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Generic Models for Robot Navigation

David J. Kriegman t
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Abstract abilistic model[8] or a more reactive architecturc that
does not rely on a world modelf5]. V

This paper introduces the concept of generic modelling. We contend that an environmental model will be nec-

A particular application is an explicit abstract generic essary for autonomously performing intelligent tasks.
building model which is valid for a broad class of build- Furthermore, modelling requires fewer parameters to 0
ings. It is built with mechanisms that have been used describe the world which simplifies planning. What

to create generic m odels for other object classes includ- e sc tly t o w e wean sim p l fi s t, h at

ingmacinescrws nd enealied ylider. Tese exactly do we mean by a model? First, the modeling machine screws and generalized cylinders. These should not represent a particular environment. A sep-
methods extend the generality of object classes which arate model should not be necessary for every type of
can be implemented, compared to previous implemen- building, be it a Frank Loyd Wright house or an I.M.
tations of object classes. Pei Office building. Instead, one should model features

Ultimately, given sensor information and a generic that might be found in any building. We refer to this
model, the model can be instantiated. Using a combi- as a generic model. A generic model is a single model
nation of epipolar stereo vision along with monocular that describes a broad class of objects. The problem of
vision, a portion of the generic building model has been modelling class has been looked at by [1,4].
instantiated. This instantiation can then be used for Ac-f,
mobile robot navigation. As motivation, consider some of our earlier work.

Generic Models will be used to represent object class An epipolar stereo vision system was developed which
matches vertical edges found crossing the horizonplane; these are projected back into 3-space [9,151. Us-

ing only small vertical segments, a model of the hall-
1 Introduction way was built. Doors are recognized by the separa-

tion of these edges along with complementary grey level
In much recent work concerning autonomous mobile changes across opposite sides of a door. A number of 0
robotics, there have been two disparate views about coplanar verticals form a wall, and two parallel walls
the role of geometric modelling of the robot's envi- define a hallway. Uncertainty in sensor data was mod-
ronment. While some researchers have tried to inte- elled as a inultivariate normal distribution and was re-
grate sensor information into a world model[7,15], oth- duced by Kalman filtering. Given the hallway nodel,
ers have noted some of the problems, especially brit- the high level symbolic command "Enter the second
tleness, with forcing the sensor data to fit a previously door on the left," was executed. Without modelling, ]
defined model. They have opted for either a more prob- the semantics of such a comnand are not defined.

This system proved to be fast, (< 10 second cycle ,
*This research was supported in part by a subcontract to is systeilprobed t;ohowevfas loo10ng only ctcte ". * ,

Advanced Decision Systems, S1093 S-1 (Phase 11). "Knowledge times) and fairly robust; however, looking only at the
Based Vision Task B," from a contract to the Deferse Advanced horizon line has obvious disa(Ivantages. Alt hough there
Research Projects Agency. Partial support was provided by the is enough information to recognize a door based on only
Air Force Office of Scientific Research under conutact 3361 5-5- vertical segments, there are other unnodelled objects S
C-5106 "Basic Research in Robotics."

ISupported by a fellowship from the Fannie and Jothn Ilertz that fit. the door model which are not necessarily doors X),
Foundation. (e.g. a fuse box). G -iven tight enough constraints on % ,

453 I?
1O0



LO

M,

some of the parameters,(i.e. tweaking) the system suc-
cessfully recognized doors and rejected other objects %

on the wall. Unfortu.nately, this implies that the robot Room 1 S
may not operate in other buildings with different col- Room 1 a Pr

oration or different doors sizes. W Room

Of greater importance, in this previous work there E RoomE o

was no explicit representation of the building model. 0 Room 2 1

Instead, the concept of the generic model was embed- M 0

ded within the lisp code that instantiated the model, 0 R -oC Room2 -

making it impossible to reason about the hallway when T- Room 3 3

ambiguities arose. Instead, an explicit model of a o

generic building is preferred. By automatically reason-
ing from sensor data and the generic model, portions Room 4

of the generic model can be instantiated to irrive at a Room 3

model of a particular building. This paper deals pri- "<" 0
marily with the representation of a generic model. The Figure 1. An instance of the generic building. I,

generic model is not only applicable to mobile robotics
but will be useful for modelling broad classes of ob-
jects for general vision research and will be used in the 2.1 A Generic Building Model
SUCCESSOR vision system[2,12]. "V

Consider the typical section of a building shown in
figure 1. A generic building should be described in

2 Generic Models terras of its function or purpose, as well as physical
constraints. Since the primary purpose of a building

Let us consider the generic model of a building, and is environmental isolation, a building is closed. One of . ,
then explore how a generic model is actually repre- the primary physical processes constraining a building

sented. Since a generic model represents a broad class is gravity; a vector represents the direction of gravity. S
of objects, we cannot draw it since it is undercon- A floor, which is planar for motion efficiency, is gener-
strained and ambiguous. However, typical examples ally normal to the gravity vector.
can be drawn by choosing typical subclasses and typ- Because floors are constrained to be normal to the
ical structures. Given sensor information, the generic gravity vector, buildings are divided up into multiple
model can be partially constrained until, ultimately, stories. On each floor, the need for further isolation
there is an instantiation that is useful for navigation, leads to multiple rooms separated by walls. Walls are •
sensing, planning, and performing tasks. In general, it often planar, with the gravity vector lying in the plane b

will not be possible to instantiate the generic model of the wall. More generally, walls are ruled surfaces,
fully, but instead sensing will impose enough con- and the rulings are parallel to the gravity vector. Be-
straints necessary for the task. For example, though cause of stability and gravity, there must be contact ",
the height of a building may not be known, height is between the wall and the floor. This constrains the
not needed for navigation between rooms on the same number of degrees of freedom (DOF) of the position of •
floor. Furthermore, the generic model should be re- a planar wall from six to three.
lated to realistic physical processes that actually con- Though the purpose of a building is environmental
strain the modelled class. For example, the fact that isolation, there must be a means for movement between
buildings are used by people yields constraints on the rooms within the building, and so there are movable
size of doors and other parts of the building. coverings or doors. Because of gravity, the potential

Beyond parameterizing the model, the generic model energy of the door should not change between the open
allows for gross changes in object geometry and topol- and closed state of the door. This further constrains
ogy. This permits different numbers of components as the door to move in a plane, limiting its motion to Z
well as different component types. three DOF. More typically of course, door, are hinged .- %

Since the generic model constrains surfaces found in but sliding doors are also common.
a scene, it will constrain the location of discontinuities Furthermore, the primary occupants of a building "5-
in the surfaces. These are generically observable, and are people, and so the scale of a building is determined
so there are constraints on the observables in images accordingly. The minimum dimensions of such building .
which can be used for instantiating the model.[2] elements as doors, ceilings, and walls are constrained
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not arbitrary but related to either these processes or
Bobject function. Note that the generic model has not

said very much about the overall shape of the build-
Ging. It must allow for changes in building topology, the
Graph oWnumber and interconnectivity of rooms. It must allow

for different types of rooms, different types of walls and
doors.

Wing Wing Wing The generic model does not represent a typical build-
ing, but instead it represents all typical buildings. Un-
fortunately, for e-xery constraint mentioned, there are

Sequnce Ro exceptions. Our aim is that the generic building model
o Rom 0will cover a broad class of buildings. This seems to be

achieved. We believe that extensions to buildings not
Room Room Room Wall Floor Wall describable by this generic model, like the Guggenheim

-- - Museum and igloos, can be made compactly. S
S to Se of Parallel '

Floo lsWalls - - 2.2 The structure of a Generic Model

Windows Now, consider the representation of a generic model
which for the present is primarily concerned with
shape. A model is composed of the following live as-
pects: classes, sets, numbers, mappings and con-

Figure 2. Part of the structure of the generic building straints.
model. The generic model of an object is a named class (e.g.

screws) and is made up of named components and con-
' straints. Components are typed, and the types may

by the size of a typical large person. This put a greatest be either another class (e.g. a number, a mapping, a
lower bound on these dimensions. Economics places an beplane, a door, etc), a set, or an element, ofa .pt,. Thus., -
upper bound; it is often too expensive to make some- pela
thing larger than necessary, and so the upper bound a hallway might be represented as having components,
may be related to the lower bound. among others, length, height, a floor of type plane, and

two walls each of which is of type wall. The walls may ,,- -
A generic building is divided up into stories. Each be composed of a plane and a set of doors and windows.

has a floor and is divided into rooms connected by A set may have elements which are either classes or A.

doors. The need for isolation implies that a special themselves sets. Sets need not be finitely enumerated S
room is necessary for movement between rooms with- but may be infinite sets where membership is deter-
out disturbing the occupants of other rooms; this is a mined by the set theoretic definition of membership,
hallway. purpose is a channel for motion between other satisfaction of a constraint (predicate). Set operations
rooms. This purpose constrains the hallway to be wide on infinite sets are represented as boolean operations
enough for two people to pass, so a hall must be wider on the constraints of the set, (e.g. the intersection of
than twice the width of a large person. Because, lo- two sets is the conjunction ofthe constraints). Thus, all -

cally, buildings are organized around hallways, multiple set operations (e.g. union, intersection, difference, etc.)
wings are also found. Figure 2 shows the representation are defined for both finite and infinite sets. Clearly, an
while figure I shows an instance of the model. infinite set cannot be enumerated.

Further constraints may be less obvious. Doors do Additionally, classes can represent mappings from a
not overlap each other along a wall. Rooms are must be domain to a range. This is used to represent geomet-
taller than people. Since a hallway is a type of room, tic objects according to their mathematical definitions.
it must also be taller than a person. For example, curves are represented as a mapping from

Of course. if the primary purpose of the building is an open set, in RI to a higher space. Surfaces are a set of
not human isolation, then the dimensions must be re- mappings from R2 into R3. Given these general map- P4t
lated to that purpose. A door in the final assembly pings or possibly relations, the mathematical definition
building at Cape Kennedy is related to the size of a of object geometry can be defined.
Saturn V rocket, not the size of a person. Constraints describe the relationship between corn- 0

Thus, the generic model should be related to the pro- ponents and subcomponents. They may simply be al-
cesses that constrain it. Object dimension is usually gebraic and Ioolean constraints between components
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with a numeric type such as the pythagorean theo- of all classes. If neither class is a specialization of the
rem for the lengths of the legs and hypotenuse of a other, then an attempt is made to create automatically
right triangle. They may constrain the element types a new class which is a specialization of the types of the 0
or cardinality of sets. Constraints may also be sym- component from the two ancestor classes. This is not
bolic, such as two planar faces being parallel. Sym- always possible because certain types may be incon-
bolic constraints are defined by name along with the patible.
type of the objects that are are being constrained. This If the multiply inherited components have set types,
allows for geometric reasoning [16] without having to then the specialization of the type is the intersection of
do more costly symbolic algebraic reasoning. Symbolic the two type sets. For example, if there is a class of ma-
constraints may be expandable into algebraic, boolean chine screws which may have cylindrical, round fillister,
or even further geometric constraints. By expanding bolt and flat heads, and a class of screws using allen
symbolic constraints into algebraic constraints, alge- wrench sockets with heads that are either cylindrical or ..ebraic constraint manipulation can be used.44] Further- round; head type is represented as an element of a set ..

more, constraints may be quantified over sets. For ex- of heads. The subclass of screws of these two parent " "
ample a constraint on the doors of a wall might be: class would have either cylindrical or round head types. 0
Vx E doors(wal!) : height(x) < height(wall). The constraints on the subclasses of a class are the

Since classes are named, one must be careful about union of all of the constraints of the parent. This is
their scope; A class is always named with respect to similar to ACRONYM's restriction graph[4].
a particular namespace. Classes themselves may also Generic models have been used to represent general-
have local namespaces containing, perhaps, the compo- ized cylinders (GC)[3]. By using specialization to re-
nent types used in that class. Namespaces are arranged solve multiple inheritance of components, a taxonomy 0
in a tree and classes within the parent are inherited by of generalized cylinders similar to Shafer's[13] has been
the children modulo shadowing. For example, the class built and is shown in fig. 3. The components of a GC
of screws may be contained in a global root namespace. are a spine, cross section, and sweeping rule. As an ex-
The screw class contains a local namespace which may ample of subclass inheritance the spine is represented
contain a class called head. Thus, if a component of as a curve which is a map from R1 to R3. A straight ho-
a screw is of type head, this will not be confused with mogeneous generalized cylinder (SIIGC)[12,13], which 0
biological heads. Furthermore, the screw may still ref- is a specialization of a GC, has a straight spine. Since
erence classes named in the global namespace (e.g. real a straight line is a specialization of a general curve, any
numbers, cylinders). class that is a subclass of an SIIGC and GC will have

Finally, classes are defined in an object-oriented a spine which is a straight line.
manner; a class may be defined as a subclass of another Another aspect to note about the representation of
class or classes leading to taxonomies describable by a generalized cylinders is that the spine and cross sec- 0
directed acyclic graph (DAG). A subclass is a strict spe- tion are explicitly represented as a curve and a surface, %
cialization of the parent classes. Any constraint that is which as mentioned earlier are represented as sets of
true for a parent class, is true for a child. A subclass mappings. The sweeping rule can also be represented
will inherit components and constraints of the parent as a mapping. So the actual mathematical definition
classes, leading to issues of multiple inheritance[l]. An of "What is a generalized cylinder?" is explicit in the
example is presented below when discussing the repre- generic model. Furthermore, since "primitives" such as
sentation of generic model of generalized cylinders and generalized cylinders are actually defined in the generic
shown in figure 3. This requirement of specialization is modelling system, higher level generic models are not
a different requirement for multiple inheritance than in confined to use any particular type of primitive such as
traditional object oriented systems such as flavors and GC's or polyhedra. ',

CLOS. These systems rely on the partial ordering of
ancestors in a superclass tree rather than of specializa- S
tion. 3 Some experimental results

Sijce subclasses are specializations, a subclass inlir-
its all of the components of all of the parent classes. If 'To date, lhe r('l)rcs(eali"i in thllte previous section
a component is defined by multiple ancestors with dif- has been implemented and applied to modelling three
fering types, then the type is determined by iteratively classes of objects: screws and bolts, hallways, and gen-
comparing ancestor types. If the multiply inherited eralized cylinders. 'l'hae lst, class allows us to model S
component type is a class, then the more specialized SIIGC's and acts as an interf;ace tor th' modelling sys-
type is used as determined by the specialization DAG tern descril(ld in [12].
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Figure 3. A taxonomy of Generalized Cylinders from the Generic Modelling System.

3.1 Generic Screw Model ement of the set of heads and the slot is constrained
accordingly. Furthermore, the size of the screws may

Machine Screws are a common object in almost every be constrained to be an element of a set of actual
assembly task. They are also typical of man made ob- screw sizes (e.g. two subclasses for metric and english
jects in that they can be easily classified; a taxonomy screws). %
of screws can be created. Figure 5 shows some instances of the generic screw

First, screws come it, many siz , with different that were created by instantiating components with
lengths and diameters. They can be divided into two values that satisfy all of the. constraints. The instance
components, a head and a shaft. The head may have of the generic model is translated into a representation W,
many different shapes (e.g. round head, flat head, bolt understandable by the modeling system of [121 which is
head, etc). Also, the head may have a slot which may used for performing set operations and rendering. At
be a phillips slot, a straight slot, an allen slot, etc.
Of course the size of these head features scale with present we only have an approximate method for ren-

dering the threads and have not yet integrated even
the screw size. Screw shafts also vary in their shape. this.
Machine screws typically have a cylindrical shaft while
sheet metal screws taper to a point. The tip of a screw 3-n
may be blunt, pointed or chamfered. Finally, there is 3.2 Instantiating the Generic Hallway
variability in the threads. The threads can be of dif- The hallway model provides a starting point for devel-
ferent pitch and even different cross sections (i.e. wood oping a generic building model. The generic hallway is
and acme threads). modeled as two side walls (cuboids), a floor (a plane),

Except for the threads, all of these components lend and for each wall, a set of doorways and doors. Con-therselves to representations of straight homogeneous straints relate the direction of walls and floor to the ''
generalized cylinder primitives; the SIIGC primitives gravity vector. Sizes of these objects are related to

were described earlier. Threads can be represented as typical human dimensions. %
a generalized cylinder with a helical spine with an ap- We have instantiated part, of this generic model using
propriate planar cross section. Figure 4 shows some a combination of stereo an(d monocular vision. At this W
of the components of the generic screw model. Screw time, the strategy for instantiation has been hand pro-%
size is simply parameterized by a pair of positive real gramncd iito lisp code. Ilowever, given this strategy.

numbers rpresenting length and radius. The head, the model is automatically instantiated from images.
slot and tip are elements of a set of possibilities. Ad- In the future the strategies will he automatically de-
ditionally, there are components d escribing the thread. rived from the generic building model and the generic
Finally, constraints describe the relationsirip of the var- observability model. Starting with tie stereo pair in,
ious components. For example, the size of the head is figure 6-a, the 31) locations of vertical lines crossing
related to the size of the .,aft. The shaft and head are the horizon plane are d, terinied[15] as shown in 6-
coaxial. The "head-assembly" is created by taking the b. We attempt to initantiate a door hasel on pairs
set difference of the head and the slot. of vert icals edges. To confirio furt her the part ally in-

A taxonomy of screws can be created by further con- stantiated door, cdi--s in the mnrocular image corre-
straining the generic model. For example, te class of sponding to the sides of the door found by a mod iiel
flat head phillips machine screws arc created by con- version of Cann's edge lector [t;] have beein lioked
straining t lie head to be a flat, head instead of any el- and track ,ed .1] to ,lcterriiine wheth .r they c ,tntact thre
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Figure 4. Some of the components of a generic screw.

{ )(b) (C) (d) (e) Mf (g) (h) '',1-

%

Figure 5. A pot-pouri of instances of the generic screw: (a) Flat head, (b) Oval head, (c) Round phillips head, (d) Flat,%'
phillips head, (e) Round head with hex slot, (f) Truss head, (g) Fillister head, (h) Round head ""
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thle iheigiht, of a wall is know tob raerta h
height of all of the doors fromn the generic model. Fig-
ure 7 shows anr instance of the hallway model built from
tile image in figure 6 whlere bouinds 011 thle uninstan-
tiated components were found and then instantiated
witlh randIom values within the boundl~s. The heighlt of
tile doors was found to be witihin 5 p~ercenlt of thle true
heights Tile primary source of error is in trying to deC-
terlillne the location of tile end points of tile verticals
in the imnages. There was a lbit, more variability in the
door widthls. The far dloor is noticeably narrower than
tile nearer doors; thle stereo uncertainty nmodel accounts
for tllis[91. This instantiated] mrodel call theni be used
for navigation.

I 4 Generic Models and Navigation

(b) bais or pannng otio ofthemobile robot. Thle
geei-oe ep rdc hierarchical frameworkP

,07 -7 or implfyig moion laning.Thegeneric mnodel in-
dictestha moionplanin cal frstbe (lone at thle

leeIfagaho om n n their intercorlnec-
tion, doorways. Furthlermoulre, withlout instantiating a

t odl, he gnerc moel ndictes thtie main pur-
poseo halwaysioai l l beom used asown moio

between rooms. Thus, iisprobable that the motionaloigmtn
will be along hallways, first leaving one room, via a
door, traveling down a series of hrallways and their en-
tering anothler room. Thus, at this level, tile planner is

(c)only interested in whicih doorways hlave to he crossed.

Figure 6. (a) A stereo view of tile hallway, (b) The pro- This is typically the level at whicih a person might give

jection of the stereo correspondences into the groulld plane, directions to anothler person. 1 9
(c) The hallway edges. At a lower levcil, a traditional mlotion planner could %4

determnine paths withlin a roomI. However, tilese plan-
ners generally hlave a fairly high comp~utational cost.

floor, a requlirement from the generic miodel. See fig- Additionlally, the layout of tCle elntire room is not always
ure 6-c. Given tile 3Dlocation of anl edgel from the known at planninlg timne, alld tilere is always uncer-
epipolar sterco pair and thre length of thre vertical from tailty ill sensor informlation, so thle explensive motionl
that edgel to the floor in tile image, tile lenlgthl in 3 planner may ihave to lbe inlvoked very often. A mlore ill-
space can he deternmined. Finally, verticals are tracked teresting approach will be to use a local mlotion p~lanlner %
to tile top of tile door to determine tile door's height. with gularanteedl conlvergenc-e [10]. Froml olur ilnstallti-_

Tile height of the (door can thlen he instantiated, again atedl genleric luodlel, artificial boundaries canl le created
checking whlethler it. satisfies such con~straints as b~eing so tilat tile local planner will not, create pathls thlat cross
larger than a human. dloorways in~to unidesired roolils. Since typical roonis

Now, givern a set of doors found in anl im~age,, thley call hlave a reasonlale n~umbier of obstacles covering a finite
be groupled into sets of coplanar doors. D~oorway copla- Ira this method10( will conlverge ill a realsonlable anlolunt
narity is a constraint. onl walls; tiis is usedl to inistantiate of timle.

a wall. Two plarallel walls form tile side walls of a hall- At p~resenlt., these idleas of miotion plannling have Ilot,
way. There are still ulndetermnedl parameters of thle been impjlemlenlted . O)ur efrorts have concenltrated on
11all way, (e.g. length and h e ighit) . HIowevyer , fromI thle det'velop illg tile gen e ric mI od el anld attemp lt ingl to inlstallI-
constrain ts and tile alIreadIy inlstanlt iated valu es, bolundIs t iate it.. () ire a gen Ieric 11011('I is i I sta n I.at d , time pre-
on thlese othler paramleters ran lie foud For1 itr caipl viowm!) nijltijwe 1--l IAeh' L *J searc iiig a
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Mathematical Morphology
and the Morphological Sampling Theorem
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ABSTRACT an adjunct appointment in Computer Science. lie haspublished several hundred papers on a variety of vision
For the purpose of object or defect identification re- topics including texture, facet model, consistent labeling,

quired in vision applications in manufacturing, the opera- and most recently on mathematical morphology. His texture
tions of mathematical morphology are perhaps more useful papers showed the utility of the gray tone co-occurrence
than the convolution operations. This is because mathe- matrix. The facet model papers showed that a variety of
matical morphology provides a natural algebraic theory for low-level feature extraction operations such as edge, line,
working with shape. The morphological sampling theorem and corner detection can be viewed as possessing a locally
described in this paper states how a digital image must be estimated underlying gray tone intensity surface of which S
morphologically filtered before sampling in order to preserve the given image is a sampled noisy version. The consistent
relevant information after sampling. The sampling theorem labeling papers recognized the variety of vision problems
indicates to what precision an appropriately morphologi- which are special cases of consistent labeling. These papers
cally filtered image can be reconstructed after sampling, and developed the general theory behind the relaxation and look
it specifies the relationship between morphological process- ahead techniques which speed up the tree search.
ing before sampling and the more computationally efficient Professor Haralick has served as head of the IEEE Com-
scheme of morphologically operating on the sampled image. puter Society Pattern Analysis and Machine Intelligence
Thus, the morphological sampling theorem provides a sound Technical Commiittee. He now serves as the head of the
basis for recognizing and extracting shape information in a Computer Society Task Force on Artificial Intelligence. He

computationally efficient, multi-resolution pyramid process- is a Fellow of the IEEE for his contributions in image- 

ing approach. processing and computer vision. He serves on the Editorial

Board of the IEEE Transactions on Pattern Analysis and 0

1. Overview Aachine Intelligence. lie is the computer vision area editor %
for Communications of the ACM. He also serves as an %,.0

Section 2 briefly describes the vision group at the associate editor for Computer Vision, Graphics, and Image
University of Washington. Sections 3 and 4 review the Processing as well as Pattern Rccognition.
basic morphological operations and the algebra defined by Professor Linda G. Shapiro holds an appointment in dl

them. Sections 5 through 7 develop the binary and gray!cale the Electrical Engineering Department in the Computer .0
morphological sampling theorem. Section 8 briefly discusses Engineering program, as well as an adjunct appointment in
other vision research being done at the University of Wash- Computer Science. She is the Editor of Computer Vision, %
ington and where we expect to be going. Graphics, and Image Processing, the journal which is the

grandfather journal for archival quality papers on computer
vision. Professor Shapiro has designed a language and

2. UW Vision Group asoc'atpd recognition system for expressing the structural

relationshps among entities in an imagc. She hbA defined %
The University of Washington has assembled a vision a structural representation for describing two-dimensional

group whose senior researchers are internationally known shapes and implemented an associated shape matching pro-
and recognized for their contributions in image analysis cedure. She has developed in inexact maiching iieloid-
-nJ computer vision. The primary members of the group ology which permits, in special cases, efficient comparison
are Robert M. Ilaralick, Linda G. Shapiro, Steven L. Tan- (polynomial time) of two structures which are not identi-
imoto, Kenneth Sloan, John Palmer, Arun Somani and cal as well a method for organizing relational models into
Mani Soma. Professor Robert Ilaralick holds the Boeing clusters of similar models so that an unknown object can be ,.
Clairmont Egtvedt Chair in Electrical Engineering and has compared only against the cluster representatives. She has %
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worked on the design of INSIGHT, a dataflow language for what features mediate a particular perceptual judgment. In
expressing vision and Al algorithms in parallel architectures. experimental work, he tested alternative feature theories for

Professor Steven L. Tanimoto holds an appointment localizing moving stimuli. The experiments demonstrated
in the Computer Science Department (which has been that motion contributes a unique feature to visual localiza-,.n
acknowledged to be one of the top ten in the country) tion under certain temporal conditions and not under oth-
and an adjunct appointment in the Electrical Engineer- ers. These experiments provided a rigorous confirmationof
ing Department. He is the Editor in Chief of the IEEE informal introspections concerning perceived motion. The
Transactions on Pattern Analysis and Machine Intelligence feature theory and experimental methodology developed in
which has historically established itself as the premiere these studies can be readily generalized to other perceptual
journal for vision research. Professor Tanimoto works in domains.
the area of parallel architecture and algorithms for machine Dr. Palmer has also investigated various limitations on
vision. He has formulated a hierarchical arch;tecture for human performance. Several recent studies have measured
high-speed vision. This architecture embodies several novel the limits on human perception imposed by attention and
features. One of these is the use of a parallel-pyramidal in- memory. These studies have provided new quantifications of
terconnection network allowing both local and global image the capacity limits of human observers. In previous studies,
transforms to be computed rapidly. Another is hardware he has searched for good predictors of skilled performance
for a parallel operator for hierarchical cellular logic that in reading and has studied what learning conditions allow
can transform every cell in parallel according to all the for highly-skilled performance in laboratory categorization
values in its 14-point hierarchical neighborhood, in a single tasks.
machine instruction. On the algorithms side, Professor Dr. Arun Somani holds an appointment as an Assistant
Tarimoto has developed a fast Hough transform algorithm Professor in Electrical Engineering. He has several years
for the architecture; it uses a novel bottom-up clustering of experience in developing real time systems and does
procedure that achieves O(logN) computation times. He research in computer architecture, neural networks, parallel
has also developed several fast image search algorithms, processing and fault tolerant computing. In his dissertation
At the meta-algorithm level, he has formulated a model at McGill University he developed a parallel fault diagnosis
for automatic algorithm development in the machine vision algorithm for a multi-processing environment and a theory
context; the model uses concepts from state-space as well characterizing partial diagnosable systems. Earlier, he de-
as image processing. signed a VLSI architecture for performing various searches

Dr. Kenneth Sloan holds an appointment as Assistant and maintaining parallel data dictionaries. He recently
Professor in the Computer Science Department. He has developed a parallel pipelined architecture for determining
experience in computer graphics, vision, artificial intelli- line of sight visibility for graphics application. His current
gence, and networks. His dissertation at the University of research interest is in special purpose parallel computer
Pennsylvania treated the problem of analyzing monocular, architectures for high-performance and high reliability sys-
color views of natural outdoor scenes. At the University of tems.
Rochester, he worked on a broad range of vision problems Dr. Mani Soma holds an appointment as an Assistant
as part of the DARPA Image Understanding program. He Professor in Electrical Engineering after receiving his Ph.D.
worked with Peter Selfridge on the use of adaptive low-level degree from Stanford University in 1980 and working for two
vision in the domain of aerial image understanding. While years at the General Electric Research and Development
at the Architecture Machine Group at the Massachusetts Center (Schenectady, New York). His research intcrests
Institute of Technology, he worked primarily in the domain include the design, testing and reliability characterization S,
of 3D reconstruction and display of (usually biological) of integrated circuits and systems. Since 1984 he has
surfaces determined from series of 2D slices. He has been at focused on the architectures and designs of application-
the University of Washington for over 3 years, during which specific integrated circuits (ASICs), where the emphsis is on
time he has directed the establishment of the GRaphics high-performance digital-analog systems for applications in
and Artificial Intelligence Lab (GRAIL). His recent work on vision, image processing, and signal processing. Testability
reconstruction and display of the human retina was featured and reliability aspects of these circuits are emphasized and
on the cover of Science. considered in performance tradeoffs.

Dr. John i-aimer holds an appointment as Assistant
Professor in the Psychology Department. He has been con- 3. ()verview aind Summary

diict.g research in huiitan isioa and human performance.
lIe has investigated the features mediating vision for spatial apn
relations and motion. The research defined a general math-
ematical model of a feature and generated predictions that processing of digital images which is based on shape. Ap-
can be used to distinguish between alternative hypntheses of propriately used, inat hemalical morphological operations
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tend to simplify image data, preserving their essential shape Shapiro (1987), Haralick, Sternberg, and Zhuang (1987),

characteristics and eliminating irrelevancies. As the identi- and Maraeos and Schafer (1987). The September 1986 F

fication of objects, object features, and assembly defects issue of Computer Vision, Graph;'s, and Inage Processing

correlate directly with shape, it becomes apparent that the is devoted to morphology.

natural processing approach to deal with the manufacturing Many well-known relationships worked out in the classi-
machine vision recognition process and the visually guided cal context of the convolution operation have morphological
robot problem is mathematical morphology, analogs. In this paper, we introduce the digital morpho-

Machines which perform mophologic operations are not logical sampling theorem, which relates to morphology as
new. They are the essence of what cellular logic machines the standard sampling theorem relates to signal processing
such as the Golay logic processor (Golay, 1969), Diff3 and communications. The sampling theorem permits the
(Graham and Norgren, 1980), PICAP (Kruse, 1977), the development of a precise multiresolution approach to mor-

Leitz Texture Analysis System TAS (Klein and Serra, 1977), phological processing.

the CLIP processor arrays (Duff, 1979), and the Delft Multiresolution techniques (Ahuja and Samy, 1984;
Image Processor DIP (Gerritsen and Aardema, 1981) all Klinger, 1984; Meresereau and Speake, Tanimoto, 1982;
do. A number of companies now manufacture industrial Uhr, 1983) have been useful for at least two fundamen-
vision machines which incorporate video rate morphological tal reasons: (1) the representation they provide naturally
operations. These companies include International Robo- permits a computational mechanism to focus on objects or
mation Inc., Allen Bradley, 3M, Machine Vision Interna- features hkely to be at least a given specified size (Crowley,
tional, Maitre, Synthetic Vision Systems, Vicom, Applied 1984; Miller and Stout; Rosenfeld, 1983; Witkin, 1984),
Intelligence Systems, Inc., and Leitz. Most of the real time and (2) the computational mechanism can operate on only
VME and multibus machine visior boards developed by those resolution levels which just suffice for the detection
companies such as Datacube, Recognition Technology Inc., and localization of objects or features of specified size while p
and Imaging Technology Inc. all support morphological significantly reducing the number of operations performed
operations. (Burt, 1984; Dyer, 1982; Lougheed and McCubbrey, 1980). %

The 1985 IEEE Computer Society Workshop on The usual resolution hierarchy, called a pyramid, is
Computer Architecture For Pattern Analysis and Image produced by low pass filtering and then sampling to generate
Database Management had an entire session devoted to the next lower resolution level of the hierarchy. The basis for
computer architecture specialized to perform morpholog- a morphological pyramid requires a morphological sampling

ical operations. Papers included those by McCubbrey theorem which explains how an appropriately morphologi-
and Lougheed (1985), Wilson (1985), Kimmel, Jaffe, Man- cally filtered and sampled image relates to the unsampled
derville, and Lavin (1985), Leonard (1985), Pratt (1985), image. It must explain what kinds of shapes are preserved
and Haralick (1985). Gerritsen and Verbeek (1984) show and what kinds are suppressed or eliminated. It must
how convolution followed by a table look up operation can explain the relationship between performing a less costly
acomplish binary morphologic operations. morphological filtering operation on the sampled image

Although he techniques are being used in the industrial and performing the more costly equivalent morphological
world, the basis and theory of mathematical morphology filtering operation on the original image. It is just these ,
tend to be (with the exception of the highly mathematical issues which we address in this paper.
books by Matheron (1975) and Serra (1982) and the more The following results are shown to be true under rea- ,4.
readable chapter in the book by Dougherty and Giardina sonable morphological sampling conditions. Before sets are

(1987)) not covered in the textbooks and, until recently, sampled, they must be morphologically simplified by an 0
not, covered in the journals which discuss image processing opening or a closing. Such sampled sets can be recon-,

or computer vision. structed in two ways, by either a closing or a dilation. In
both reconstructions, the sampled reconstructed sets are

onaturaly for ae processing,Of mathematicalbut morphologiralop- equal to the sampled sets. For binary morphology a set
ogy n r f h pc n bcontains its reconstruction by closing and is contained in
erations on imag. have relevance to the entire suite of its reconstruction by dilation; indeed, these are extremal
conditioning, labeling, grouping, extracting and matching bounding sets. That is, the largest set which downsam-
image processing operations. Thus from low-level to in- pies to a given set is its reconstruction by dilation; tl"
termediate to high-level vision, morphological techniques smallest i'; its reconstruction by closing. Furthermore, the
are important. Indeed, many successful machine vision distance from the maximal reconstruction to the minimal
algorithms ern oyed in industry on the factory floor, pro- reconstruction is no more than the diameter of the recon-

cessing thousands of images per day in each application, struction structuring element. Equivalent relations hold
are based on morphological techniques. Among the recent in e rcr m logy. Mplial saing hus

reserch aper on orphlog areCrimons nd Bown in the grayscale morphology. Morphological sampling thus.-''-
researchprovides reconstructions positioned only to within some spa-

* (1985), Zhuang and Haralick (1985), Lee, laralick, and pon tm
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tial tolerance which depends on the sampling interval. This tuples of element coordinates, then the dilation of A by B

spatial limitation contrasts with the sampling reconstruc- is the set of all possible vector sums of pairs of elements,

tion process in signal processing from which only those fre- one coming from A and one coming from B. S
quencies below the Nyquist frequency can be reconstructed. Let A and B be subsets of E v . The dilation of A by B

A namber of relationships follow from the morphological is denoted by A e B and is defined by 'W

sampling theorem. These relationships govern the commu- A e B = {c e ENIc = a + b for some a E A and bE B}
tvit, h Ptween sampling and then performing morphological

operations in the sampled domain versus first performing Erosion is the morphological dual to dilation. It is

the morphological operations and then sampling. We find the morphological transformation which combines two sets
that sampling a minimal reconstruction which has been using the vector subtraction of set elements. If A and B are
dilated is identical to dilating the sample set with a sampled sets in Euclidean N-space, then erosion of A by B is the set
structuring element. Sampling a maximal reconstruction of all elements x for which X + b E A for every b E B. Some
which has been eroded is identical to eroding the sampled image processing people use the name shrink or reduce for

set with a sampled structuring element. These results estab- erosion.

lish bounds which can be used to determine the difference The erosion of A by B is denoted by AeB and is defined •

between morphological operations in the sampled domains by
and operations in the original domain followed by sampling. A e B = {x e EN1x + b E A for every b E B}.

All set morphological relationships are immediately gen- For any set A C EN and x E EN, let A, denote the
eralizable to gray scale morphology via the umbra homo- translation of A by x;

morphism theorems. For grayscale images, the bounds
which the reconstruction establishes are bounds which are A= {y I for some a E A, y = a + x}.

simultaneously grayscale and spatial. For any set A c EN, let A denote the reflection of A about

the origin;

4. The Morphological Operations A = (x I for some a E A, x = -a}.

The language of mathematical morphology is that of Relationships satisfied by dilation and erosion include the

set theory. Sets in mathematical morphology represent the following:

shapes which are manifested on binary or gray tone images. A e B = B D A

The set of all the black pixels in a black and white image, (A e B) e C = A E (Be C)
(a binary image) constitutes a complete description of the (A eB) cC = A e (Be C)
binary image. Sets in Euclidean 2-space denote foreground

regions in binary images. Sets in Euclidean 3-space may de- (Au B) e C = (A e C) u (Be C)
note time varying binary imagery or static grayscale imagery (A n B) a C - (A I2) C) n (B _, C)

as well as binary solids. Sets in higher dimensional- spaces A T B = U Ab

may incorporate additional image information, like color, or bEB

multiple perspective imagery. Mathematical morphological A o B = U A-b
transformations apply to sets of any dimensions, those like AbB A Pc e

Euclidean N-space, or those like its discrete or digitized A c B AOC c Be C

equivalent, the set of N-tuples of integers, ZN. For the sake A c B Ae C c B , C

of simplicity we will refer to either of these sets as EN. (A n B) e C - (A e C) n (B a C)

Those points in a set being morphologically transformed (A u B) e C D (A c C) u (B +e C)

are considered as the selected set of points and those in (A e B)c = 4c4 , 1)
the complement set are considered as not selected. Hence, A (BuC) = (,4&B)n(A C)
morphology from this point of view is binary morphology.

We begin our discussion with Ihe binary morphological

operations of dilation and erosion and then extend this 4.2 Opening and Closing
discussion to gray scale morphology.. In practice, dilations and erosions are usually employed

in pairs, either dilation of an image followed by the erosion
4.1 Dilation and Erosion of the dilated result, or image erosion followed by dilation.

I)ilation is the morphological transformation which Iu either case, the result of iteratively applied dilations and
combines two sets using vector addition of set, elements. If erosions is an elimination of specific image detail smaller

A and B are sets in N-space (EN) with elements a and b than the structuring element without the global geometric

respectively, a = (al,..a) and b = (b,,. .b) being N- distortion of unsuppressed features. For example, opening
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an image with a disk structuring element smooths the The reason that openings and closings deal directly with
contour, breaks narrow isthmuses, and eliminates small shape properties is apparent from the following representa-
islands and sharp peaks or capes. Closing an image with a tion theorem for openings. S
disk structuring element smooths the contours, fuses narrow
breaks and long thin gulfs, eliminates small holes, and fills A o B = {x for somey, x .r E c A).

gaps on the contours. A opened by B contains only those points of A which can be

Of particular significance is the fact that image trans- covered by some translation B. which is, in turn, entirely
formations employing iteratively applied dilations and ero- contained inside A. Thus x is a member of the opening
sions are idempotent, that is, their reapplication effects if it lies in some area inside A which entirely contains a
no further changes to the previously transformed result, translated copy of the shape B. In this sense, A opened
The practical importance of idempotent transformations is by B is the set of all points of A which can participate in
that they comprise complete and closed stages of image areas of A which match B. If B is a disk of diameter d, for
analysis algorithms because shapes can be naturally de- example, then A o 13 would be that part of A which in no
scribed in terms of under what structuring elements they place is narrower than d. " "
can be opened or can be closed and yet remain the same. The duality relationship (A o 3)(" = A1" * I) between S
Their functionality corresponds closely to the specification opening and closing inm)lies a corrcsponding representation
of a signal by its bandwidth. Morphologically filtering an theorem for closing
image by an opening or closing operation corresponds to the
ideal non-realizable bandpass filters of conventional linear A * B = {x I x E 14 implies 1, n A #6 0).
filtering. Once an image is ideal bandpassed filtered, further A closed by B consists of all those points .r for which x
ideal bandpass filtering does not alter the result. being covered by some translation P, implies that 14 "hits" 0

These properties motivate the importance of opening or intersects sonic part of A. A more extensive discussion
and closing, concepts first studied by Matherou (1967, 1975) of these relationships can be found in Ilaralick, Sternberg,
wh 9 was interested in axiomatizing the concept of size. Both and Zhuang (1987).
Matheron's (1975) definitions and Serra's (1982) definitions W

for opening and closing are identical to the ones given 4.3 Gray Scale Morphology
here, but their formulas appear different because they use
the symbol o to mean Minkowski subtraction rather than The binary morphological operations of dilation, ero-
erosion. sion, opening and closing are all naturally extended to gray

The morphological filtering operations of opening and scale imagery. The extensions, due to Sternberg (1980,
closing are made up of dilation and erosion performed in 1982b), keel) all the relationships previously discussed in a
different orders. The opening of A by B is defined by form suitable for grayscale image data. Peleg and Rosenfeld

(1981) use grayscale morphology to generalize the medial
A o 13= (A 13) ®) 13. axis transform to gray scale imaging. Peleg, Naor, Hartley, 0

The closing of A by B is defined by and Avnir (1984) use gray scale morphology to measure
changes in texture properties as a function of resolution.-,

4 * B = (A ) B) t:) B. Werman and Peleg (1985) use gray scale morphology for
texture feature extraction. Favre. NIuggli, Stucki, aiid

Opening and closing satisfy the following basic relation- lBonderet (1985) use gray scale morphology for the detec-
ships: tion of platelet. thrombosis detection in cross sections of

A o 13) o/ = A o bIlood vessels. Coleman and Sampson (1985) use gray scale
m orplhology on range data imagery to help inate a robot

(.4 • B) * B = a • gripper to an object. Maragos and Schafer (1987) discuss
A o B C A the relationship between i median tilt ering and morphology.

A c A * 11 We will develop the extension in the following way. First.
AC 1):.Ao'C 11 o C we introduce tihle conce.pt of the top surface of a set and

,A C 13 A 4 (C C B ( the related conceptt of the uibra of a surface. Then gray
,1 /3)' = .4'V' I* scale dilation will be deli ned as the surface of the dilation

of the uni ris. Froni this definition we will proc'(ee to the( A. 0 Bt) "' A " 'o /3 rel nr entatio n w h ich ind ica t s , hat gra y sca le d ilation -an "" .

.4 1 l (A o3),i i it eud(4l in teriis of a maxinmum operation on a set

(,.1 11) = (..I, , I?) * I1 of sums. A similar plan is followd for erosion which can

A 1r'13 (A *3) bB be vahal( in tenris of a iiiiiiinitini operation on a set of

.4 / I (A IA ) K )it"ences.
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of each other. Then we illustrate how the umbra operation U[f] = {(x, y) F x E I y - f(x)}

is a homomorphism from the gray scale morphology to the

binary morphology. Having the homomorphism in hand, Obviously, the umbra of f is an umbra. S
all the interesting relationships follow by appropriately un- Example This illustrates a discretized one dimensional

wrapping and wrapping the involved sets or functions, function f defined on a domain consisting of seven successive"'A.

4.3.1 Grayscale Dilation and Erosion column positions and a finite portion of its umbra which lies
on or below the function f. The actual umbra has infinite ,U

We begin with the concepts of surface of a set and extent below f.

the umbra of a surface. Suppose a set A in Euclidean N-

space is given. We adopt the convention that the first (N- -- -r
1) coordinates of the N-tuples of A constitute the spatial " t i . - ' •

domain of A and the N'h coordinate is for the surface. • - -

For grayscale imagery, N = 3. The top or top surface . * • •

of A is a function defined on the projection of A onto its . . * l*

first (N-i) coordinates. For each (N-1)-tuple x the top , I * . .•-•

surface of A at x is the highest value y such that the

N-tuple (x, y) E A. This is illustrated in Figure 1. If 5 : ;-•

the space we work in is Eucidean, we can express this f Ulf]

using the concept of supremum. If the space is discrete,

we use the more familiar concept of maximum. Since we

have supressed the underlying space in what follows, we

use maximum throughout. The careful reader will want

to translate maximum to supremum under the appropriate Having defined the operations of taking a top surface of

circumstances. a set and the umbra of a surface, we can define grayscale
Let A c EN' and F {x E E N -

I for some Y E dilation. The gray scale dilation of two functions is defined

E, (x, y) E A). The top or top surface of A, denoted by as the surface of the dilation of their umbras. .

T[A]: F - E, is defined by Let F, K c EN- and f:F-Eand k:K-E. The

T[A](x) = max {y I (x, y) E A} dilation of f by k is denoted by f E k, f e k : Fe K - E,
and is defined by

fe k = T[U[f]e U[k]

T[A] Example This illustrates a second discretized one-
dimensional function k defined on a domain consisting of

three successive column positions and a finite portion of its

umbra which lies on or below the function k. The dilation "

of the umbras of f (from the previous example) and k are
shown and the surface of the dilation of the umbras of f

and k are shown,

Fxk U[k]

Figure 1 illustrates the concept of top or top surface of

a set. I • f °'7

A set A c EN-I x E is an umbra if and only if(x')CA ;X Y E A
implies that (Xr,z)E A foreveryz :<y. ,_, _, __ N__________

For any function f defined on some subset F of Eu- •  •  °, ,
clidean (N'- I)-space the umbra of f is a set consisting
of the surface f and everything below the surface. Let U
F C E' -' and f : F - E. The umbra off, denoted by
UI[f], t'[f] c P' E, is defined by
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The definition of grayscale dilation tells us conceptually Evaluating a grayscale erosion is accomplished by taking .*

how to compute the grdy scale dilation, but this conceptual the mninimumn of a set of differences. Hence its complexity 1

way is not a reasonable way to compute it in hardware. is the same as dilation. Its form is like correlation with
The following proposition establishes that grayscale dilation the sumination of correlation replaced by the minimum -

can be accomplished by taking the maximum of a set of operation and the product of correlation replaced by a

sums. Hence, grayscale dilation has the same complexity subtraction operation. If the underlying space is Euclidean,

as convolution. However, instead of doing the summation substitute infimumn for minimum. ,
of products as in convolution, a maximum of sums is per- Prpsto e f:F-Eadk .Te

fre.Proposition Let f : F -- E and k : K -- E. Then

Mirif~~a f x+z)-kz

fe (k: FK E can be computed by (fo)()

(f Dk)x = m x ( z k z )Proof_ Suppose z = (f oe k)(x). Then, z = T [U[f I e U[k] (x).., ,

(f k)() = ~x f~x- z)+ kz)}By definition of surface, z = max {y I (x, y) E. u[f I eu{k]}.

:-' By definition of erosion

Proof Suppose z = (f e k)(x). Then z = T[fU~f] , U[k]] (x). z = maxly I for every (u, V) E U[k],•

By deiniton o suracethere exists x such that (X, y) + (11, V) E Utf]} ),

z = maxf y I (-, Y) E [U[f ] e U[k]]} By definition of umbra, ,

,

By definition of dilation, z = max y I for every U K, v < k(u), y + vs is (x + u)
h t cax I for som e e gy s atin ut this c u al = max thy I for every u K, v < k(u), y df fn(c + u) - v

(a- u, a) U[f ] and (u, b) Uka} But y s f(x+u) -v for every v < k(u) implies y _
By definition of umbra, the largest a such that (x -du, a) f (x + u) - k(u). Hence,themin

[f] is a = f(x-u). Likewise, the largest b such that z maxty for everyu K, y f(x+u)-k(u)}

(us. b) E U[k] is b d= k(u). Hence
But y c l(x + u) - k(u) for every u K implies

z = max {f(x- u) +k(u) I uE K, (x- u)E F} y < mi[f(x + u)-k(u)]. N.r

.EJ.

= maximum of(xs-su)e+ k(u)P o nL F F d A ."
f- EF Now,

Z = max y I y < ma[f(x + i) - k(u)]f e U .]
The definition for grayscale erosion proceeds in a similar"

way to the definition of grayscale dilation. The grayscale that y) + ( U

erosion of one function by another is the surface of the The basic relationship between the surface and umbria

binary erosions of the umbra of one with the umbra of the operations is treat they are, in a certain sense, inverses of

othera each other. More precisely, the surface operation will always '.

Let F c E - and K C E - . Let f : F - E and undo the umbra operation. That is, the surface operation is_ %

k: K - E. The erosion of f by k is denoted by f E) k, a left inverse to the umbra operation. Htowever the umbra ,'
f d ik : F m K r E, and is defined by operation is not an inverse to the surface operation. With-

out any constraints on the set A, the strongest statement

f e k = T [('If]I e U[k]. which can be made is that the umbra of the surface of A""'
contains ). When theset k is an umbra, then the umbra of
the surface of A is itself A. In this case the umbra operation

example, illustrated here is the erosion of f by k by taking is an inverse to the surface operation..-"'
the surface of the erosion of the umbra of f by the umbra
of k. Hlaving established that the surface operation is always. .:

an inverse to the umbra operation and that the umbra ]

Operation is the inverse to the surface operation when the set-,i
......... being operated on itself is an umbra, we only need to note . '

• . ~th~at the dilation of one umbra by another is an] umbra and , '
that the erosion of one umbra by another is also an umbra''I

S " -"nd wf ow re ready to develop the umbra honomorphisn

. . . . i iheoreml.

hiay n of the uuibra hooniorphisnh sheorem states that the
" Te eion of f by c is d d b fpration of taking al umbra is a o. ophisoer from the
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gray scale morphology to the binary morphology. Relationships satisfied by gray dilation and erosion in-
Umbra Homomorphism Theorem: Let F,K C EN-i and dude

f:F-Eand k:K-E. Then

(1) UL[fJ k] = U[f] I U[k] and fq9=9gf

(2) U[f ek)= U[f eU[k] (f Pg)eh = f D(gh)

Proof (1) f T k = T[U[f]oU[k]] so that U[f k] (fog)eh=fe(goh)

U [T[U[f] ED Ufk/]]). But Ulf] E U[k] is an umbra and for max(f,g} oh = max{f E h,go h)

sets which are umbras the umbra operation undoes the rin{f,g} h = min{fo h,go h}
surface operation. Hence Uf e k] = U [T [U[f] e U[k]] = f < g = f o h < g B h
U[f]o U[k].

(2) f / k = T[U[f]eU[kj] so that Uff e k] = f<g=feh<feg

U [T [U[f] e U[k]]. But U[f]e U[k is an umbra and for sets min{f, g9 ) h < minif a, h, g + hi

which are umbras, the umbra operation undoes the surface max{f ,g} e h > max{f3 h,ge hi

operation. Hence, -(f 6g)=(-f)e4

I[f e k] = U [T [U[f] e U[k]]] = U[f] e Ui/] Jo max{g, i} = min{f [k,! & h}
The first three properties for grayscale dilation are alge-

To illustrate how the umbra homomorphism property braically similar to three properties of convolution.
is used to prove relationships by first wrapping the rela-
tionship by re-expressing it in terms of umbra and surface f * g = g* f
operations and then transforming it through the umbra (f *g) * h = J • (g" h)
homomorphism property and finally by unwrapping it using (f + g) * h = (f • h) + (g * h)
the definitions of grayscale dilation and erosion, we state
and prove the commutivity and associativity of grayscale Tygn

dilation and the chain rule for grayscale erosion. This similarity strongly suggests the richness of the un-
derlying algebraic structure for the grayscale morphological

Proposition fo /c = A' 0 / operations, despite the fact that they are highly non-linear.

Proof Grayscale opening and closing are defined in an anolo-
fo A' = T[J[f I e U[/cJ] gous way to opening and clobing in the binary mophology

= T[U[k] E Ulf 11 and they have similar properties. The grayscale opening

= k of of f by structuring element k is denoted by f o k and is ".
defined by fo k = (fo k) e k. The grayscale closing of f by

Proposition kc o (kc2 o /c3) = (kc 0/2))o ka structuring element k is denoted by f * k and is defined by P.
f - k = (fSte .k). k

* Proof There is a geometric interpretation to the grayscale
opening and to 'he grayscale closing in the same manner

kA (k2 k,)= T[U[k Uk(k,11 that there is a geometric meaning to the binary morpho-

= T[U[k] o (U[Ak] e U[ks])] logical opening and closing. To obtain the opening of f

= T](U[k/] + U[k2]) o Ufka]] by a paraboloid structuring element, for example, take the

= [U'k + k2] j Ujk/c]) paraboloid, apex up, and slide it under all the surface of '
f pushing it hard up against the surface. The apex of the

= (ki + k2)+ k3 Aparaboloid may not be able to touch all points of f. For r

Proposition (f kj) 2 = f (k, 0/ k2) example, if f has a spike narrower than the paraboloid, f%
the top of the apex may only reach as far as the mouth of

Pro~uf the spike. The opening is the surface of the highest points ]

(f /,) k2 = T[Uf ,-, /],- U[k,] reached by some part of the paraboloid as it slides under all .

= Tf( nJ] o::, [/ck]),- el]] the surface of f.
We have not mentioned the duality relationship between -'a

= T[U[Jf/c°(t;[I,-] o [/. )] grayscale dilation and erosion. We need this in order to

= TI[U[J][f J/c+ k,] give the geometric interpretation to closing. The gray

= f (k 0 k) scale duality relationship is analogous to the binary duality I

relationship. Before stating it, we need t lie definition of gray
scal reflection.
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Definition Let f: F E. The reflection of f is denoted by reconstruction differs from the dilation reconstruction by

f' IF-E, and is defined by Ax) = f(-x). just a dilation by the reconstruction structuring element,

so the set bound relationships translate to geometric dis-
Grayscale Dilation Erosion Duality Theorem: tance relationships. The section concludes by defining a

Let f: F - E and k: K - E. Let x E (FeAK)n(FeK1) suitable set distance function which measures the distance %

be given. Then -(f D k)(x) = ((-) p k)(. between the sampled set and the morphologically filtered
set. The distance between the minimal reconstruction and 0It fellows immediately from the gray scale dilation and set.mTxemdistancesbetweenthedminimalsreconstructionhand

erosion duality that there is a grayscale opening and closing the maximal reconstruction, and the distance between the
duality morphologically filtered set and either of its reconstructions,

are all less than the sampling distance.

Grayscale Opening and Closing Duality Theorem: The first conceptual issue which arises in developing a

morphological sampling theorem is how to remove small
-(fk) = (-f) objects, object protrusions, object intrusions and holes

laving the grayscale opening and closing duality, we before sampling. It is exactly the presence of this kind
immediately have f.ik = -((-f)ok). In essence, this means of small detail before sampling which causes the sampled
that we can think of closing like opening. To close f with a result to be unrepresentative of the original, just as in
paraboloid structuring element, we take the reflection of the signal processing, the presence of frequencies higher than the
paraboloid, turn it upside down (apex down), and slide it all Nyquist frequency causes the sampled signal to be unrepre-
over the top of the surface of f. The closing is the surface sentative of the original signal. This "aliasing" means that
of all the lowest points reached by the sliding paraboloid, signals must be low pass filtered before sampling. Likewise

Relationships satisfied by gray scale opening and closing in morphology, the sets must be morphologically filtered
include the following: and simplified before sampling. Small objects and object

protrusions can be eliminated by a suitable opening oper- "'""

ation. Small object intrusions and holes can be eliminated

(fog) 09 = fog by a suitable closing. Since opening and closing are duals, -,

(f * g) * gf ° g we develop our motivation by just considering the opening

f ogf opera t ion.
Opening a set F by a structuring element K in order to

f < f °g eliminate small details of F raises, in turn. the issue of how
f < g > fo h < g o h K should relate to the sampling set S. If the sample points

f < g = f * h < g h of S are too finely spaced, little will be accomplished by

-(fog) = (_f) the reduction in resolution. On the other hand, if S is too
-(f g) =(-f coarse relative to K, objects preserved in the opening may

be missed by the sampling. S and K can be coordinated by
09g = (fog) ) p9demanding that there be a way to reconstruct the opened 'P

f -9 = (f & g)* g image from the sampled opened image. Of course, details

f +g = (f * g), ,g smaller than K, are removed by the opening and cannot be

f g = (f g)0 g reconstructed. - -.

One natural way to reconstruct a sampled opening is
Iv dilation. If S and Ih were coordinated to make the -

5. Morphological Sampling Theorem t,,,onstructed image (first opened, then sampled, and then
dilated) the same as the opened image, we would have

The preliminary part of this section sets dile stage, a morphological sampling theorem nearly identical to the

discussing the appropriate morphological sim~plifying anI standard sampling theorem of signal processing. However,
discssig th apropiatemorholoica siplifingand morphology cannot provide a perfect reconstruction, as

filtering to be done bfore sampling. Certain relationships ilratedoy t foing one-ctieonatuons 0
must be satisfied between the sampling set and tie strut- is illustrated bv the following one-dinnsional continuous

luring lement used for reconstruction. The main bodv of doniin exalple.
tle section discusses two kind: of reconstructions of the Let the image ' be tie union of three topologically open

sampled images: a maximal reconstruction accomplished intervals

by dilation and a miuhnal reconstruction accomplished by / = ( 7..t) u (11.5. 11.6) u (18.!, 19.8).

closing. Fiindamental set bounding relationships are stated
which indicate that the (-losing ru'construction of a set where (,r,y) de'noties ilit' topologically open interval between
must be contained in the set itself which, in turn, muist and y. We can remove all details of less than length r
be contained in its dilation retonstriction. The closing 2 by opening with the structuring element K = (- I -
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consisting of the toplogically open interval from -1 to I. The first condition implies that the dilation of sample 4

Then the opened image Fo K = (3.1, 7.4). What should points fills the whole space; that is, S¢ K = EN when K is

the corresponding sample set be? Consider a sampling set not empty. If the points in the sampling set S are spaced no

S = {x I x an integer), with a sample spacing of unity; further than d apart, then the corresponding reconstructing 6

other spacings such as .2, .5 or .7 could illustrate the kernel K could be the topologically open ball of radius d

same sampling concept as well. The sampled opened image where the norm used to define distance is the L_ norm. In

(Fo K) S =14,5,6,7). Dilating lI K to reconstruct the this case, xE K5 = K, nKnS f 0. Notice that two points

image produces [(F o K)n S]j-i K = (3,8), an interval which which are d apart can lie on the diameter of K. But since

properly contains 1"o K. The dilation fills in between the the ball is topologically open, the diameter cannot contain 3

sample points, but cannot "know" to expand on the left points spaced d apart. lence, the radius of K is just smaller

end by a length of .9 and yet expand by .A on the right end. than the sampling inteval. Also notice that if a sample point

However, the reconstruction is the largest one for which the fails in the center of K, K will lot contain another sample

sampled reconstruction ([(Fo A')n SI h KI n S produces the point..

saml)led opening (F o K) n S ( [4,5,6,7). This is easily We are now ready to state some propositions which lead

seen in the example because substituting the closed interval to the binary morphological sampling theorem. it what

[3,81 for the open interval (3, 8) produces the sampled closed follows, the set F c EN, the reconstruction structuring

interval [3,8] ci S (3, 4,5,6,7,8) which properly contains element will be denoted by K c EN, and the sampling set

(Fo K)nS= {-,,5,6.7). will be denoted byS c EN. Although not necessary for every

The difficulty in reconstructing a sampled opened image relationship, we assume that S and K obey the following five

morphologically can be understood in terms of the standard conditions:

sampling theorem. Consider the case of a precise constant (I)S (1 '

binary valued image. The required morphological simplifi- )

Cation means that details smaller than K have been removed (2)S = ,

from all objects on the opened image, but, this removal does (3)K nS ( {0),

not bandlimit the inage. In fact the opened image belongs (4) K' k,,

to a special (lass of infinite bandwidth signals, wherein (5)a E Kb K. n 6' n S 0 g.

reconstructing thle samlpled opered iirage as specified by

the standard sampling theorem cantriot prodlce the kind Figure 2 illustrates the S associated with a 3 to I 6

of aliasing found in Moire patterns. The standard sampling downsanipling. Figure 3 illustrates a structuring element

theorem reconstruction produces a bandlimited signal which K satisfying (3), (4) and (5). Since the dilation operation

passes through the sample points. Thus, the step-like is comnmutative and associative, conditions (1) through (3)

patterns, like the open intervals of F, get reconstructed with imply that the sampling set S with the dilation operation

ringing throughout and with overshoot a n d undershoot at coml)rises an abelian group with the origin being its unit

st('p edges. lv contrast. the norp hological recoustruction elemelit. Thus, if x E S, then S, = ', and also since
cannot proluce ringing. but tle posit ion of any step edg, is " n S = {0}. x E S implies K, n S = {x). Bot It these facts

uncertain within the samlphing interval. are utilized in a number of the proofs to rl low.

In the remainder of this section we give a complete

derivation of the results illustrated in the example. First, 5.1 The Set Bounding Relationships

note. that to use a striictiring element A' as a "reconstruc-.

tion keriil." "' innst b' large ',oigli to ensure that the It is obvious that si l'Ce 0 E A, the reconstruction of a

dilation of tle sampling set .S by A covers ti t(' tire space saripled set F n S by dilation with /K" prodrices a superset

". For frlniial reasons aplparent in the d('rivati,ns, Ae of ti' saiiphed ,et FnS. That is, ontSc (I"n ) l'. The

also r'qjfire lhat A' be synimtri,,'tnc. A '. K In the stan- reconstruction by dilation is open so that [(FnS)K]oh" =-

ar I sampling theo')rm, the )e'rio(l of the highest fr'quency (/F n S) q '. Moreover, the erosion and dilation of the

prrnt Irulist b' sainll I at least twic' it) order to properly original iroage F' by K bound the reconstruct'( sampled

reloistriit tIll' signal from its sampled form. It rnalhtlinrat- irliage in the sense of I, - A' c (F'n .)q, A' C ti. A'.

ical mor logy, tlier, is an alallogolls reliirniitd. The

samliple spacing 1riuist be smallll enoughI that ten dialieter of Ulis li'st llundirg r'elationsi indicates tiat tie r'-

K is just silialllr tha ltes, two sample intervals. lh', e, cons r 'itit ion 1) N diat ioil carnnlt be too far away frir IF

the dia ieter of K is large eiough tlhat it cani conl ain two sinl', Ie recO)struc io n is co straired to li' bet,v(we' I

samIl points but not tirl' samle points. We xlm'rtss this rel'id Iv K and F dilat(d by K. ()ir x'xt r(lation-

r,lationship by reqluiring thaI shipI strergtlhens lie clons,'l s i'twrten 1V ani 1h' dilation A .
r,.cotlst rnct ion (F"n S)i + R". Sampling I., and saniiplirig 0

r A- / !, A', n N, ri'v t 0 the dilalitu reconsli- ion of F p <l lme' identical results:

a,,d A'r" = Itt, /.n1 V S [(/n .')+ Kin .S'.
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Considering sampling followed by the dilation recon- lower bound foi the reconstruction. In this case F n S = '

struction as an operation we discover that it is an increasing 14,5, 6,7, 19) and tie reconstruction (F n S) + K = (3, 8) u ,..

operation, distributes over union but not over intersection. (18,20), which does not contain F. This suggests that the

That is: condition that F be open under K is essential in order to

()Fj _F2 implies (F, nS) (DK c (F2 nS) E)K have Fc (FnS) DK.

(2) ((F u F ) nS) DK = (F ,nS) qK u [(F nS) ID ] We now state one last relation between the reconstruc-

(3) ((F n F2) nS)EK C [(F, nS),DK] n[(F n S) eK] tion (Fn S) ElK and F. The reconstruction (F nS) (DK is

the largest open set which when sampled produces Fn S.
[ [ [ I I r ]Proposition

-- * *( • *i [*Let AC E N satisfy ArtS= FnS and A=AoK.

. ..... . Then n_(F ) K implies A =(F nS) EK.

i I rt l l . Proof
. .. .. Suppose A _(FnS)q K and Arts = FnS andA

'.A • AoK. Since AnS =FnS, (AnS)DK = (FnS)a K.

-- --- (But A = AoK implies A c (AnS)EDK = (FnS)(DK.
] Now A c_ (F n S) D K together with the supposition

i ° ~~ ~ D°I~ .. .( ' l A (Fn S) (DK impliesZA= (F nS) (DK. %i
A °i- s the-reconstruction (F nS) tpK is maximal with re- W.

Figure 2 illustrates sampling every third pixcl by row spect to the two properties of being open and downsampling

and by column. The sampling set S is represented by all to F n S, we are naturally led to ask about a minimal.-..

points which are shown as "o". reconstruction. Certainly we would expect a minimal re- %

construction to be contained in the maximal reconstruction" ,
~and contain the sampled image. Since closing is extensive,

we immediately have F n S c (F n S) o h'. Since 0 E K,

• * * erosion is an anti -extens ive operation. Hence, (FnS)*K=

[(F n S) q) K] e K c (F n S) (D K. These relations suggest -,

" * * the possibility of a reconstruction by closing. Indeed a . .

• . ° closing reconstruction has set bounds similar to the dilation.,
__ , I ~ ~reconstruction: FeK c_(FnS)*K c(FnS)t K cF+K. ',

Fiur 3ilutrte as' mmtrcstucurn eemntKFor true reconstruction, the sampled reconstruction "
Figue 3illstrtes symetic trucurig eemet K should be identical to the sampled image. Indeed, this is

which is a aigiral disc of radius /-5. For the sampling set S
of Figure 2, K n S = {0) and x c K, implies K, nK, nS €: 0. thcae(F ) KnS=F .. ,

Consider our example F = (3.1, 7.4) u (11.5, 11.6) u ,~
Our next relationship states that the dilation reeon- (1.,1.)whh scoeunrK=(-,).Itesa-.-

struction of a sampled F is always a superset of F opened pigstSi h n~gr hnFS-:{,,,,1} lsn

by te rcontrucionstrcturng lemnt K tlnce if FnS with K can be visualized via the opening/closing dual- .
t" is op~en under K, theni F is contained in its dilation ity (lnS)K = ((FnS)cof~c . Openingthe set (FnS)c with 5'
reconstruction: 'oh'C (F rS) p K . 11,' = A prod uces (F n S) c  o K  = I x E 19 1x < 4 or > 7}.

Thus the reconstruction of the opened sampled image Hlence (Fn S) *K = ((FnS)c oK) c = Ix I x = 19 or 4 < x <
F' is bounded by F o K on the low side and F o K dilated 7}, and sampling produces [(FnS)oK]S = 4,5A67, 19))=""

by K on the high side. lFn .

F .hK c [(1"o K) n 5"] +£ h" _ (Fo K) i, hK lrom the previous relationship, it rapidly follows that '%_

If F is Morphologically simplified and filtered so that sampling followed by a reconstruction by closing is an ,.

-- V:1"o A\', then the prevosbud euet idenipotent operation. That is, [( F n S;) * K] n S * Kx = (F n .

FC PriS) K F K )o* K. A recontruction by closing is obviously closed under_, "
F ~ ~ ~ ~ ~ ~ ~~ K I_(,nS ,Kc ' Moreover, it c'an be quickly determined that sampling e

!By reconsidevring our example 1F = (3.1, 7.4) u followd by a closing reconstruction is increasing and! does

(1 1.5, 1 1.6) u (18.9, 19.8) which is not open under /K, = not nx'essarily distribute over union or intersection. That

-11,we cani see that such an F is not, necessarily a is, % N'
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.4

F- 17 i-plies (F, n S) K c (F2 n S) K 5.2 Examples

[(F u F2) n S] . K D [(F, n S) e K] u [(F 2 n S) . K] To better illustrate the bounding relationships devel-

[(F, n F2) n S]. K c [(F n S) - Ki n [(F n S) 9 KI oped in the previous section between a set and its sample

Furthermore, the closing reconstruction of a sampled F is reconstructions, we show three simple examples. The do-
always a subset of F closed by the reconstruction structuring main of these examples is defined as E x E where E is the
%ealement K. sub t f Fnos)e by F , r nso stctuin set of integers. The sample set S is chosen as the set of even
element K. That is, (F nS) -K cF eK, so that ((F eK) n
S) * K C F. K. Hence a closing reconstruction of an image numbers in both row and column directions. Thus,
which is closed before sampling will be a subset of the closed S = 1(r,c)jr E E ani is even; c E E and is even}.

image.
By considering a simple example F {, 1}, which is K is chosen as a box of size 3 x 3 whose center is defined

not closed under K = (-1,1), we can see that F is not as the origin. The sets S,K, and the three example sets

necessarily an upper bound for the reconstruction. In this F1 ,F 2 , and F3 are shown in Figure 4. The sets F1,F 2 , and

case, FnS = {O, 1} = F and the reconstruction (FnS)oK = F3 are 3 x 3 boxes having different origins and the condition

Fe K = [0,1] which properly contains F. This suggests that F = F o K holds for all these example sets.

the condition that F be closed under K is essential in order The results of F e K, Fn S, (F n S) e K, (F n S) e K, and
to have (F n S) e K C F. F D K for sets F, F, and F are shown in Figures 5,6, and

Finally, we state one last relation between the recon- 7 respectively.

struction (FnS)•K and F. The reconstruction (FnS)•K is 5'the smallest closed set which when sampled produces FnS. 5.2.1 Example 1
the s t sAll 

the pixels contained in the vertical boundaries of F,

have even column coordinates and those in the horizontal

f1 -• boundaries of F have even row coordinates. Since the
* .1 0 * sample set S consists of pairs of even numbers and F, is

a 3 x 3 box, the set F1 n S consists of the four corner points
* 0 -of F1 and is contained in the boundary set of F. Hence

le - the closing reconstruction of F , n S recovers F , and the

* - -- 
•  dilation reconstruction of F n S is equivalent to F e K.

-,: -- In fact, the following two equalities hold only when (1)
- - -• 

• •
-the sampling is every other row and column, (2) a set's

2y,, vertical boundaries have even column coordinates, and (3)

e its horizontal boundaries have even row coordinates a (
Th, ...p...g The ............... ..... n .... 1, (F nS)*K = F and

(FnS)eK = Fe K.

The bounding relationships for F1, illustrated in Figure 5.
t,,, I: : ' • •are

1711 F,e Kc(F1 nS)•K=Fc(F n S)aK=FDK.

F.

5.2.2 Example 2

J" Since all pixels contained in the vertical boundaries of

F2 have odd column coordinates and those in the horizontal
boundaries of F2 have odd row coordinates and F, is a

small 3 x 3 box, the set F2 n S does not contain any part

of the boundary of F2 . Thus the closing reconstruction of
F2 n S equals F2 e K and the dilation reconstruction of
F2 n S is equivalent to F2. Similar to the example 1, the
following equalities hold only when the sampling is every

Figure 4 illustrates a sampling set S. a reconstruction other row and column and has its odd column coordinates

structuring element K, and three sets, F, F2, and F3, each in its vertical boundaries and its odd row coordinates in its

of which is open under K. horizontal boundaries.

472 5

%-



applicable. If we open F 4 by K, the bounding relationships
F K =(F n S) K and exist because F 4 o K = F .

F = (FnS)sK. O

The bounding relationships for F 2 , illustrated in Figure 6,

are

F2 Q K = (F 2 n S) . K c F2 = (F2 n S) D K c F2 D K.
F, FK

5.2.3 Example 3

The pixels contained in the vertical boundaries of F3 .

have odd column coordinates and the pixels in the horizontal .. , ,'

boundaries of F have even row coordinates. Hence, no

equalities should exist in the bounding relationship. This

is illustrated in Figure 7. The bounding relationships for F3

are
F, n 5 tFS) Is'

F3 e K c (F 3 n S) K C F3  (F3 n S) D K c F3 D K.

F F K, F, n S) K F. K

Figure 6 shows a second example of how the ero-

sion and dilation of F2 bound the minimal reconstruction

(F n S) e K and the maximal reconstruction (F 2 n S) e K,

respectively, which in turn bound F2 .

•A

* °
! ~~~~ ~F F, A ' ,+ ' W

T, K

F-L L v.
Figure 5 shows how the erosion and dilation of Fi "_= J

bound the minimal reconstruction (F, n S) * K and the F, --A

maximal reconstruction (F n S) G K, respectively, which in 7-.

torn bound Fl. because F, is both open and closed under S_ ,

K. %

To show why the opening condition F = FoK is needed

for the bounding relationships involving F, we show an

example set F4 which deviates from the set F3 by adding It

six extra points to it (see Figure 8). The sample and recon-

struction results of F4 , F4nS, (F 4nS).K, and (F~nS) K are

exactly the same as the results for F3 . lowever, no bounding Figure 7 shows a third example of bow erosion and

relationships between F4 and its sample reconstructions are dilation of F3 bound (in this case properly) the minimal
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reconstruction (F 3 n S) - K and the maximal reconstruction by p (A, B) = max min lix - yll. This pseudo distance
.EA YEB

(F 3nS)eK, respectively, which in turn bound (in this case satisfies (1) p(A,B) 0, (2) p(A,B) = 0 implies A C
properly) F3 . B, and (3)p(A, C) < p(A, B) + p(B, C) + r(B). The asym-

metric relation (2) is weaker than the corresponding metric
0 •,requirement that p (A,B) = 0 if and only if A = B, and

S• •relation (3) is weaker than the metric triangle inequality.

The pseudo distance p has a very direct interpretation.
p(A, B) is the radius of the smallest disk which when used
as a structuring element to dilate B produces a result which

contains A.

Proposition r.

Let disk (r) = {x IlxI _< r) and A, B C F N. Then
max minla - bll = inf {rIA C B E disk(r)}.

Proof

Let po = maxminlla - bli and r0 = inf {rIA C
aEA b6B

B e disk(r)). Let a E A be given. Let b0 E

B satisfy Ila - boll = minlla - blI. Now, p0 =

maxminllx-ylI > minlla -bll. Hence, po > Ila-bollF, n S EA yEB - bEB -

so that a -bo E disk(po). Now, bo E B and

Figure 8 shows a set F4 which is not open under K. a - bo E disk(po) implies a = b, + (a - b0 ) E
Its sampling F4 nS is identical to the sampling of F3 yet the B e disk(po). Hence A C B e disk(po). Since .Y
maximal reconstruction (F4 nS)eK does not constitute an ro = inf (IA C BED disk(r)}, ro < p0. Suppose
upper bound for F 4 as in the previous examples. A C B E disk(ro). Then max min Ila - bll =

-a A beB di.k(,o)

0. Hence, maxmin min Ila- b - yl = 0. But
aEA bEB E dook(ro)

5.3 The Distance Relationships I(a - b) - Yll -> Ila - bll - IlYlI. Therefore,
Having established the maximality of the reconstruction 0> max min ia - blI- IllYll

4EA SOB VEdy~ o)N
(F n S) ( K with respect to the property of being open > maxminIla - blI + min -Ilyll
and downsampling to F n S, and the minimality of the -EA bOB YE di,k(o)

> max mmija -bll - max kIllreconstruction (F n S) * K with respect to the property of oA bB lE dik(,.o)

being closed and downsampling to FnS, we now give a more Now Po = maxmin Ila - bli and r0 = max Ilyll
precise characterization of how far F e K is from F * K, oOA SOB YE dik(o)

how far F o K is from F E K, and how far (Fn S) & K is implies 0 > po- ro so that r0 > po. Finally, r0 < po

from (F n S) E K. This is important to know since F E K C and r0 > Po implies r0 = p0.
(FnS)*K C F when F = F.K, and F c (FnS)EK c FeK The pseudo distance p can be used as the basis for a true
when F = F o K, and (F n S) * K _ F c (F n S) E K set metric by making it symmetric. We define the set metric

when F = F o K = F e K. Notice that in all three cases pM(A, B) = maxlp(A, B),p(B, A)), also called the Hausdorf
the difference between the lower and the upper set bound is metric. PM satisfies pM(A, B) = inff {iA C Be disk(r) and
just a dilation by K. This motivates us to define a distance B c A e disk(r)}. This happens since
function to measure the distance between two sets and to
work out the relation between the distance between a set p,(A,B) = max{p(A, B),p(B,A))

and its dilation by K with the size of the set K. In this = max{inf{rIA C B e disk(r)},
section we show that with a suitable definition of distance, inf (rIB C A + disk(r)l}
all these distances are less than the radius of K. Since A' =0B
is related to the sampling distance, all the above-mentioned anA Be disk(r) p.
distances are less than the sampling interval. and BCAa disk(n)}

For the size of a set B, denoted by r(B), we use A strong relationship between the set distance and
the radius of its circumscribing disk. Thus, r(B) = the dilation of sets must be developed to translate set
min max lx - Yl]. The more mathematically correct forms bounding relationships to distance bounding relationships.CB Y Eib

of inf for min and sup for max may be substituted when We show that p(A e BC e D) < p(A,C) + p(B,D) and
the space E is the real line. For a set A which contains a then quickly extend the result to pM(A q BC e D) <
set B, a natural pseudo-distance from A to B is defined pM.(A,C) +pxi(B,D).
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Proposition be no greater than the distance between their samplings

(1) p(A e B, C D D) < p(A, C) + p(B, D) plus the size of K.

(2) p(AE B,CE@D)<_pM(A,C)+pM(B,D) From this last result it is easy to see that if F is closed

under K, then the distance between F and its minimal
Proof reconstruction (FnS).K is no greater than r(K). Consider,

(A@,) 4~'oIEe PM (F, (FfnS). K) :spm (Fn S,(F nS.K)n S)p(A )B, C eD) = max rain [ix -yll
,C~efl"f~eD+ r(K)

max cmax min min I la + b - c - dll =PM(F n S, F n S) + r(K) = r(K)

< maxmax mai miCn[lla-cli-t lb b-dll These distance relationships mean that just as the stan-
-- fEA SEE dED .,C

< max max min [(min Ila - cll) + lb - dlt] dard sampling theorem cannot produce a reconstruction
< max min a - 

ell +max minb-dll with frequencies higher than the Nyquist frequency, the
ax mC 10 +lDn morphological sampling theorem cannot produce a recon-

< p(A, C) + p(B, D) struction whose positional accuracy is better than the radius "

(2) of the circumscribing disk of the reconstruction structuring

PM(A@)B,C 0 D) = max{p(A@ B,C eD), element K. Since the diameter of this disk is just short

p(C E D, A e B)} of being large enough to contain two sample intcrvals,
< maxip(A, C) + p(B, D),p(C,A)+p(D,B) the morphological sampling theorem cannot produce a re-
-+,construction whose positional accuracy is better than the

< max{p(A,C),p(C, A)} + max{p(B, D),p(D, B)) sampling interval.

< pM(A,C) + pM(B,D) 5

From this last result, it is apparent that dilating two

sets with the same structuring element cannot increase We use the example sets Fl, F2, F3, and F4 in computing

the distance between the sets. Dilation tends to suppress the distance between the original images and the sample

differences between sets, making them more similar. More reconstruction images. The values max lix - Yll for each

precisely, if B = D = K, then p(AeK,CeK) :5 pM(A,C). x E K are shown in Figure 9. The minimum value among
It is also apparent that pm(A, AeK) = pM(A@{0), AEK) <_ them, v2, is the radius r(K) since r(K) min maxllx - yll. 9
pm(A,A) + pm({0},K) = pm({O},K) < maxllkll. Indeed, EK EK

since the reconstruction structuring element K k and

0 E K, the radius of tie circumscribing disk is precisely

max IlkIl. Hence, the distance between A and A e K is no
kE K
more than the radius of the circumscribing disc of K.

A, pM(A.K,A) = p(A K,A). Since 0 E K, A K F A9 Te

wehaeMAA e K ) A): r(K). AloysneA K

'.Hence, pM(A.K,A) =p(AeK,A) p((AOK)@K,A)=
p( K t, A) <_ r( K). Figure 9. The max lix - vil values for all x E K. where

From this, it immediately follows that the distance K is the digital disc having radius v-2.

between the minimal and maximal reconstructions, which We now measure the distance between two sample

differ only by a dilation by K, is no greater than the size of reconstructions for all the example sets. To compute "-"

the reconstruction structuring element; that is, pm((FnS)o pM((F n S) * K, (F1 n S) @ K) we first compute p((Fm n

K,(FnS)eK)<r(K). WhenF=FoK=F.K,then S)eK, (F 1 nS).K) and p((F nS).K, (F,nS)eK).
(F n S) * K c F c (F n S) ( K. Since the distance between The values min Ix - yll for all x E (F n S) e K are
the minimal and maximal reconstruction is no greater than shown in F .

shw nFigure 10. The maximum value among them, V'2 .
r(K) it is unsurprising that the distance between F and is the distance p((F, n S),D K,(F, n S)* K). Similarly, we

either of the reconstructions is no greater than r(K). cal compute p((F, n S) * K, (F1 n S) i A') which equals 0. %

When the image F is open under K, the distance 'Thus, pM((F, n S) * K, (F n S) ( A') equals V2_ which is

between F and its sampling F n S can be no greater than exactly the radius r(K). Similarly, the distance between

r(K). Why? It is certainly the case that F n S c F c (F n two reconstructions for sets F, F, and F, can be measured
S)+ K. HencepM(F, FnS) < pm(FnS,(Fn S)K) < r(K). and they are all equal to r(K). •

If two sets are both open under the reconstruction struc-

turing element K, then the distance between the sets must
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between F and its maximum reconstruction (F n S) € K.
Similarly, we find

0 pm((Fi n S)@ K,F ,EDK) = 0 < r(K)

pM((F 2 n S) D K, F2 D K) = .2 = r(K)

pM((F3nS)eK,F3eK)=1<r(K)

PM((F, n S) e K, F, e K) = 2> r(K)

Figure 10. The min lix - yl for all XE (F n S) B K. Note that since F4, F4oK, pM((F 4nS).eK, F4eK) r(K).
E(F, ns).K Using the minimum reconstruction, the positional accuracy

What is the distance PM(F, (FnS) B K) for the example for the example sets are
sets? Since F, = (F, nS).K, p(F,,(FI nS)EK) =

pM((F nS).K, (F, nS)e K) = r(K). It is easy to see pM(F,(FnS).K) =0< r(K)

pM((F 2 , (F2 n S) B K) = 0 because F2 = (F 2 n S) D K. Figure pM(F 2 , (F2 n S) .K) = v'2= r(K)
12 shows the values min jjx - yfl for all x E (F3 n S) E K, pM(F, (Ff n S) * K) = 1 < r(K)

YE F,
their maximum value being p((F, n S) E K, F) = 1 Since pM(F,, (F n S) * K) = 3 > r(K)
F3 g (F 3 nS)DK,p(F3,(FanS)DK) equals 0. Hence,
pM((F 3nfS) e K,F)= 1 < r(K). Also, since F, f- F, eK, pM(F4,(F4nS). K) L r(K).

5.5 Binary Morphological Sampling Theorem

This section summarizes the results developed in the
previous sections. These results constitute the binary digital

0morphological sampling theorem.

Let F, K, S c EN. Suppose K and S satisfy the sampling
conditions

(1) SeS=S
Figure 11. shows min llx - yll for each X E (F3 n S) a K. (2) S=S

YjEF,

(3) KnS = {0}

(4) K =

(5) XE K, implies K, n K, n S €0

Then

O (1) FnS=[(FnS).K]nS

(2) FnS=[(FnS)eK]nS

4o(3) (FnS)oKc FoK
(4) FoKC(FnS)EK

,bl (5) If F = F-K = F-K, then (FnS).K c F c (FnS)tK
(6) IfA = A*K andAnS = FnS, then A c (FnS)o

Figure 12(a) shows values for min lix-yl for all K implies A = (F n S) e K
iE(F~flS)$DK l,+rn) (7) If A = A oK and A nS = F nS, then AD (F nS) (

x E F4 . Figure 12(b) shows values for min lx - yll for all (

x E (F 4nS)+ K. The maximum among all these values is 2. K implies A=(FnS)EK
Hence PM(FI n 5) € k) = 2 > r(K). (8) If F = F e K, then pm (F, (F n S) . K) r(K)

(9) If F = Fo K, then ps((FnS)e K,F) < r(K)
The distance p(F 4,(F 4 n S) e K) is interesting since

F4 f- F 4 oK. The min Ix- yl values for all xE
VE(FnS)e K

F4 are shown in Figure 12a, their maximum value being 6. Operating In the Sampled Domain
p(F 4 ,(F 4 nS) TK) = 2. The minllx- y[l values for all X E

yEF, Section 5 established the relationship between the in-:, ~ ~(F S)K are shown in Figure 12(b), the maximum value is """'"-
Sare.. .shoniFiure12(),heaxiumalu formation contained in the sampled set and the information
p((F 4nS)contanen the unsampled set It shows that a minimal and

is equal to 2 which is greater than r(K). This shows why ..... I t n
tecdtn.F.is.uetb t dmaximal reconstruction can be computed from the sampledthe conditionF=FoKisrequired to boundthedif4erence
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set. When the set is smooth enough with respect to the p(fq' 1, (Fn S)q (B3n S))<
sampling S (that is, when the set is both open and closed
under the reconstruction structuring element), then the p((l"n S) f (r, (fin S)ti) K',(Fn S) q (fin S))

minimal and maximal reconstructions bound the unsamplcd < p([(F.n "),1(f1nS)Iii Ki,, K. ('nS)f)(1nS))
set, differing from it by no more than the sampling interval
length. 

-r(f I) ) ! 2r(K)

Not addressed in Section 5 is the relationship between Next note that p((t'n S) q (Bn 8), ("p B1) n S) =

tie computationally more efficient procedure of morpho- 0. Since (F n S) q) (Bi n S) c (F f 1i) n S. Now
logically operating in the sampled domain versus the less pM.((F 'i)rnS,(F'nS)p,(lnS)) = ,iiax{p((f.'1)n

computationally efficient procedure of morphologically op- S, (FnS))(I3nS)), p((F"nS),p( ,nS), (F,f)nS)} _ 5..
crating in the unsampled domain. In this section we niax{2r(/K),r01 = 2r(K) '

quantify just exactly how close a morphological operation
in the sampled domain can come to the corresponding Whereas dilation tends to suppress differences, erosion

morphological operation in the original domain. Thus we tends to accentuate differences. Consider the following

answer the question of how to compute the largest length of exaniiPle. Let I" be a disk of radius 12 anid B be a disk

sampling interval which can produce an answer close enough of radiis 10. Then F 13 is a disk of radius 2. Now define 0

to the desired answer when morphologically operating in the F"' to be a disk of radius 12 with its center point deleted.

sampled domain. Notice that the pseudo set distance between " anid F' is

The first proposition states that a sampled dilation zero. But although F' close to F, F'o B = . h'Ilie difference

contains tile dilation of the sampled sets and a sampled of one point makes all the difference.

erosion is contained in the erosion of the sampled sets. More formally, consider tile difference between the ero-

sioii of " arid the erosion of F p K.
pm "Fo ) ( 13, Fo 1) = p(([', K)13 , Ft)13)

Prot~osition > p((F-1)efIF,-I)

Let Bi C_ EN be the structuring element employed in the > p(( B (l) ', Fo fi)

dilation or erosion. Then .since (I"p K)",fl c (Fo I3) K where p((Fo B) p K, F) Bi)

(I ) (Fn S) p (fBn.') ( 1 1f ) n S is no greater than and c(ould be as (lose to r(AK) as possible.

(2) (F n S) (1i n S) _ ( F() B) n S 'Tliis we cannot expect that the difference between per-

U7nfortunately, the contaiinient relations cannot, ill forning ani erosion ill the sampled domain versis perforing iiri

general, be strengthened to equalities. Bhit we can d e- a sariijlirg of tle erosion ili the nnsaied dotnaili is no
tcruiine the conditions under whici tie equalily occiirs gre'ater than the size of K. Ilowever, we (1o obtain set

ard we (-all deterinme the distarnce between sets si as bounding relationships for dilation arid erosion using the

(Fn 5) (i (in 5'), which is the dilation of the sampled scis, following relationships:

and (l[")1)nS, which is tile saniplirg of the dilation. hit the )ilating (eroding) a saripled set by a sampled structur-

sarlhd domain, we can coripare the schemne of saipling irg elenieit is equivalent to sanipling the dilation (erosion)

and then performing the dilation in the sarmpled doiaihl of lie ornsaiipled set by the sanipled structuring (lenen.. %
to dilating first and then sampling. We also inquire about ( I ) (" n S) ,t1r)f nS) = [F , (13 n S)) n S

how different things coud be in the insaupled (loilaitn by (2) ( In S),, (Bt n S) = [F1, (13 n S) n S

(oniparing performing ti dilation in the sarupled .pace Also, the dilation of the nininal reconstruction by
and then reconstructing versus perfor mning the dilation i .1 stitilrig el'r e't H op ii under K is coitaii ed il

the iusatiipled doilaili. 'T'he next proposition states that thstriltin e n ln econ t a ed
this diitfrei'e ill the sar pled doiain rniot be1ore'ht lie dilation of the uaxinal recorstrrction by thle sariphlB
2r( fK ). st ructuing 'lereri fin S.

Prip)ositiot Lelnila

If IF = F o K arid i = H o K, then p, ((F ,?) ri let f = . 1. h'leii [( in,;) . ,j 13 [(B"n S) ii 'JI

S, ( F"n S)I (f n .S)) < 2r'( K)
Ir,,f I'.,,roof

,/" tl ( )( .Let .x c [(F .S) * I< + f. Then there exists an f (7
First coside 1)( 1p) n S,(/-n S) (Un S) (F n S) * K and b ( I such that .r -- f 4 b. 1)iic.

/,, 3(F )' .(13 S)) Since 1" P o aid P -_. 1?o K, h c B irupli,'' t li'e exists a iY such that

f3 - 1o K, V" C(/. n ,) K and fIc. (1n S),, IK. h) A, C fI. hut becaise of the salling conistr;inl.

I t'Ti'e, bt't.weetn h and .. S t A', imiiplies A' o A', n ' f 0.
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Therefore, there exists a z E K n K , n S. Now z E Kb Proof

implies that z = k+b for some k E K. Since it is also the The sampling conditions imply [(FnS)eK]nS = FnS.
case that z E Ky, it must be that z e B because Ky C B. Hence,
Recall that x=f+b=f+z-k= (f-k)+z. Since N.

fE (FnS)oK = [(FnS)eK]eK and since -kE K= (F nS) e(BnS) = {[(F n S)eK]nS}e(B nS)

K,f- k E ([(Fns)EKEK) eK = (FnS)eK. Since= {[(F nS)K]E(BnS))nS

z E B and z E S, z E BnS. Finally, f-k E (FnS)eK and D {[(F n S) e KI E B) nS 

z E Bf limply x = (f-k) +z E [(FnS)$K]&(BnS).
Under the sampling conditions, (F n S) e (B n S) c

Now we see that dilation in the sampled domain and S. So to complete the equality, we need to show that
dilation in the unsampled domain are equivalent exactly (FnS)e(BnS) c [(FnS)eK]eB. Let x E (FnS)e(BnS).
when the structuring element B of the dilation is open under Then (Bn S), C F n S. Since B = B o K, B c (B n S) E K.
K, and when the image F is its minimal reconstruction. Hence B. c (BnS),EK. But (BnS), C FnS s. that B. g

Theorem (FnS)EK. Now by definition of erosion, if B, C (FnS)eK,

Let B = BoK. Then (FnS)e(BnS) = {[(FnS)oK]e then x E [(FnS)eK]EB
B} n S This immediately leads to some set bounding relation-

Proof ships for erosion

(FnS)E(BnS) = ((FnS) eB)nS is always true. (FEB)nSc(F nS)e(B nS)=

Since FnSc (FnS)oK, {[(F n S) e K] e B} n S c [(Fe K) e B n S
((FnS)sB) nS c {[(FnS).K]eB}nS. But

[(F(nF) S K] eB c (Fn)eK] (B n S) when The previous theorem also makes it apparent that the
B = B o K. Hence (F in 5) e (B n 5) _ {[(F n 5) * difference hetween the maximally reconstructed erosion and Lw

K] B} In S c {[(F n S) E K] e (B n S1} n S. Now the erosion of the maximal reconstruction can be no more

{[(FnS)eK]e(BnS)}nS = {[(FnS)9K]nS}e(BnS). than the size of K when both B and the erosion of the

)Sin-c [(F n S) E K] n S = F n S always holds under the maximal reconstruction are open under K. This happens

sampling conditions, there results (F n S) E (B n S) _ because

[(FnS).IKe(BnS) g (FnS)e(BnS) so that PM([(FnS)e(Bn S)]eIK,[(FnS)eKIeB)
(FnS) e(BnS) = [(FnS). K](BnS). PM ({[(F n S) e (B n )] Kn 5,

The equality relationship established in the theorem im- n) e +r(K)
mediately leads to a set bounding relationship for dilation. {[(FinS)eK]eB}nS)

< PM((F nS)e(BnS),(FnS)e(BnS)) +r(K)= r(K)
[(Fe K)@B]inSc {[(FnS) oK~eB) nS =

(FinS) e (BinS) g (Fe B) n S Just as it was the case that dilating (eroding) a sam-
pled set by a sampled structuring element is equivalent to

Also from the theorem, it becomes apparent that the sampling the dilation (erosion) of the unsampled set by %
difference between the maximally reconstructed dilation and the sampled structuring element, so it is also the case that
the dilation of the minimal reconstruction can be no more opening (closing) a sampled set by a sampled structuring el-
than the size of K when B is open under K. This happens ement is equivalent to sampling the opening (closing) of the

because unsampled set by the sampled structuring element. These

pm([(F n S) E (B n S)] D K, [(F n S) e K] e B) relationships are useful in establishing when the opening
and closing operation are equivalent in the sampled and

_ pM( {[( F inS) e ( B rl S)] @ }l S, unsampled domain.

{[(F nS)K]eB}nS)+ r(K) (1) [Fo(BnS)]nS=(FnS)o(BnS)

_pM((F nS)e(BnS),(FnS)e(B nS))+r(KI)=r(IK) (2) [F.(BnS)]nS=(FnS)o(BnS)

Similarly, eroding a sampled image by a sampled struc- The bounding relationships between the sampled and
turing clement is equivalent to eroding the maximal re- unsampled domains for the opening and closing operation

construction by the structuring element and then sampling now follow immediately.

when the structuring element is open under K. Theorem

Theorem Suppose B = B o K, then

Let B = BoK. Then (FnS)e(BnS)= {[(FnS)eKje (1) {F.[(BnS)EK]inS c (FnS)o (BnS)c ([(Fin S)
B) n S" K] o B} nS
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(2) {[(FnS).K].B)nSc(Fr-S).(BnS)c{F.tBnS)e (2) If F =(FnS).K and B =(BnS)eK, the bounding

K]} n S relationship for closing becomes

Proof (F .B) nS c (P nS).(BnS) c (F . B)nS

(1) Notice that [(BnS)eK]o(BnS) = (BnS)EK. Under this
condition, {Fo[(BnS)eK]}nS c [Fo(BnS)]nS. But by from which we immediately obtain (f * B) n S = (F n
a previous proposition [Fo(BnS)]nS = (FnS)o(BnS). S) * (B n S). ..
Now suppose X E (F n S) o (B n S). Then there exists a
y such that x E (BnS), c FnS. But (BnS), c (FnS) 6.1 Examples

implies (B n S), e K c (F n S) E K since dilation is an A simple example illustrates the bounding relationships ,%
increasing operation. Hence, [(BnS)eK] ]_ (FnS)EK. of morphological operations operating in the pre- and post- .%..
Since B=BoK, Bc (BnS eK. Then, B~c (FnS)eK. sampled domain. The sample set S and the set K we
Also, x E (B n S), implies x E B,. Finally, x E B, c_ used are those defined in the previous examples (see Figure

(F nS) e K implies x E [(F nS) K]oB. 5). The sets F,B, and K are defined in Figure 13. It
(2) By a previous proposition (FnS)e(BnS) = [F.(Bn is clear that B = B o K. In Figure 14, we show the

S)]nS. Since [(BnS)@K]o(BnS) = (BnS)eK,[Fe results of down-sampling every other row and every other
(BnS)lnS c {F.[(BnS)e Kj}nS. Let R = (FnS).K. column, FnS, BnS, and the sampled domain morphological
Since B = B o I, Re B is open under K. Hence operations, (FnS)E(BnS), (FnS)e(BnS). The results
R oB c [(ReB)nS]e K. Now [(FnS)eK]EB, [(FnS)EDK]e B, {(FnS)oKo B}nS,and

(R.B)nS= [(ReB)oB]nS {[(Fn S) E K]E B} n S are shown in Figure 15. Note that

c ({[(RD B) n S] e K} e B) n S the following equalities hold:

But the sampled erosion of a maximal reconstruction is (F n S) e (B n S) = {[(F nS) * K] e B} n S
the erosion of the sampled set by the sampled structur- and
ing element. Hence,

({[(ReB) nS)K}eB)nS= ([(ReB)nSIE(BnS) (FnS)e(BnS) = {[(FnS)eKjeB}nS.

Figure 16 shows (Fe B)nS, (FeB)nS, (Fe(BnS)), and
And the sampled dilation of a minimal reconstruction (B following are true:
is the dilation of the sampled set by the sampled struc- N t e w r
turing element. Hence, (F n S) e (B nS) c (Fq B) n S

[(Re B) n S]e (Bn S) = [(Rn S) e (Bn S)le (Bn S) and "%

Finally, RnS = [(FnS)*K]nS = FnS so that (FnS)e(BnS)2(FEB)nS.

([(F n S) - K]. B) n S c (Fn S) e (B n S). It can be easily verified that

The bounding relationships immediately imply the fol- ( Fn S) (Brn S) = [F (B n S)] n S
lowing equivalence for the opening and closing operations
between the sampled and unsampled domains, and A

Theore. (FnS)e (Bn S)= [Fe (Bn S)]nS. ,

Suppose B = B o K.
(1) If F = (Fn S) K and B = (Bn S) D K, then

(F n S) o (BnS) (FoB) nS

(2) If/ " = (F n 5) * I" and B = ( B n S) e K, then (F n S) * In practical riiiltiresolution image processing applica-
(Bn S) B)(F )nS ions we would like to perform morphological operations in

Proof the sampled(l domain to reduce the computational expense.

(1) If F = (Fn S) . K and B = (Bn S) i. K, the bounding flow well can a morphological operation be performed in
relationship for opening becomes tle sampled domain rather than the original domain can

be answered by the relationships and distances between
(Fo B) n.Sc (FnS)o(BnS) c (Fo )n S (I.'n,),i(1)nS) and (Fyf l)nS as well as (Fn S)c, (BnS) -

arnd (F,, B) n S. ('nfortinat ely, t lie distance•from which we immnediately obta in (Fo B) n .S = (IF n,

S) o (3 n S) p.,( (J'n S) ,i (1? n S), (ie 1) n S) < 2r(K)
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We now show the distances between the pre- and post-

sampled morphological operations. We first check the dis-
* * . * 

°  " I * tance between (F n S) e (B n S) and (F E B) n S. The S
* * m . x. ramn Iix-yll values for all x E (Fe B)n S are shown

- sYE(Ffls)G(Bfls)
---- - °, in Figure 17; their maximum value is p((FeB) nS,(Fn

-- -- - -S)e(BnS)) = 4. Since (FnS)E(BnS) c (FeB)nS,
------... [the distance p((FnS)e(BnS),(FDB)nS) = 0. Thus,

[ pM((F n S) e (B n S), (F e B) n S) = 4." Note that

pM((F n S) E (Bn S), (FE B) n S) = 4> 2r(K)

since F L FoK. Suppose F' = FoK and B'= BoK. Figure
18 shows the results of (F'nS)E(B'nS) and (F'qB')nS.
Since (F'nS)@(B'nS) = (F'EB')nS in this example, we

• I° • • find that --'

pm((F'o S) D (B' n S), (F'q B') n S) = 0 < 2r(K).

Figure 13 illustrates the sets F, B, and K. Now we check the distances between the maximally .
reconstructed dilation (erosion) and the dilation (erosion)

can be guaranteed only when F = Fo K and B = Bo K. It of the minimal (maximal) reconstruction, pM([(FnS)E(Bn
can be very big when the set F is not open. The set F of S)] D K, [(F n S) oK] e B)(pm[(F n S) e (B n S) e K, [(F n
Figure 13 is an example having a large difference between S)eK]eB)). [(FnS)e(BnS)]EK and [(FnS)oK]eB are
the pre- and post- sampled dilations because the conditions shown in Figure 19. The values of min lix - yIl forsE[(Fn'S).K]eB

Fo K and B = Bo K are not satisfied, all x E [(Fn S) @ (Bn S)] E K are shown in Figure 20; their %

maximum is ([(FnS)E(BnS)[eK,[(FnS)oK]jeB) = 1.

Since [(FnS)K]e B c [(F n S) e (B n S)] e K, this

implies p([(F n S) * K] & B, [(F n S) e (B n S)] E K) = 0.
. . Itence, pM([(F n S) * K] e B, [(F n S) D (B n S)] q K) ='4

F* f3 S *.1 0 0001
* . 1 0 z 0 0 0

- o -I L0 0 0 0

0 0 Is0

_ji

Figue 1. sowsthe esuts f smplig te FandFigure 15. shows the dilation and erosion of the
F sw h r to sminimal and mial ct0 ofF b the strucuring

B of Figure 13 and performing the dilation and erosion of element B and asshos the saming of t!is dilation and
F n S by Bn S in the sampled domain. erosion.
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-- "Figure 18 shows the results of (F' n S) q, (B' n S) and
where F' = Fo K' and B' = [1 o K. (See Figure 14 for the .'

o 4 definition of F, B, and K'.)

( .B, ( ,, Next we show fl1, D k < f () k. By the umbra hino-
norphisin theorem, [![fi1 ., k] = U[fi,1 s 11[k]. But U[f. .

Figure 16. shows some morphological operations in Uf I  (S x E). H U1k1 ) 1 Ikut (S x E) UIk[ = ,'Ne

the original donain followed by sampling, opern.ions in F). -heoce, fk ) ) (f[k] Ive
if nd nlyif ti K Ev-1 SoU~f1,,D k C U~f1)1[k] =el

I < r(K). [(F n S) t (13 n S)] p K and [(F nS) ( Ko B 1[f p k] by the umbra homomorphism theorem. Hence,

are shown in Figure 20. Note that [(" n S)( Kp ] - B is '[U[f ,k]] < T[U[f sk]] which by definition of gray scale

open tinder K. The values of min Ill - yll for all dikltion implies fl, p k < f k. The analog of F n S =
Ej(Fns)(PtKOB [(Fn S) (T K] n S is fi. = (f 1, ( k)l,. It holds under the

X E [(F n S) - (B n S)] oI K are shown in Figure 20; their Condition that k(0) = 0.
maximum is p([(Fn' S)0 (B nS)Js A ', [(Fn'mS)s IK] 0 13) = I. ,.
Sin ume [(is S)s] O B C [(Fn S) (B q)], K I, this impli In order to continue with the parallel development fok <,SincpJ(FS)(I K o B[(F S) -(BnS) (I) K, this imlies,, fik, we first need the strosger relation that for every
p((n S) K) o B,l(Fn S) (B n S)] (K0 . .r 1"olA, there exists a s Sn F such that x c K,

-)F )( ) and (f o k)(x) < f(s) + k(x - s). This result follows front

the( sampintg condition u E K, imtplies S; n K,, n K~, t-
and a colstraint onl the structiring element k : k(a) <

k(a - bt) + k(b) for every a, b satisfying a E 1%",b E K and .

a - ) E A'. This latter constraint is a new concept essenial

for the reconstruction struturing elent in the gray scale

ttorphology.

Before developing the proof for the inequality (fok)(x) <"

f(s) + k(.r -s) it. will be useful tot exllore tlie ni eautitg of the.-
itequality k(o) < k(a - b) + '(b) since this is a constraint we"

have tnot htad tot deal with uttnt il tiow. ''lliequ'(tality k(tt) <
k(A - b) + A,(l) together with A - , imtplies that k(y) ? 0 for

,v,,ry + e h. 'This cal easily be seen b% l'tting t =.r 4-yy and
/, .1 .r. This leads to k(.r ± y,) < k(.r) + k(!y). Then let a .r

Figure 17 shows the values of rain for all anl t .r t -Y. This l'ads tok(.r) < k(!/)+k(.r+yt). lietwo
iflsti( v Iiltns) intequalities iiply k(.r) < k(!) + A(.r + !I) < 1(.r) + 2k(!') frot,

X E (F I'1 ) n S. whih l'(.) > 0 quictklv follows. ',

481 .

,''
5,.-.. ~ * 5* Sr '



W,.

The inequality k (a) 5 k (a - b) +k(b) also implies that for time or discussion even though the extensions are somewhat
any integer n > 2, k(nx) !<nk(x) for every x E K satisfying more involved. The gray scale analcg- to the relationship
m E K for every m, 2 <m <n. The proof is by induction. F&()K c (F n S) EK c F (K is f ek < fl, E)k < f ek, 6
Taking n = 2,a = 2xand b = x- establishes the base case where fI1, F n S - E defined by fI1,(x) =f (x) and it

k(2x) :5 2k(x). Suppose that for every m, 2 < m < n, k(ma) -. holds under very much the same conditions that the binary

Nmk(a) and ma E K and a E K. Taking a = (n+ 1)x and b = x- relationship holds. The only new requirement is for k > 0
prodcesk~n1) knx)k~x. Bu k~x) n~x) Hece, which is stronger than the requirement that 0 E U[k].

k ( x 5nk(x) +k(s) = (n +l k~). Now by induction Finally, notice that k(a) :5 k(a - b) + k(b) for every
k(nx) < kx o every integer n > 2 satisfying mx E K for d, b E K satisfying a - b E K and K = k? imply, as well,
every m, 2 < m < n. k(b) :s k(b -a) +k(a) for every a,b E K satisfying a - bE K.

Since k = k, we obtain k(a-b) ! maxjk(a)-k(b), k(b) -k(a)).

0 * * 0 - -1Cntutn functions which satisfy the inequality is
0 ** ;; .0 . 1..00 easy with the following procedure. Define k() =O0and k(l)

* * * *to be any positive number. Suppose k(m), m = 0...., n have
0 111 been defined. Take k(n + 1) to be any number satisfying
a 0 0 e * . 0

0 0 *1 1 0 * 0 * max k(u)-k(n +1I - u)) ! k(n + 1)
0 . . 1 0 1 0 1 * 0 * 0 ss

min f{k(v) +k(n +I--v)}

* .. ;; ;; - ; * *;-tI---- After kis definedfor all non-negative numbers in its domain
T d ***..(efine k(-n) = k(n) for n > 0.

* ~ -_ _The gen~erating procedure works because k = k and the
- - - ineq~uality implies k(s) - k(y - x-) ! k(y) : k(s) + k(y - x-).

Hlence, max jk(u) -k(y -u) :5k(y)}I<! min fk(v) +k(y -v)).

4 Proposition

Let F, K, S c E N-1,!f F -E, k :K - . Suppose

U E K. implies Sn K~nK,, t- 0 and k(a) :< k(a -b) +k(b).
Then for every s E F o K, there exists an s E S n F such

. . . .. .. .t hat X- E K, and (f o k) (x) :5f (s) + k(s - s),

Proof

7 T.7 1TFI~et s E IoK. Then (a-,(fok)(x)jl [fok] BttL[fok= d,
T ~U[f I o U[k]. Hence, there exists (u. V) E EN1x E such

that (a, (f . k)(s) E 1[k],.,) 9 11[f). Now (,(

k)(x)) E I[[k 1 55,1 implies x, (fok)(s))-(U, V) E lJ[k]. So

Figure 19 illustrates how the distance between the re- (~i(o~~ ~[wihipis(o)s-
sult produced by reconstructing the morphological dilation k(s-.u). Thus v > (fok)(s)-k(x- i). But 17[k(, c U4f]

dlone in the sampled domain and the dilation of the minimal implies for every a E K (a~k(a)) + (11,?') C t'if]. Ilence

reconstruction done in the original domain must be less than for every a E K. a + U E F and k(a) + z, < f (a + ut).

r(A') = V2. Now x- E K,, implies there exists S E K, nK. n, S so that
S-It E K. And sinces-u E A',k(s--uz)+i' < f (s-u+ii)
f(s,). Now (f ok)(sr) - k(s-- it) < v' aid ?, < f (s) - k(s - It)%

7. The Grayscale Sampling Theorem imply (f ok)(s) - k(x - it) < f (s) - k(s - it). But k(a) <
k(a - b) + k(b) for every a, h E K satisfying a - b E K.

In this section we present the extension of the mar- Letting a = x- - it anid b = - it, a - b =a- - s, it is
phological sampling theorem from the binary case to the obviouls t hat .r - it E It, s - iU E K, and r- - S E A'. Hlence,

*grayscale case. k(.r - ut) - k(s - it) < k((.r - i1) - (s - it)) k(.r - s).

7.1 The Grayscale Bounding RelationshipsThrfr([k)s fs)±(r-s)

Thie set bounding relationships for the binally Morphol- Let F, K. S c E'~ N , f :F - E and k :K - E. S uppose
ogv have a (direct correspondence to fuinction bounding i ,ipisS ,o,~~adk )<ka-b (i)
relat ioitships itt gray scale morphology. In this sect ion we Then (f k)(s) < (f 1, i k)(a-).
defvelop the bouinding relationships withbout spending much I

4P2



Ilaving determined that f o k < fi, D k, the maximality (2) U[fi, k] = U[fI,] ( 1[k] by the umbra homomorphism ,

of f1, t k comes easily, theorem. Also, 11[f1. = U[f n (S x F) so that UfI,] g

Proposition I[fj. llence, UffI, o k) c 11(f] * 1[k] = UJ[f . k) by the
unibra homonorphism theorem. This implies fh * k <let ;,FK,S"c EN

-
l, 9g:C G Uk: K- E,f :F.E.f .

If k(a) < k(a - b) + k(b) for every a E As and b b o K
sat isfying a - bE K, and x E K, ilmplies IK n K5 n S f- , As before, the axinality comes easy.
then q = gok..gi = fl, and 9 ? fl,qTk implies g = fl,,Pk. Propositioni

We continue our development with the hounding rela- Let G, F, K, S C E N -i, g G - E, f F - E, and
tions for the miinimal gray scale reconstruction. k : A - _. Suppose gj, f1, and g g * k. Then.V.

l Ir~q~ositionig < fl, * k implies g = fh k. * '.

I, t F, K',S c_ '- ',f : F - E, and k : A' - P. If 7.2 The Grayscale Morphologic Sampling Theorem
k= -k(a) < k(a-b) + k(b) for every a, bE K satisfying

a - b E K. and .r E K, implies K, n K, n S 6 0, then for This section summarizes the result.- developed in the N.
every i EK. f (x +z) -k(z) <(flk)(x + ) -k(u) for previous sections. These results constitute the grayscale.

ach z E K. digital morphological sampling theorem.
Proof Let FK,S c El - . Suppose K and S satisfy the

Since k(a) < k(a - b) + k(l). for every a, bE K satisfying sampling conditions

a - bE K, -k(z) < -k(u) + k(u - z) for every o,zE K (1) S =

sat isfying u -z K IE K lenc, ftx + z) - k(z) < f(x z) + (2) S=S
ku - z) - k(u) for every uz E K satislying -zE K. (3) Kn S (0).,
Making a change of variables I = u - z, there results (,I) ' = I -.

(5) X E K, implies K, n K'1, n S 0. Let f F E and
f(.r - s) - k(s) < [f(x + u - t) + k(t)] - k(u), then k: A ' E. Suppose further that k satisfies "

f(.r - ) - k(:) < ax fl ,r(x -u - t) + k(t) - k(u) 6 = ,
(7) k(a) < k(a-6)+k(b) foreverya, b E A' satisfying a-b E K

< (f, + k)r(x + u) - k(u) (8) k(0) = 0
Then

,oi everv i . () f = (flE Kk).

Proposition (2) fj, (f( k), . ,)
Let F, K, _c ,"-r : F - E, and k: K - E. Suppose (3) f[ .k < f k
It E K',, implies I" n K, n S f 0, k k, and k(a) < (4) fl, ok <f -o k
k(a .- b) + k(b) for every a, hE K satisfyinga-bE A'. (5) lff=fok=f., then fEI.k<ffk,-
lthen for evei y r 5 1, A', (f,, A)(x) < (fi. • A')(.r). (6) Ifg = g.k and g9, = fi, then g < fl,.k implies g = fl,°k

(7) If g = g o k and] gl, = fl,, then g > fl, ti k impl;s

Proo f g = f k

Let x c 1 , K. [lien (f , ,k)(x) = min f(x+ z) - k(z)) < 7.3 Examples -

(./i, + kl(r + u) k(u) for ('very it E K. 'Iiere results, -.e
(f 4-(x ) < i i i{(f(, .f, k )(.r -: u) - A u*) = (f, o A)(.r). 'The remaining examples illustrate how the riorphologi- -.

cal sampling theorem can lead to iultiresolution processing
l'rtposition techiiques. The resolution hierarchy, called a pyramid, is

1,('t I". S , C I - a1d [: 1" ( F E, kA AE. Thi prodc'ed typically by low pass filtering and then sampling ,
I)f , (fI. * k)I,. to generate the next lower resolht ion level. Figure 21 shows

(2)f[, k k< f k. a 5- level pyraiid produced by pure sampling from a lasar 0-r-%
radar range ilap. The highest resolution inmage size is 0.

plirofl 256 x 256. A 2-1)'x, . wide line and a .1 x 4 box are pla'e(, %
I ";in (-losing is an increa'ing operation, fl, < fl, ' itentionally at the upper right and upper left, reslectively. -,.,

Soin'e dilation san icreasing operation, fl, k < . * Figure 22 shows a 5-level morphological pyramiid. At %
A') A.. V = . '. Itence. fl, (f, * k)), < (fj, ,' k)),. But vach level, the image is open('ed by a brick of size 3 x :3 and
(fI, -!. k), f f, and this proves fO = ([U, *A,. tlen sampled to generat' the next lower resolution layer. _

Notice how the linte in lhe upper right. part of the iliage V %
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I. 4

has been eliminated. Figure 23 shows a similar 5-level

morphological pyramid. In this pyramid the image at each

level has been opened by a 3 x 3 brick, sampled, and then

reconstructed, using the maximal reconstruction. The next

lower resolution layer is generated by sampling as before. V

--

SIA
Figure 23 shows a 5-level pyramid of the same image

as Figure 23. In each level, the image is opened by a brick

of 3 x 3 and then is sampled and reconstructed before it is

down sampled to generate the next level.

8. Research and Future Directions

The goal of our vision research group is to advance and .%

Figure 21 shows a 5-level pyramid of laser radar range develop the fundamental principles of computer vision by

image produced by pure sampling. The highest resolution a systematic exploration of the required theoretical issues, IN.
image size is 25r by 256. A 2 pixel wide line segment and the experimental issues, and the computer architecture

a 4 x 4 box are intentionally placed at the upper right and issues. We do not approach theory for the sake of theory

upper left of the image, respectively, alone and we do not approach experiments for the sake of ¢
S..

experiments and demonstrations alone. Rather, we employ

statistically valid experiments using many images under a
variety of conditions to explicitly or implicitly increase our

understanding and insights about the constraints inherent
in the reality with which computer vision deals. And we
employ theory to build on the assumptions we cur,,ntly

hold about this validity. The technical material lie
morphological sampling theorem which we described in this
paper establishes a sound basis for doing multi-resolution

morphology. Sound basis means that we now understand
what the coarsest resolution is for which a shape can be

looked for and found. Once we find the shape at the coarsest

resolution, we understand that the corresponding shape at
the next highest resolution is guaranteed to differ from the
extrapolated shape at the lower resolution level by no more

than the sampling interval, anywhere. These guarantees
4. play a crucial role in the high-level knowledge base of the

vision system we are building.

Our current research in mathematical morphlogy deals
with understanding how to do adaptive morphology and to

automatically construct optimal morphological processing I
sequences on the basis of a training set of examples. We
intend to first, solve the processing sequence problem in

Figure 22 shows a 5-level pyramid of the same image the restricted domain where we only hae to work with 21)

a., Figure 23, produced by. opened by a brick of 3 x 3 and shape. Then we will extend it to 2D perspective projections

then sampling to generate the next layer, of 31) objects.
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An active area of research is concerned with making recognized or inspected. Our current efforts here have been"

a variety of vision algorithms robust in a quantifiable way to establish a representation for 31) objects suitable for
and characterizing the performance of the robust algorithm, vision algorithnms and get this representation implemented

We believe that with a good enough characterization of the in a CAL) software system. We also have done some

performance of each subalgorithm in a composite vision al- preliminary work to analytically predict what features we

gqrithm, we can develop the error propagation methodology expect to find in an image of the object under different

to characterize the perfbrmance of the composite vision al- lighting sources and different viewing angles.

gorithm on the basis of the performance of its participating Our group is quite interested in parallel architectures

algorithms, for vision. We are exploring, designing, and building

Robust here means making the algorithm perform al- pyramid and reconfigurable pipeline architectures for iconic

most the same whether or not there is some fraction of pixel pushing algorithms, the intermediate iconic/symbolic

blunders or gross errors in the data. Not only do robust algorithms, as well as higher level symbolic algorithms. %
algorithms behave well, but they naturally indicate which Some of the most challenging architectural issues arise at %

of their inputs they estimate to be reliable and which inputs the intermediate level where we are focusing on several '.-

they estimate to be errorful. representative problems:

The robust algorithms with which we have begun are (1) determining where a given shaped object is;

line, curve and surface fitting, as well as the pose estimation (2) processing with chain codes or run length encoded data;
problem, in which it is required to determine a sensor or (3) Hough transforms with variable quantization and spa-

object rotation and translation when corresponding data tial clustering as a substitute for Hough transform;

point sets are given. Four pose estimation problems arise (4) generating and computing using topological image ''A"
from the situations in which the correspoding data point sets structures such as the winged data structure for arc
are 2D to 2D, 3D to 3D, and 2D perspective projection to segients, and their relationships..

31), 2D perspective projection to 2D perspcctive projection. For recoifigurable pipeline architectures we have al-"

The first case arises when flat manufactured objects are ready developed a new language called INSIGhT'!' which lt.s

being viewed. T he second case arises w ith data froni h e l or pe he d esir dNalle l i et s

range finder sensors. The third arises froni 3D vision from trepogam specify the es a ralesin a aralmonocularrelatioal way. For the new architectural designs, we are
working with other Electrical Engineering faculty whose

antI stereo.
n e tero b aMain research areas are VLSI and parallel architectures.Once( the rohbust algorithms for pose estimation are .5.

established and we have a performance characterization of References

bow many pairs of corresponding points in a data set can I. Narendra Ahuja and S. Swaimy, "Multiprocessor pyra- k.fl

be outright blunders with only a slight degradation in per- imid architectures for bottoir-up image analysis," II'.'I'

forinance, there will be enough information to integrate the Transactions on Pattern Analysis and Machine firthl-

pose estimation directly into the matching that establishes prnce, Vol.6, 1984, pp. 463-475.

the corresponding point data sets. In this manner we expect 2. Ken E. Hatcher, "l)esigi of a Massively Parallel lroces- €

to be able to develop an overall theory and methodology by so, eE 'Jransign of a Massielyrall. ce-o
s or", IEEE,1 Transactions on. Computers, Vol. C-29, No. ..

which integrated information transfer between algorithms 9, S 1980, pp. 836-840.

at different levels of a vision paradigm can take place.

In tile high level vision area we are continuing our 3. P.h. Hurt, "'l'he pyramid as a structure for efficient

earlier work on structrual matehing via the consistent lahbel- computation," lHef. A. losenfeld, Ed., Mufiresoluio n

ing framework as well as investigating inference algorithlns Image Processing and A naly.is, Springer. Berlin, 19t81.

which art, appropriate for high level control and which are pp. 6-35.

e:omputationally eflicient. The inference algorithms we are 4. F. North Coleman .nd Itohert F. S ampson, "Acquisi .

developing are extensions of the approximate liinear time tion of Randomly Orieited Worklpieces Throrugh Struc -

propagate and divide iift reice algorithms we developed for tlre Mating", CompUter Vision 
1 rtie flIlecoaq itto ii-,1,,

propositioral logic. lin tithe stru itural matching area, we C'onfe.,cncc, Sari Francisco. ('aliforiria, .hine. 19-23, Ip. -

are exploring how known structure on the constraints in a 350-357.

matching problem can be utilized to speed rip the matching 'I'. (rir is air M . I ro'n. "hnage Algrlra arl ".-.-

algorithm fur eit her exact or inexact riratching. Ih this area in rat ion Shape htecognition," lI.'I'E ' riitactoyts oni
we' have already demnonstrated a polynomial time matcher Aromspace and Electric Syt rs, Vol. A "S-21. No. .

suitable for industrial vision. ai, 1 n,' i 6)-6. Vol- %

lit th e ir a ni factu rin g a rea w e a t 'w o rk irg J n 'v i'rr i6g 
•

a nethodology to aritomliat ically prodruce a vision algorithm

given air augriented ('A) data base of the olject to ie

485

%9
Noe~" '0.

11 -.- s~ A*' 'C-, A.C Ot-r'','' ' C'P2v- %-~r 8, Nil: %'
t ~ "' h'a



6. J.L. Crowley, "A multiresolution representation for 19. J.C. Klein and J. Serra, "The Texture Analyzer", Jour-

shape," Ref. A. Rosenfeld, Ed., Multiresolution Image nal of Microscopy, Vol. 95, 1977, pp. 349-356.

Processing and Analysis, Springer, Berlin, 1984, pp. 20. A. Klinger, "Multiresolution processing," Ref. A. .

169-189. Rosenfeld, Ed, Multiresolution Image Processing and %

7. Edward Dougherty a'nd Charles Giardina, Image Analysis, Springer, Berlin, 1984, pp.86- 100.,N

Processiag-Continuous to Discrete, Volume I, Prentice- 21. B. Kruse, "Design and Implementation of a Picture Pro-

Hall, Inc., Englewood Cliffs, NI, 1987. cessor", Science and Technology Dissertations, No. 13, I

8. Michael Duff, "Parallel Processors For Digital Image University of Linkoeping, Linkoeping, Sweden, 1977. %

Processing", Advances in Digital Image Processing, (P. 22. James Lee, Robert M. Haralick, and Linda Shapiro,

Stucki, Ed.), Plenum, New York, 1979, pp. 265-279. "Morphologic Edge Detection," IEEE Journal of

9. Michael J.B. Duff, D.M. Watson, T.M. Fountain, and Robotics and Automation, Vol. RA-3, No.1, April 1987,

G.K. Shaw, "A Cellular Logic Array For Image Process- pp. 142-157.

ing", Pattern Recognition, Vol. 5, 1973, pp. 299-247. 23. Patrick F. Leonard, "Pipeline Architectures For Real-

10. C.R. Dyer, "Pyramid algorithms and machines," Ref. Time Machine Vision", IEEE Computer Society Work-

K. Preston, Jr. and L. Uhr, Eds., Multicomputers and shop on Computer Architecture For Pattern Analy-

Image Processing Algorithms and Programs, Academic sis and Image Database Management, Miami Beach,

Press, New York, 1982, pp. 409-420. Florida, November 18-20, 1985, pp. 502-505.

11. Frans A. Gerritsen and L.G. Aardema, "Design and Use 24. R.M. Lougheed and D.L. McCubbery, "The Cytocom-

of DIP-i: A Fast Flexible and Dynamically Micropro- puter: A practical pipelined image processor," Proceed-

grammable Image Processor", Pattern Recognition, Vol. ings of the 7th Annual International Symposium on

14, 1981, pp. 319-330. Computer Architecture, 1980, pp. 1-7.

12. Frans A. Gerritsen and Piet W. Verbeek, "Implemen- 25. Petros Maragos and Ronald W. Schafer, "Morphological %
tation of Cellular Logic Operators Using 3 x 3 convo- Filters-Part I: Their Set-Theoretic Analysis and Rela-

lution and Table Lookup Hardware", Computer Vision, tions to Linear Shift-Invariant Filters," IEEE Transac- ,'

Graphics, and Image Processing, Vol. 27, 1984, pp. 115- tions on Acoustics, Speech, and Signal Processing, Vol.

123. ASSP- 35, Aug, 1987, pp. 1153-1169.

13. M.J.E. Golay, "Hexagonal Parallel Pattern Transforma- 26. Petros Maragos and Ronald W. Schafer, "Morphological

tions", IEEE Transactions on Computers, Vol. C-18, Filters-Part II: Their Relations to Median, Order-

1969, pp. 733-740. Statistic, and Stack Filters," IEEE Transactions on

14. D. Graham and P.E. Norgren, "The Diff3 Analyzer: Acoustics, Speech, and Signal Processing, Vol. ASSP--S.

A Parallel/Serial Golay Image Processor", Real Time 35, Aug, !987, pp. 1170-1184.

Medical Imayge Processing, (Onoe, Preston, and Rosen- 27. G. Matheron, "Random Sets and Integral Geometry,"

feld, Eds.), Plenum. london, 1980, pp. 163-182. Wiley, N.Y., 1975.

15. H. lladw ,unger jiber Inhalt, Oberfl~iche und 28. G. Matheron, Elements Pour une Tiorre des Mulieux

lsol',, -;pringer, Berlin, 1957. Poreux, Masson, Paris, 1965.

16. Rober r \ .aralI>' :. "A Reconfigurable Systolic Net- 29. David L. McCubbery and Robert M. Lougheed, "Mor-

work in Compui, Vision". IEEE Computer Society pholocial Image Analysis Using A Raster Pipeline Pro- S
Workshop on Computer Architectur For Pattern Anal- cessor", IEEE Computer Society Workshop on Corn-
ysis and Image Database Management, Miami Beach, puter Architecture For Pattern Analysis and Imag,

Florida, November 18-20, 1985, pp. 507-515. Database Management, Miami Beach, Florida, Novem-

17. Robert M. Ilaralick. Stanley R. Sternberg, and Xinhua ber 18-20, 1985. pp. 444-452. ,-

Zhuang, "Image Analysis Using Mathematical Mor- 30. R. Miller and Q.F. Stout, "Pyramid computer algo- 0,%

phology," IEEE Transactions on Pattern Analysis and rithns for determining geometric properties of images,"

Machine Intelligenc. Vol. PAMI-9. No.4, July 1987. Symposium on Computational Geometry, pp. 263-271.

pp. 532-550. 31. II. Minkowski. "Voluen und Oberflgche", Mathemati-

18. M.J. Kimmel, R.S. .Jaffe. J.R. Manderville, M.A. Lavin, cal Annals, Vol. 57. 1903. pp. 4,7-495.

"MITE: Morphic inage Transform Engine An Ar-

chitecture For Reconfigurable Pipelines of Neighbor-

hoo0 d Piocessors", IEEE Computer Society Workshop

on Computer Architecture For Pattern Analysis and

Image Databast Management, Miami Beach, Florida,

November 18-20, 1985,pp. 493-500.

486

'-..F



32. A. Favre, R. Muggli, A. Stucki, and P. Bonderet, 44. Stanley R. Sternberg, "Cellular Computers and Biomed-
"Application of Morphologic Filters in the Assessment ical Image Processing", Biomedical Images and Corn-
of Platelet Thrombus Deposition In Cross Sections of puters, (J. Sklansky and J.C. Bisconte, Eds.), Springer
Blood Vessels", 4th Scandanavian Conference On Image Verlag, Berlin, 1982, pp. 294-319. (Presented at
Analysis, Trondheim, Norway, June 17-20, 1985, pp. United States - France Seminar on Biomedical Image
629-640. Processing, St. Pierre de Chartreuse, France, May 27-

33. Shmuel Peleg, J. Naor, R. Hartley, and D. Avnir, "Mul- 31, 1980.)

tiple Resolution Texture Analysis and Classification", 45, Stanley R. Sternberg, "Pipeline Architectures For Image
IEEE Transaction Pattern Analysis and Machine Intel- Processing", Multicomputers and Image Processinq, (FK
ligence, Vol. PAMI-60, 1984, pp. 518-523. Preston and L. Uhr, Eds.), Academic Press, New York,

34. Shmuel Peleg and A. Rosenfeld, "A Min Max Medial 1982a, pp. 291-305. "/,
Axis Transformation", IEEE PAMI, Vol. PAMI-3, No. 46. Stanley R. Sternberg, "Esoteric Iterative Algorithms", '

2, 1981, pp. 206-210. Second Intr,,ational Conference on Image Analysis and

35. J.L. Potter, "MPP Architecture and Programming", Processing, Selva di Fasano, Brindisi, Italy, November

Multicomputers and Image Processing, (K. Preston and 15-18, 1982b.

L. Uhr, Eds.), Academic Press, New York, 1982, pp. 47. Stanley R. Sternberg, "Biomedical Image Processing",
275-290. Computer, Vol. 16, No. 1, January 1983, pp. 22-34.

36. J.L. Potter, "Image Processing on the Massively Parallel 48. Steven L. Tanimoto, "Programming techniques for hier-

Processor", Computer, \%'1. 16, No. 1, January 1983, archical parallel image processors," Ref. K. Preston, Jr.
pp. 62-67. and L. Uhr, Eds., Multicomputers and Image Processing

37. William K. Pratt, "A Pipeline Architecture For Image Algorithms and Programs, Academic Press, New York,

Processing and Analysis". IEEE Computer Society 1982, pp. 431-429.

Workshop on Computer Architecture For Pattern Anal- 49. L. Uhr, "Pyramid multi-computer structures, and aug-
ysis and Image Database Management, Miami Beach, mented pyramids, Ref. M.J.B. Duff, Ed., Computing

Florida. November 18-20, 1985, pp. 516-520. Structures for Image Processing, Academic Press, Lon-

38. Ken Preston, Jr., "Machine Techniques for Automatic don, 1983, pp. 95-112. 0

Identification of Binucleate Lymphocyte", Proceedings 50. S.H. Unger, "A Computer Oriented to Spatial Prob-
Fourth International Conference on Medical Electronics, lems", Proceedings IRE, Vol. 46, 1958, pp. 1744-1750.
Washington D.C., July 1961. 51. Michael Werman and Shmuel Peleg, "Min-Max Opera-

39. Ken Preston, Jr., "Application of Cellular Automata tors In Texture Analysis", IEEE PAMI, Vol. PAMI-7,
to Biomedical Image Processing", Computer Techniques No. 6, Nov. 1985, pp. 730-733.
in Biomedicine and Medicine, Auerbach Publishers, 52. Stephen Wilson, "The Pixie-5000 - A Systolic Ar- S
Philadelphia, 1973. ray Processor", IEEE Computer Society Workshop on

40. Azriel Rosenfeld, "lierarchical representation: cnm- Computer Architecture For Pattern Analysis and Image .j '

puter representations of digital images and objects," Database Management, Miami Beach, Florida, Novem-
Ref. O.D. Faugeras, Ed. Fundamentals in Corn- brr 1-20, 1985, pp. 477-483.
puter Vision-An Advanced Course, Cambridge Univer- 53. A.P. Witkin, "Scale space filtering: a new approach
sity Press, Cambridge, UK, 1983, pp. 315-324. to multi-scale description." Ref. Shimon Ullman and %

,11. J.Serra, "Stereology and structuring elements," Journal Whitman Richards, Eds., Image Understanding, Ablex
of Microscopy, . 1972. pp. 93-103. Publishing Corp., Norwood, NJ, 1984, pp. 79-95.

12. Jean Serra, Image Analysis and Mathematical Morphol- 54. Xinhua Zhuang and Robert M. Haralick, "Morpholog-
ogy, Academic Press, Londion, 1982. ical Structuring Element Decomposition," Computer

13. Stanley R. Sternberg, "Parallel Architectures For Image Vision, Graphics, and Image Processing, 35, (1986), pp.

Processing". Proceedings IEEE COMPSAC. Chicago, 370-382.

1979.

487

% % %



Using Generic Geometric And Physical Models
For Representing Solids*

Jean Ponce and Glenn Healey

Robotics Laboratory
Department of Computer Science

Stanford University
Stanford, California 94305

Abstract complex images requires compact geometric models and a
good understanding of the physics underlying the imaging

We present a solid modelling system based on power- process. In this work, we describe an implemented system
ful geometric and physical representations. The geometric which combines compact but expressive geometric models
representation combines constructive solid geometry (CSG) with accurate physical models of light sources and material
and boundary (Brep) representations. Solids are built as surfaces.
CSG trees by applying set operations to a very general set
of primitives: generalized cylinders with either a straight or The geometric modelling component of our system uses

a curved axis. Using an efficient and robust boundary evalu- generalized cylinders as building blocks. We consider gen-

ator, we construct corresponding Breps in terms of trimmed eralized cylinders with either a straight or a curved axis.

surface patches and their boundaries. In addition to geo- They are well suited to visual tasks, as they combine both

metric models, our system describes the physical properties volume and surface information, and their shape is nicely

of material surfaces using very general physical models. Un- "summarized" by their axis. These primitives are also very

like many existing systems, we accurately model the optical general, in particular, they include all the "natural" sur-

properties of both homogeneous and inhomogeneous mate- faces (cuboids, spheres, cylinders, cones, tori) used in most

rials. Our model for the scattering of light from the body of solid modelling systems. We have developed interactive

inhomogeneous materials based on modified Kubelka-Munk tools for specifying the shape of generalized cylinders. Corn-

theory is significantly more general than previous models plex solids are built by combining these primitives through

used in computer graphics and vision for this process. This set operations. Our system allows this constructive solid

is a bit surprising, since this process is largely responsible geometry (CSG) representation to be built interactively,

for the appearance of the vast majority of the objects we or from a simple modelling language. For many applica-

see in everyday life. We unify our physical and geomet- tions (e.g., prediction, display) however, it is necessary to

ric representations using a method to map material surface have an explicit boundary representation (Brep) of solids.

properties onto our geometric models. Our representations In the system presented here, it consists of a general de-

allow for computationally efficient and physically accurate scription of objects' surfaces by graphs of trimmed surface

display of complex solids. We present several new rendering patches separated by discontinuity curves. An efficient and

algorithms exploiting these advantages, including fast ray robust boundary evaluator is used to transform the con- 0

tracing for line drawing and shaded display. The system structive solid geometry representation into the correspond-

described has been implemented. Several examples demon- ing boundary representation. Powerful new rendering al-

strate the effectiveness of our geometric and physical mod- gorithms (including efficient ray tracing for line drawings

els. and shaded display) have been developed which are capa- -.
ble of generating images of objects represented by our sys-
tem. Figure 1 shows an example of such an object (a plastic

Introduction valve).

Being able to generate aesthethically pleasing images of We represent the physical properties of material surfaces 'r

a wide variety of objects requires expressive and robust ge- using a generic physical modelling system. Our physical

ometric models and realistic yet possibly empirical models models are more general than any previously used models in ..
of the physical world. Conversely, being able to interpret several respects, yet these models are easy to use for image

*Support for this work was provided in part by the Air Force synthesis. Every parameter of our representation specifies

Office of Scientific Research under contract F33615-85-C-5106 an intrinsic physical property of a material surface. This is
and by the Advanced Research Projects Agency of the D-part- unlike many systems which model at the level of geometry
ment of Defense under Knowledge Based Vision ADS subcontract dependent properties like reflectance. We represent a ma- %?
S1093S-l. k
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Figure 1. A plastic street elbow pipe modelled by our Figure 2. The pipe of the previous Figure, cut to show its

system. internal structure.

terial surface as the combination of a material description Voelcker, 1977]) and boundary representation (Brep, e.g.,

and a surface description. Physically, the material descrip- [Baumgart, 1972), (Weiler, 1985]) are two popular represen-
tion specifies optical properties while the surface descrip- tations used by solid modellers to define objects. In CSG, '
tion specifies local geometric properties. Our models apply solids are represented by boolean combinations of simple '
to both homogeneous and inhomogeneous materials. While primitive solids. In Brep, solids are represented by a graph
most of the work on reflectance models in computer graphics embedded in the surface, topologically equivalent to a poly-
has concentrated on specular reflection, we adopt here a new hedron with curved faces. Boundary evaluation is the pro-

physical model for a process which is much more significant cess which calculates a boundary representation of a solid
visually. This process is called colorant layer scattering and from it CSG representation.
it is the dominant optical process for inhomogeneous mate- In this section, we present our geometric representation
rials (e.g. plastics, paints, textiles, paper, ceramics). The for three-dimensional solids. This hybrid representation
model we use has been verified experimentally by others and specifies solids as CSG trees of very general primitives (gen-
allows us to accurately predict variations in the color and eral cylinders, [Binford, 1971)), assembled by using a simple
intensity of the light scattered from the body of an inho- modelling language (section 1.1). Using a general boundary
mogeneous material as a function of geometry. Our system representation, the surfaces of these solids are represented
also includes general models for light sources. The physical by graphs of trimmed surfaces separated by intersection
properties (intensity and color) of the light reflected from curves (section 1.2). An efficient and robust boundary eval-
surfaces are easy to compute and render using our physical uator (section 1.3) transforms the CSG represenation into
models. We merge our geometric and physical representa- the Brep representation.
tions for objects using functions which associate material 1-1. CSG representation
and surface properties with regions on geometric models. In a CSG representation, solids are represented as trees

This paper concentrates on representational issues and whose leaves are primitives and the other nodes specify set I
the application of our models to graphics problems. Vi- operations between them. We present in this section the .
sion applications (prediction, segmentation, matching) are CSG representation that we have adopted in our modelling
described elsewhere [Binford, Levitt, Mann, 1987), [Ponce, system. We first describe our primitives, which are a large "
Chelberg, Mann, 1987], (Healey and Binford, 1987]. The class of generalized cylinders [Binford, 1971], and the way.

ppris divided into three sections. Section I discusses oir these primitives are represented and built.. We then describe
geometric models. Section 2 develops out physicz1 rood- our representation for complex objects, and in particulart.
els. Section 3 describes our rendering algorithms which use how we specify these objects in termns of a simple modelling
both our geometric and physical models. Examples are pre- language.
sented throughout to demonstrate the effectiveness of our 1-1-1. Generalized cylinders
geometric and physical models (Figures 1,2,4, 5,8). A genera hzedscyli nder [Bintford, 1971] is the solid obtained-,-'

by sweeping a planar surface, its cross-section, along a space ,
curve, its axis, or spine. The axis is not necessarily straight,

1. Geometric Models or even planar; the cross-section is not necessarily circular,
or even constant; its deformation is governed by a sweeping

Constructive solid geometry (CSG, e.g. [Requicha and rule.
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Generalized cylinders are volumetric primitives. Both
SIGC's and CSR's can be expressed analytically. In a given
coordinate frame (i,j, k), straight homogeneous generalized p
cylinders are given by:

x(#i s, 0) = ur(s)p(O)(cos Oi + sin Oj) + sk;
s, 0) E [0, 1] x [sm ,n, jm o,] x [0, 27].

The polar function p(O) specifies the shape of the reference
cross-section. Similarly, the function r(s) specifies the scal-
ing of this cross-section along the axis. Curved solids of

S-' revolution are given by:

x(A, s,0) = a(s) + /r(s)(cosOn(s) + sin Oh(s));

(i., , o) E [0,11 x [s m,, S_..o x [0, 2r], 0
where n and b are the normal and the binormal associated

Figure 3. Some examples of generalized cylinders imple- to the axis a(s), and the function r(s) specifies the scaling
mented in our system. of the reference cross-section (in this case a unit disc) along

the axis.
Notice that these volumetric expressions also give an an-

Generalized cylinders have extensively been used to rep- alytical expression for the surface: in both cases, the "swept
resent three-dimensional objects in computer vision (e.g., surface" (envelope of the swept cross-sections) is given by S
[Marr and Nishihara, 1977], [Brooks, 1981], [Nevatia, it = 1, and the planar "ends" are given by s = s,_ and
1982], [Binford, Levitt, Mann, 1987], [Ponce, Chelberg, s = Smax.
Mann,1987]). Some forms of generalized cylinders (e.g., Notice also that the above expressions of SHGC's re-
canal surfaces [Rossignac and Requicha, 1987]) have also stricts slightly the shape of their reference cross-section,
been used in solid modelling, which must be star-shaped with respect to the origin. Sim-

Generalized cylinders are interesting for geometric mod- ilarly, the radius of curvature of the reference cross-section
elling because they are very general primitives. In partic- of a curved solid of revolution must be smaller than the
ular, they include all the "natural surfaces" (i.e., cuboids, radius of curvature of its axis (otherwise there may be self-
spheres, cylinders, cones, and tori [Rossignac and Requicha, intersections). S..
1987]) usually manipulated by CSG systems, and also, for For a SHGC, the p and r functions, and the correspond-
example, helicoids, and general solids of revolution. ing curves (p cos 0, p sin 0) and (a, r(s)) are in principle arbi-

They are also interesting because of their geometric prop- trary. However, it is in general convenient to represent them
erties: Line drawings of generalized cylinders can be com- in terms of simple primitive arc segments (in the same way S
puted analytically (see [Ponce and Chelberg, 1987] and sec- as it is in general convenient to represent complex solids in
tion 3.1). For computer vision applications, it is also pos- terms of simple primitives). Similarly, the axis of a CSR
sible to prove properties of these line drawings which are can be defined in terms of primitive segments.
independent from the viewing direction [Ponce, Chelberg, In the current implementation, we have two types of
Mann, 1987]. primitive arc segments: straight lines and cubic splines.

Most authors, however, have considered only a very re- Straight lines are given by their end points. Cubic splines
stricted class of generalized cylinders (e.g., the generalized are specified by knot points. These knot points may be of
cylinders of Acronym [Brooks, 1981] have a straight axis, three types: C O points correspond to orientation disconti-
their cross-section is either a circle or a regular polygon, nuities and are specified by their position plus two tangent
and the sweeping rule is a linear or bi-linear scaling), directions (one for each side of the point); C' points cor-

The primitives that we consider here are straight homo- respond to curvature discontinuities and are specified by
geneous generalized cylinders (SHGC's, [Shafer, 1985]), and their position and the tangent direction; C 2 points where
curved solids of revolution (CSR's). SHGC's are generalized the curvature is continuous are specified by their position
cylinders with an arbitrary cross-section, a straight axis, only.
and an arbitrary scaling sweeping rule. Solids of revolution Again, the primitive arc segments can be specified explic-
form a strict subset of SIIGC's. itly. lowever, we find it much easier in most applications

Curved solids of revolution are generalized cylinders with to use an interactive graphic editor dedicated to this task.
an arbitrary three-dimensional axis, a circular cross-section, The knot points, their tangents, the types of the primitive
and a scaling sweeping rule. Circular tubes, whose circu- segments are all input using a mouse. Simple editing corn- 4-
lar -russ-cction is constant, are a strict subset of CSR's. niands (killing a point, moving it, changing its tangents or ]
Figure 3 shows some generalized cylinders handled by our its type, mirroring a point with respect to sonic axis, etc..)
modelling system. are available.
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Figure 4. A model of the Stanford-JPL hand. Figure 5. A drill. It is specified by one page of code in our
modelling language.

At any time, the user can save the current primitive on
file, or display it without leaving the editor (using the back s-expressions) to the different affixment parameters, so we
to front painting technique of section 3.2). The user can can model articulated objects (e.g., the three-fingered hand
also specify dimensions, e.g., in the case where machine in Figure 4).
drawings are available. This makes the task of specifying Using this simple modelling language, it becomes very
complex primitives very easy. easy to specify objects of moderate complexity. In particu-
1-1-2. Composite objects lar, each of the examples presented in this paper (including

Composite objects are represented by CSG (Constructive the drill (Figure 5), hand (Figure 4), and pipe (Figures 1
Solid Geometry) trees. A CSG tree is a binary tree whose and 2), which are each made of about a dozen of primitives)
root represent the whole object, and sub-trees its sub-parts. can be specified very concisely in our modelling language. •
The leaves are the primitives which compose the object. 1-2. Boundary representation
Non-leaf nodes are labelled by the set operations used to In a boundary representation scheme, a solid is repre-
combine the primitives. sented by a graph whose nodes are its (curved) faces, and

Primitives may also be associated to non-leaf nodes. arcs are the (curved) edges separating them (Figure 6). Un-
They could for example be used to help coarse to fine recog- til now, most boundary representations have been restricted
nition of an object by representing a "simplified" version of to very simple surfaces and curves.
this object [Marr and Nishihara, 1977], or to display an ob- Recently, trimmed surfaces have been proposed to deal
ject at different levels of detail depending on its distance with more complex solids (e.g., [Casale, 1987], [Crocker and
from the observer [Crow, 1982]. Reinke, 1987]). They represent faces of solids by surfaces

The relative positions of sub-objects are represented by whose original rectangular domain of definition has been
an affixment graph. The nodes of this graph are primitives, trimmed during set operations.
and the arcs represent the geometric transformations be- In this section, we present the boundary representation .--
tween the coordinate systems attached to each primitive, of our modelling system. It uses trimmed surface patches S
Loops are not allowed in the affixment graph, as they could to represent the faces of solids. The trimmed patches them-
produce conflicting specifications of the primitives' posi- selves are represented by a collection of polygons in param-
tions [Ambler and Popplestone, 1975]. eter space, embedded in a quadtree-like data structure.

The assembly tree and the affixment graph are specified 1-2-1. Trimmed surface patches
using a simple modelling language. This is straightforward A surface is a mapping x from a closed subset D of R 2
for the assembly tree, but requires more attention for the into R'. In most solid modellers, the domain of definition U
affixment graph. It is very difficult for a user to model an of a surface is a rectangle I x J. When repeated set opera-
object by giving the 6 parameters of the transformations tions between solids are performed, the domain of definition
between primitives. D of the surface is trimmed, and becomes a strict subset of

Therefore, we have added the possibility of specifying I x J. The boundaries of D are the back-projections of the
affixments by spatial relationships between planar faces of intersection curves into parameter space. %
primitives. The relative positions of the primitives are spec- The advantage of using a trimmed surface representation
ified by expressions like "with face < facel > in contact is that no approximation is made in representing the surface 0
with face < face2 >", which may themselves be parame- itself. The only approximations that may occur are in the
terized. It is possible to give symbolic values (variables and representation of the 2D boundary of the trimmed domain.
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boundary represtntation of a solid from its CSG represen-
tation. A boundary evaluator has normally two main mod-

Sdules. The first one computes the boundary representation

of the primitives; the second one computes the result of a
given set operation applied to the boundary representation

c- c- of two solids. The boundary evaluation of a CSG tree is

@ s- done by recursively calling these two modules.
We now detail these modules. Given the above repre-

sentation for generalized cylinders, evaluating a primitive is
7 easy. Computing set operations is more difficult. In particu-

2 lar, the two main problems are computational efficiency and
2 3 robustness in the presence of degenerate cases and round-off e

1 errors. We present solutions to these two problems.
1-3-1. Evaluating a primitive

4 The graph corresponding to a given generalized cylin-
8 der primitive is built automatically from the specifications

of its axis, cross-section, and sweeping rule. For example,

Figure 6. The boundary representations for a cylinder and the graph associated to a circular cylinder consists of three

the union of a cube and a cylinder, nodes, its two ends and the swept cylindrical surface; the
arcs are the cross-section curves corresponding to $mirn and
smx (Figure 6.a).

Even in that case however, this boundary is guaranteed to Tangent discontinuities in either p or r partition the sur-
lie on the original surface. face of a SHGC in a set of smooth faces separated by curves 1.

Other authors [Casale, 19871 have proposed to represent where the normal to the surface is discontinuous. These dis-

the trimmed patches by the hierarchy of loops defining the continuities are important for line drawing display, because

domain D. Here, we use an alternative approach. We rep- they are generically observable in images, where they cor-

resent the domain D as a collection of polygons in I x J. respond to zero order discontinuities in intensity.

These polygons are embedded in a quadtree-like [Samet, So, if either p or r have tangent discontinuities, additional .
1984] of the rectangle I x J. nodes must be added to the graph representing a SHGC.

The leaves of this quadtree may have three different col- Similarly, corresponding new arcs, which are meridians (8
ors: inside, outside, or intersection. The inside leaves are constant) or parallels (s constant), are added. The case of
entirely included within D, the outside leaves are entirely curved solids of revolution is similar, except that the only

included within the complementary of D with respect to discontinuity arcs are parallels.
I x J. The intersection leaves enclose the boundary of D. With our primitive arc segments, tangent discontinuities
They store a description of the part of D that they enclose, of p and r correspond to the end points of line segments

Right now, this description is polygonal: boundary and the C0 knot points of cubic arcs. It is therefore triv-
curves are represented as polygons, and they split the ial to generate automatically the corresponding nodes and
squares associated to the intersection leaves into a num- arcs. There is evidence that second order surface discon-
ber of polygons that are either completely inside or com- tinuities, which correspond to first order discontinuities in

pletely outside the domain D. These polygons themselves intensity, are also detected by humans. It might therefore
are marked inside or ourside, so the domain D is formed of be interesting to associate to each of the above C' faces a
the union of all its inside leaves and all the inside polygons sub-graph of C 2 faces separated by curvature discontinu-

of its intersection leaves. ities. This could be easily done by using the C' knot points
This representation gives us a very simple and efficient which correspond in fact exactly to these discontinuities.

description of the trimmed surface patches. 1-3-2. The set operation algorithm
1-2-2. Curve segments The input of the set operation algorithm consists of a set

A curve is a mapping from an interval I C R into R 3 . A operation (union, intersection, difference), and two solids
curve segment is defined by a curve and a domain D C I. S, and S2 . The output of the algorithm is a new solid

We consider two kinds of curves. The first curves are corresponding to the operation performed. %

created during the creation of a solid. They are given by More precisely, the new solid is obtained by merging thean analytical expression, usually as splines. graphs associated to S, and S2 . Some arcs and nodes may.,
The second kind of curves we consider are the intersec- be deleted. Conversely, some arcs (new intersection curves).,

tion curves computed during set operations between solids, and nodes (a surface patch may be split into smaller disjoint "
They are computed in a polygonal form, but could also be patches) may be created (e.g., Figure 6.b shows the grahs €.
represented as splines whose knot points are the computed of a cuboid and a cylinder merged to form their union). -"

aa

intersection points. In addition, the domain of each parametric patch must
1-3. Boundary evaluation be trimmed. To achieve this, our algorithm is divided into

Boundary evaluation is the process which calculates the three steps: compute the intersection curves in world and .
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this splitting step, described later in detail in a separate

subsection. During that step, the edges of each of the

E non-intersecting facets which correspond to the intersection
curves are marked as intersection edges.

V V This process is repeated for each pair of intersecting
E/ w E- leaves. The output of this step is, for each parametric sur-

face, a list of all its intersecting leaves with the associated

non-intersecting facets. The intersection curves are made
of all the intersection edges of these facets. The next step

in the algorithm is to link these edges into curves.

In most solid modelling systems, this linking process is
far from trivial as the intersection curves of two algebraic
surfaces can be very complex [Farouki, 1986], and heuris-

Stics must be used. Here, however, the facets can be easily
linked by using a quadtree neighbor-finding algorithm (e.g.,

22 E 1 12 22 .l 12 E2 [Samet,1982]), and the output of this step is a list of world-

space polygons which approximate the intersection curves.

Figure 7. The different ways of splitting a convex planar The price to pay for this easy linking is that we have

facet, done a polygonal approximation of the intersection curves.
Notice however that, within this approximation, the linking
is ensured to be correct. The world-space polygons can

parameter space; trim the domains of the patches along now be back-projected into parameter space, where they
these curves; update the graph. In each of the steps, our split the domains of definition of the associated parametric '
main computational tool will be the quadtree associated to surfaces into non-intersecting connected components.
each face of the solids compared. Once again, the back-projected intersection curves are
1-3-3. Computing the intersection curves only approximations of the real curves. However, they lie

To find the intersection curves, we use an adaptive sub- on the real surface, and don't involve any approximation of
division approach (see, e.g., [Carlson, 1982], [Ponce and the surface itself.
Faugeras, 1987], for similar approaches). The idea of this 1-3-4. Trimming the domains
method is localize the search for intersections to the regions Let us consider a trimmed surface pacth P which is being -p
where they may take place. Given a surface patch, we as- compared to a solid S. Once the intersection curves between
sociate to each node of its quadtree a simple box enclosing S and P have been found, we must use them to trim the 0.

the corresponding surface patch. domain of definition of P.
In the case of patches defined by blending of a set of Let us consider the graph whose nodes are the non- * S

control points, it is known that a patch is enclosed in the intersecting leaves of the quadtree and the facets associated
convex hull of the associated control points (see [Miller, to the intersecting leaves, and arcs are the neighborood re-
1987]). In a similar way, it is possible to derive analytical lations between these polygons. The intersection curves de-
expressions for the boxes associated to the class of gener- limit a number of connected components of this graph, such
alized cylinders considered in our system (this derivation that none of these components intersects S.
is omitted here for the sake of conciseness, see [Ponce and The next step in the algorithm is to classify each of these
Healey, 1988], for details). components as being inside or outside the solid S. This

The algorithm to find the intersection curves is as fol- could be done by classifying individually each node in the

lows: The roots of the trees associated to the two surfaces graph, but this is time consuming, as classifying a point -

are compared first. If they don't intersect then the surface is an expensive operation: for example deciding whether a
patches don't intersect and the algorithm stops. Other- point is inside or outside a general polyhedron has linear
wise the largest of the two boxes is subdivided, and the complexity in the number of faces.

recursion proceeds, until the boxes compared are under a In fact, classification can be achieved by tracing a ray
pre-determined size. from the point, intersecting it with the surface, and count-

The result of this step is a list of pairs of intersecting ing the number of intersections of the ray with the surface

leaves. The associated boxes enclose the intersection curves. (if the number is even, the point is outside, and inside other-
To each leaf is associated a list of planar facets which ap- wise). This can be done efficiently by using a variant of the
proximate the original surface patch associated to the leaf. ray tracing algorithm described in section 3.3. Moreover, for

For SHGC's and tori, a planar quadrilateral is sufficient. some primitives (e.g., tori), analytical inside/outside func- U
For CSR's whose axis has a non-zero torsion, a pair of tri- tions are available.
angles is needed. However, the classification of every node would remain

For each pair of leaves, the corresponding facets are then expensive, and that is why we use instead the following

intersected, and split into non-intersecting facets. One method. We just classify one point per connected compo-
key of the robustness of the set operation algorithm is in nent C and spread its classification to C by using the same

'p
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neighbor-finding algorithm as before.
Once all the quadtree nodes and non-intersecting facets ,K

have been marked, the nodes and facets that lie outside the
result of the set operations can be eliminated. For example, .
if the union is computed, only all the outside nodes and /9

facets are kept.
1-3-5. Updating the graph

Nodes in the surface graph which don't belong to the re-
suiting solid can be immediately destroyed (their quadtree
becomes empty). Arcs attached to deleted nodes are deleted
too. New nodes are created for each new connected compo- , -A

nent of the quadtrees.
New arcs are formed by the intersection curves computed

during the first step of the algorithm. By maintaining con-
sistent neighborood relations between nodes, facets, and in-
tersection curves during the two first steps, it is then trivial
to attach the new arcs to the corresponding nodes.
1-3-6. Splitting the facets Figure 8. A screw, modelled as the difference between a

One of the big problems in geometric intersection algo- cylinder and a helicoid. IPA
rithms is to maintain a consistent representation in the pres-
ence of degenerate cases (edge-edge intersections, coplanar
facets..) and round-off errors. To achieve this goal, we use Figures 1,2,4,5, 8 show the results of the boundary eval-
an approach introduced in [Ladlaw, Trumbore, and Hughes, uation for models made of SHGC's and CSR's.
1987] for polyhedra. -.

They present an exhaustive analysis of all types of inter-
sections between convex planar facets, and use it to split two 2. Physical Models
intersecting convex facets into a set of legal non-intersecting
facets along the intersection edge. This guarantees that the The synthesis of realistic images requires models describ-
objects generated by the set operation algorithm are them- ing the physical world. Appropriate models are readily 'N
selves correct. available. For many years, physicists and optical engineers

Here, the planar facets associated to the intersecting have studied the optical processes which contribute to im- "'4

leaves of the quadtrees are convex quadrilaterals or trian- age formation. Perhaps the most relevant (and undoubtedly"%
gles, and we can use a similar algorithm. Figure 7 shows the most complex) of these processes is the interaction of
the different ways a facet can be split depending where the light with matter. Consequently, a large literature exists '4
intersection curves intersect it. The edges corresponding to describing the optical properties of material surfaces. In
the intersection curves are the edges used to split the facets, this section we describe the physical models which our sys-
and can therefore be marked during the splitting. tem uses for image synthesis and explain why these models

In addition, round-off errors are handled by considering represent a significant improvement over previously used .1
that two points whose distance is less than a given small er- models in computer graphics.
ror are the same. Using both these methods, we have been In recent years, computer graphics researchers have used
able to handle correctly cases where one face was intersect- increasingly realistic reflection models. In his pioneering
ing more than twenty other faces, being split in more than work, Phong [Phong, 1975] introduced a model which rep-
one hundred faces in the process. resented the light reflected from a surface as a linear com-
1-4. Complexity issues and results bination of a Lambertian diffuse component and a specular

We claimed earlier that our algorithms were computa- component. The intensity of Phong's specular component
tionally efficient. In this subsection, we briefly justify this fell off from its maximum value as the power of a cosine
claim. We have used the classical analysis of quadtree- function. Blinn [Blinn, 1977] improved on Phong's model
based algorithms [Hunter and Steiglitz, 1974] to show that by using a more realistic model for specular reflection based
the complexity of steps 1 and 2 is O(p.2q), where p is the on the work of Torrance and Sparrow [Torrance and Spar-
perimeter of the intersection curves in world space, and q is row, 1967] and Trowbridge and Reitz [Trowbridge and Re-
the maximum depth of the quadtree (see [Ponce and Healey, itz, 1975]. Cook and Torrance [Cook and Torrance, 1981]
1987], for details). adopted an even more general model of specular reflection

This is to be compared to a "naive" alghorithm which from Beckmann [Beckmann, 1963] and accurately repro- 71
would approximate homogeneously the two solids by poly- duced the spectral properties of the reflected light. In re-

hedra, and whose complexity for a comparable accuracy lated work, Kajiya [Kajiya, 1985] derived a reflection model ,

would be 0 (24q) = 0(n ' ), instead of O(pV'i) = 0 (p.29), for surfaces which are anisotropic scatterers. Recently, Ba-
where n is the number of faces of each polyhedron (for a har and Chakrabarti [Bahar, 1987] used f .1-wave theory
given solid, p is a constant). to describe the light scattered from a rough surface. Their

"%d'
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ambient illumination.
2-1. Representing Properties of Material Surfaces

Adopting suitable physical models is one of the most im-
portant aspects of building a graphics system capable of dis-
playing realistic images. The tendency in computer graph-
ics has been to use physical models that are not sufficiently
realistic. There is also the opposite danger of using physical

;;7 models which are unnecessarily complex. For example, in
L . 0 -vthis work it would be inappropriate and highly inefficient to

model light at the level of quantum electrodynamics. In this

subsection, we describe our representation for the proper-
ties of material surfaces which determine how those surfaces
will appear in images.

Our physicai models describe intrinsic optical properties
of material surfaces. We note that it is typical in computer
graphics not to model intrinsic optical properties of materi-
als but rather to model at the level of geometry dependent

Figure 9. Specular Reflection properties like reflectance. We believe that modeling in-
trinsic properties is a significant advantage of our approach.
Given our representation for the intrinsic properties of ma-

analysis takes into account the physical optics component terial surfaces, there exist reflection models which allow us

of reflection. to determine the image of an arbitrarily shaped specimen

An important optical process which has received little at- of the material under arbitrary viewing and lighting con-
tention in computer graphics is the scattering of light from ditions. These reflection models will be discussed in detail

the body of an inhomogeneous material. The scattering of in 2.3 and 2.4. In 2.1.1. we distinguish homogeneous and
light from the body of a material is also known as colorant inhomogeneous materials. In 2.1.2. and 2.1.3. we give an
layer scattering. It is this colorant layer scattering that overview of reflection and introduce the reflectance model.

largely determines the appearance of the vast majority of In 2.1.4. we describe our models for the properties of ma-

the objects we see in everyday life (metal surfaces being terial surfaces.
the most notable exceptions). For example, plastics, paper,
textiles, paints, and ceramics are all inhomogeneous materi- 2-1-1. Optically Homogeneous and Inhomogeneous

als for which the dominant optical process is colorant layer Materials
scattering. It is useful to divide materials into two classes based on

Most of the work towards improving reflection models their optical properties. This subsection defines optically
has concentrated on interface (specular) reflection and has homogeneous and optically inhomogeneous materials. The
ignored the scattering of light from inhomogeneous mate- models we use in this work apply to both kinds of materials.
rials. The models of Bahar and Chakrabarti [Bahar, 1987] Optically homogeneous materials have a constant index
and Kajiya [Kajiya, 1985] are only relevant for homoge- of refraction throughout the material. Consequently, for an
neous materials (e.g. metals and crystals). Blinn's work in object composed of a homogeneous material in air, light
[Blinn, 1977] presents an improved model for the specular undergoes reflection and refraction only as it encounters a

reflection component. Cook and Torrance [Cook, 1981] take surface of the object. Metals and crystals are the most
a first step towards modeling body reflection from inhomo- common examples of homogeneous materials.
geneous materials by treating the scattered light as being Optically inhomogeneous materials are composed of a ye-
colored and uniformly distributed. This simple model, how- hicle material with many embedded colorant particles which
ever, does not accurately predict variations in the color and differ optically from the vehicle. While in the body of an in-
intensity of the reflected light as a function of geometry. In homogeneous material, light typically interacts with many
this work, we introduce a model for the scattering of light colorant particles. The net result of many interactions is
by colorant layers which substantially improves on existing that the light is diffused. Some examples of inhomogeneous
models. Our model for the scattering of light by inhomoge- materials are plastics, paper, textiles, and paints.
neous materials is presented in 2.4.

This section is organized into five parts. In 2.1 we de- 2-1-2. Reflection
scribe our representation for the properties of material sur-
faces. In 2.2 we explain how these physical properties are When light is incident on the surface of an object, some

mapped onto our geometric models. In 2.3, we describe fraction of it is specularly reflected. A smooth surface re-
our model for specular reflection which is similar to exist- flects light only in the direction such that the angle of inci-
ing models. In 2.4 we present our model for colorant layer dence equals the angle of reflection (Figure 9). The prop-
scattering which represents a substantial improvement over erties of this specularly reflected light are determined by P.
existing models. In 2.5 we describe our model for direct and the optical and geometric properties of the surface. For op- *4
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2-1-4. The Properties of Material Surfaces e/

We refer to the optically significant part of an opaque
object as its material surface. The properties of the light
reflected by a material surface are determined by the op-
tical properties of the object's material and the geometric
properties of the object's surface. For the purposes of our
representation, we keep these material and surface proper-

o0 0 0 0 0 ties distinct. Therefore, a material surface is represented 1
0 0 0 0 0by the combination of a material description and a surface

0 0 0 0 0 0 0description. In the next two paragraphs, we describe our

0 0 0 representations for materials and surfaces respectively.
0 0 0 We represent a material as a record containing five fields.

The first field gives the name of the material, e.g. alu-
minurn. The second field specifies whether the material is
homogeneous or inhomogeneous and gives a symbol;c de-
scription of the material's type, e.g. metal, plastic, wood,

Figure 10. Colorant. Layer Scattering etc. The third field contains the complex index of refrac-
tion of the material as a function of wavelength over the
visible range. For an inhomogeneous material, the index of

tically homogeneous materials which are not transparent, refraction corresponds to the vehicle material. The choice

appearance is completely determined by the properties of of representation of functions in our system is arbitrary and

specularly reflected light. For many inhomogeneous mate- may be, for example, by means of tables or approximations
rials, such as plastics, specular effects are also significant. using basis functions, etc. The fourth field contains the

The fraction of the incident light which is not specu- scattering coefficient a(A) of the material as a function of

larly reflected enters the body of the material. For inhomo- wavelength. The fifth field contains the absorption coeffi-

geneous materials, the body is composed of a vehicle and cient a(A) of the material as a function of wavelength. The

many colorant particles. When light encounters a colorant functions represented in fields four and five apply only to

particle, some portion of it is reflected. After many re- inhomogeneous materials and will be explained in 2.4.

flections, the light is diffused and a significant fraction can In our current system, a surface is described by a rcord S
exit back through the surface in a wide range of directions containing the roughness parameter associated with the

(Figure 10). Torrance-Sparrow specular model [Torrance, 1967]. Our
representation allows the possibility of using multiple scale

2-1-3. The Reflectance Model surface roughness as suggested in [Bahar, 1987] and [Cook,
1981]. %

In subsections 2.3 and 2.4, we develop detailed reflectance Our representation for material surfaces has several de-
models for both specular reflection and colorant layer scat- sirable characteristics. We model only intrinsic, physically
tering. In terms of these models, we can quantify the re- meaningful properties of material surfaces. Our represen-
flectance R of a surface by tation contains no ad hoc parameters. We do not, for ex-

ample, split the reflectance into a specular fraction and a A
diffuse fraction where the two fractions are required to sum

R( 1, 0, ,,, A) = Rs( 1 , 0. 0, A) + RB(0 1 , 0- 6,, A) (2.1) to one as is often done. Instead, the amount of specular re-
flection, body reflection, and absorbed light as functions of

where Rs is the specular reflectance term and RB is the wavelength are determined directly from our physical rep-
body reflectance term due to colorant layer scattering. The resentation for the material surface.
angles 61, 0_, and 6p are the photometric angles. 01 denotes 2-2. Mapping Physical Properties onto Geometric
the angle between the surface normal and the illumination Models
direction. 0,, denotes the angle between the surface normal Given ot iepresentation for the physical properties of
and the viewer. 6p denotes the angle between the illumi- material suriaces, it is necessary to associate these material
nation direction and the viewing direction. As usual, A surface properties with areas on the surfaces of our geo-
denotes wavelength. metric primitives. This is done by defining two functions,

The power of the light reflected towards a viewer is given fM and fs over each surface of a generalized cylinder. The
by function fif maps a surface point to its material properties

record and fp maps a surface point to its surface proper-

I(9z, 9 , o,, A) = R(01, 0,., 6,, A)L(A) (2.2) ties record. For most applications, we consider fM and fp
to be piecewise constant functions. In the future, however,

where L(A) is the spectral power distribution of the light we hope to model smoothly changing material and surface
incident on the surface. properties.
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theory, R± and R11 are given by

a 2 + b2 - 2acosOi + cos 2
01: R-L - (2.4).

a2 + b2 + 2acosai + cos 2 O (,- V

K ' a 2 + b2 - 2asinjtan1 + sin2
0 6tan O1  .%h = a

2 + b + 2asin 1tanO, + sin2 "O (2.5)

where

a 0.5 FX/g
2 + 4nJt' + g (2.6)

b= 9.5 g 2 +4nK - g (2.7) 10

x ( ) g = n2 - KJ - sin2 6, (2.8)

Figure 11. The variation of RB with geometry. Equations (2.4) and (2.5) are known as the Fresnel equa-

tions. The Fresnel eouations are derived in many places

2-3. Specular Reflection including [Born, 1959]. %
When light encounters an interface, some fraction of it is From the Fresnel equations, it can be shown that for fixed

n and fixed K0 the specular reflectance is approximately
specularlv reflected. The Fresnel equations quantify specu- constant over a large range of incidence angles (roughly
lar reflection from a smooth surface. For rough surfaces, it 0' < 6j < 70) (Sparrow, 19781. As 01 nears r/2, however,
is possible to augment the Fresnel equations to obtain an Rs approaches unity for all values of the complex index
appropriate model. This has been done by Torrance and of refraction. Consequently, as we approach glancing inci-
Sparrow [Torrance, 1967]. In 3.3.1. and 3.3.2. we exam- dence, the color of the specularly reflected light approaches
ine these models of specular reflection for monochromatic the color of the incident light. arc

light. In 3.3.3., we examine how specular reflection affects
the spectral properties of incident light. We note that our 2-3-2. fhe Torrance-Sparrow Model
model for specular reflection is quite similar to the model %.
used by Cook and Torrance [Cook, 1981]. A brief descrip- The Fresnel equations describe reflection from a smooth
tion is included here for completeness. surface. In practice, most surfaces are not smooth. The 01

Torrance-Sparrow specular model [Torrance, 1967] de- ",0.
2-3-1. Fre ".nel Reflection scribes specular reflection from rough surfaces. This model t,.

assumes that a surface is composed of small, randomly ori-
At a smooth interface, an incident light ray is reflected in ented, mirror-like facets. Only facets with a normal ori-

a single direction such that the angle of incidence equals the ented in the perfect specular direction contribute to the S,.

angle of reflection. Hence, we often measure large values of monochromatic specular reflectance Rs. The model also
image irradiance for highlights (Healey, 1987]. A complete quantifies the shadowing and masking of facets by adjacent
theory exists which predicts the properties of specularly - facets using a geometrical attenuation factor. The resulting
flected light from a smooth air-matter interface in terms of specular model is
geometry and the fundamental optical properties of the ob- 0
ject's surface material. This thecry is summarized by the
Fresnel equations. We present these equations and discuss 's = FDA (2.9)
some of their implications in this subsection. where ."

The optical properties of a surface material are summa-
rized by the complex index of refraction Al = n -it\K where F = Fresnil specular reflectance,

n is the refractive component and K 0 is the absorptive corn- D = facet orientation distribution function,
ponent. Both n and A'0 are functions of wavelength. From A = geometrical attenuation factor adjusted for fore- 0
M, the Fresnel equations completely describe the light re- shortening.
flected from a surface. If unpolarized light is incident at an
angle 8j, then the monochromatic speclar reflectance F is

2-3-3. Spectral Properties of Specular Rt ,ection

In general, 1., is a function of A. This follows directly
where R. is the perpendicular polarized component ind R11  from the tresnel equations and the fact that both corn-
is the parallel polarized component. From electromagnetic ponents of the complex index of refraction are generally
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functions of A, i.e. M(A) = n(A\) - iKo(A). Thus for fixed to give expressions for the reflectance and transmission of
geometry, the function Rs(A) can be computed from the a colorant layer.
Fresnel equations given n(A) and Ko(A). The original Kubelka-Munk theory makes several limit-

The spectral reflectance of an opaque homogeneous ma- ing assumptions. The original theory assumes the boundary
terial is determined entirely by the specular component of condition of diffusely incident light. This is an unrealistic " .

reflectance Rs. Therefore a knowledge of n(A) and K 0 (A) assumption for most real situations. The original K-M the- -
gives us a complete knowledge of the reflective properties ory also assumes that the vehicle containing the colorant
of such a material. For some homogeneous materials, M particles has an index of refraction equal to that of air. This
can vary considerably with wavelength. Copper and gold, assumption eliminates the need to consider internal and ex-
for example, reflect long visible wavelengths much more ternal reflections at the air-vehicle interface. Unfortunately,
efficiently than short visible wavelengths. On the other this assumption is also not very realistic.
hand, the reflectance of aluminum is approximately con- The original Kubelka-Munk theory has been extended
stant across the visible spectrum. by Reichman [Reichman-1, 1973] to eliminate the need for

The body of an inhomogeneous material is made up of these unrealistic assumptions. Reichman derives an expres-

colorant particles embedded in a vehicle. While many ho- sion for the reflectance of an inhomogeneous material which
mogeneous materials, particularly metals, are characterized is valid for collimated light at any angle of incidence. Re-
by a large extinction coefficient K0 , inhomogeneous materi- ichman also uses a method developed by Orchard [Orchard, S
als have a negligible extinction coefficient across the visible 1969] to take into account both internal and external reflec-

spectrum (K 0 (A) = 0). For inhomogeneous materials n(A) tions at the air-vehicle interface. Experiments have shown

depends on wavelength, but this dependence is typically that this model accurately predicts the reflecting properties

small. For most inhomogeneous materials, n(A) is constant of real materials [Reichman-2, 1973], [Egan, 1979]

to less than five percent across the visible spectrum [Kan- The general formulation of Reichman's model is given

thack, 1921]. Since both n and K 0 are nearly constant for in [Reichmdn-1, 1973]. To illustrate the model here, we
visible light, Rs is constant with respect to A. Rs is a consider the case of opaque colorant layers composed of
functi:. of only geometry for inhomogeneous materials, isotropic scatterers. For light incident at an angle 0, the .e

Z-4. Colorant Layer Scattering extended K-M theory describes the body reflectance RB as

For inhomogeneous materials, the most prominent op- C,--°R-D
tical process is colorant layer scattering. Light incident on RB = (1 - R's ( - r,)(Ro - D) (2.10)
an inhomogeneous material which is not specularly reflected 2(1 - r.R )cos 1

enters the body of the material. In the body of the mate- where R' is the fraction of incident light which is specularly
rial, the light is reflected by many colorant particles and reflected. R's can be obtained by integrating Rs of (2.9)
becomes thoroughly diffused. Scattering refers to this pro- over the viewing hemisphere. r, is the internal diffuse sur-
cess of diffusion by many reflections. In this section, we face reflectance approximated by Orchard [Orchard, 1969]

describe a physical model for colorant layer scattering by as
inhomogeneous materials. Although the theory we describe
has recently been used for modeling in a computer vision
system [Healey 1987], we believe that it has not yet been 0.5601 - 0. 7 099n + 0.331902 - 0.0636n3 ( ,c/
applied to computer graphics. n2 (.1

2-4-1. Kubelka-Munk Theory where n is the index of refraction of the vehicle. Let
w =7 be the scattering albedo. R_ is the reflectance

Kubelka-Munk (K-M) tieory [Kubelka, 1931] is a gen- predicted by original R-M for diffusely incident light and is
eral mathematical treatmtnt of scattering and absorption given by
in colorant layers. The K-M theory assumes that a colorant
layer is composed of a large number of optically identical 2 - w - 2 ] (2.12)
elementary layers. The thickness of each elementary layer R. = (2.12)"
is smali compared to the thickness of the entire colorant
layer, but is large compared to the diameter of individual C and D result from the solution of Reichman's differential

colorant particles. Thus it is not necessary to model the op- equations and are ,6
tical properties of individual colorant particles. The effects

w cos 01(2 cos 01 + I) (.3of many colorant particles are modeled by the properties of C = w 13) (
an elementary layer. An elementary colorant layer is char- 1 - 4(1 - u) cos 2 0,

acterized by the parameters a and a. &(A) is the fraction 2 Cos 8 I
of light which is absorbed per unit path length. a(A) is the D 2 cos0 - 1 (2.14) .IM'--
fraction of light which has its direction changed by scat- 2cos9, + 1 (.4
tering per unit path length. Both a and r are functions In contrast to the highly directional properties of specular L
of wavelength. The model gives rise to simultaneous first reflection, colorant layer scattering produces diffusely re-
order differential equations. These equations can be solved flected light. Consequently, RB in (2.1) is defined relative to
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an ideal diffuse surface. One very special case of this model
is conservative scattering (also called Lambertian scatter-
ing) for which w(A) = 1 for all visible wavelengths. A Lam-
bertian scattering model is frequently assumed in computer

graphics. 
:NN

2-4-2. Spectral Properties of Colorant Layer Scat-
tering

mN

The color of an inhomogeneous material is primarily due
to the scattering and absorbing characteristics of colorant
layers. These characteristics are described by the parame-
ters cf(A) and o(A). In the limiting case of a Lambertian
surface, reflectance is constant with respect to wavelength. r.

On the other hand, the colorant particles in real materi-
als tend to absorb selectively certain wavelengths of light
while transmitting others. This selective absorption is the 0
primary cause of the variation of RB with X. Figure 12. See text.

2-4-3. An Example

In figure 11 we give an example of the body spectral re- shape descriptions using the full power of our geometric
flectance predicted by (2.10) for parameters of foliage taken models.
from [Nickerson, 1945]. In the figure, the vertical axis rep- 0
resents RB in (2.10) with the term (1 - R's) excluded so 2-5-2. Ambient Illumination

that we can isolate the properties of colorant layer scat-
tering independent of the specular reflection. The various In most real scenes there is some amount of ambient illu-

curves in the figure depict the spectral reflectance for sev- mination. We currently assume ambient illumination that

eral values of the incidence angle 01. The values shown are is uniformly distributed. The spectral power distribution of

for 8, = 0, 300, 450, 600, 7509 90. The lowest curve is for the ambient illumination is taken to be a linear combination

81 = 0* and the highest curve is for 0t = 90*. We see that of the spectral power distributions of the sources present in

there is a significant increase in the fraction of light reflected the scene.

as 01 increases. We can also observe a significant change in Despite frequent confusion on this point, the presence or

the color of the reflected light as Ot increases. For example, lack of ambient illumination has no effect on the reflecting

in the blue end of the spectrum, the spectral reflectance properties of a surface. To compute the intensity and color

varies by a factor of about 2 with geometry, while in the of the light reflected from a surface, we consider all light

green region, the spectral reflectance varies by a factor of incident on the surface, both direct and ambient. There

only about 1.1. This variation in both the intensity and the will be both specular and body reflection of light which is

color of the scattered light with geometry is not predicted ambiently incident. The specularly reflected ambient light

by other models which are used in computer graphics. is often neglected by graphics systems, for example see the
2-5. Lighting Models applications given in [Cook, 1981]. Computing specularlyreflected ambient light does, however, improve the qual-

In this subsection, we discuss our lighting model. In 2.5.1. ity of images. It causes a color shift in the rendering ofwe describe our representation for sources and in 2.5.2. we
wdescribe our rpresntaton for sourceswith andbint 2 glossy inhomogeneous materials that allows for more real- Sdescribe our approach for dealing with ambient iliumina- istic display. Computing specularly reflected ambient light
tion. Our methods include innovations which have not yet also allows for more realistic rendering of metals.
appeared in the computer graphics literature. 2-6. Results

2-5-1. Direct Illumination We synthesize color images using the algorithm discussed

by Wandell in [Wandell, 1987). The images presented in P

We represent a light source as a record containing four this paper are displayed on an eight bit color monitor. We
fields. The first field gives a name to the source, e.g. point- expect that our algorithms will be able to produce higher
tungsten-source. The second field specifies the intensity of quality images on more sophisticated display devices. %

the source. The third field specifies the source's normalized We demonstrate our models in figures 12 and 13. Fig-
spectral power distribution. This distribution may be rep- ure 12 shows four generated images of an object using the
resented as an explicit function (using any function descrip- spectral properties of copper illuminated by sunlight. Fig-
tion method) or as a color temperature. The fourth field ure 12(a) is copper metal. Figure 12(b) is ceramic. Figure
contains the shape description of the source. For simplicity 12(c) is plastic. Figure 12(d) is varnished wood. Figure 13 0
and computational efficiency, light sources are often repre- shows four generated images of an object using the spectral
sented as points. We do, however, allow arbitrary source properties of gold illuminated by sunlight. Figure 13(a) is
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Figure 13. See text. Figure 14. A SHGC, rendered by using the back to front
painting algorithm.

gold metal. Figure 13(b) is ceramic. Figure 13(c) is plastic.
Figure 13(d) is an inhomogeneous material with a larger drawings in the other examples, are rendered by using this
specular component than in Figure 13(c). method.

3-2. Polygonal rendering
Given our representation of solids, it is trivial to build

3. Rendering a polyhedral approximation: the facets associated to inter-

section leaves are already in polygonal form, and the non-
There are multiple ways of rendering solid models. In our intersecting leaves, defined on a square domain, can easily

modelling system, we use a variety of display algorithms, be sampled into quadrilaterals. This approximation can

and most of them are new. The shaded versions of these then be rendered by any polygon rendering technique. We
algorithms use the physical models described in the previous have chosen to implement two such algorithms.
section. 

The first one is a conventional Z-buffer. Its advantage is 0

3-1. Limbs speed. However, all the usual problems of z-buffering are
Traditionally, the simplest rendering technique is to draw present (aliasing, difficulty to compute shadows..). Figures

wireframe representations of solids, without any attempt to 1,2,4, 5,8, and the figures of the previous section are dis-
solve the hidden line/surface problem. In the case of poly- played using this algorithm.
hedral objects, this simply means drawing all the polygonal The second algorithm is new. It is based on the same
edges. idea as Fuchs' back to front painting algorithm: the idea

The case of curved surfacer is more complex. It is not is to sort the facets so that the first facet displayed is the
satisfactory to only draw discontinuities, or even a grid of farthest from the observer, and the last one is the closest.
isoparametric lines. In fact, the line drawiitg of a curved This way, there is no need for z-buffering, 3nd the rendering
surface should consist of edges (orientation discontinuities) can be very efficient on computers that have fast polygon
and limbs (occluding contours, where the tangent plane con- painters.
tains the viewing direction). To sort the faces, we use again the associated quadtree.

Edges are simple, they are curves physically drawn on The two subdividing planes of a given node are used to sort
the surfaces. Limbs are more complex, as they depend on the four sons of this node. All the facets can be displayed .

the viewing direction. Finding the limbs of an object cor- from back to front by visiting the tree in a depth first man-
responds to solving the limb equation v • n = 0, where v is ner according to this sort.
the viewing direction, and n is the surface normal. The algorithm is quite efficient, and allows shaded ren-

For simple primitives (e.g., quadrics), analytical expres- dering of isolated primitives in near real time on a lisp
sions for the limbs are readily available. The case of general machine. The present algorithm only works for isolated
surfaces is much more difficult. For generalized cylinders, primitives (the subdividing planes don't separate different
it is often possible, however, to compute analytically the primitives). It should be possible to extend the algorithm
limbs, to non-intersecting primitives which can be separated by a 4 .6

Such analytical solutions are available for straight homo- plane.
geneous generalized cylinders [Ponce and Chelberg, 1987] Figure 14 shows an example of SIlGC rendered using
and curved solids of revolution [Ponce and Healey, 1988]. this algorithm on a black and white lisp machine. This

The primitive examples in Figure 3, as well as the line algorithm is especially useful during the interactive design -
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Figure 15. A simple scene rendered by our ray tracing Figure 16. The union of two generalized cylinders. It is
algorithm for shaded images. rendered by using ray tracing at limbs, edges, and intersec-

tion curves.

of new primitives (see section 1.1.1).
3-3. Ray tracing 3-4. Ray tracing at limbs

Shaded ray tracing remains the most flexible and real- A variant of this method is to use ray tracing for line
.stic rendering technique. Here, we use again the quadtree drawing display. The idea is to compute the limbs and
representation of the surface patches to get acceptable com- edges as for wireframe display, and only do the ray tracing
puting times. The algorithm is analogous to Kajiya's algo- at the contour pixels.
rithr. (see [Kajiya, 1983], and also [Ponce and Faugeras, This method reduces the complexity of ray tracing by a
1987]). factor of SIP where S is the total projected area of the

Individual rays are intersected with the tree associated to objects drawn, and P is the total projected perimeter of S
a given surface patch. If the ray intersects the correspond- their contours. This means that its complexity is roughly
ing box, the box is subdivided, and the recursion proceeds. O(v-N.q) (area grows as the square of perimeter when res-
Otherwise the subdivision stops, there is no intersection. olution increases).

Usually, the boxes associated to the sons of a node may This technique as been used in the line drawing of Figure
intersect, and cannot therefore be sorted along the ray. In 16, which shows the union of two generalized cylinders. The %

that case, it is possible that several branches of the tree computing time here is of less than 5mn on a lisp machine.
leading to faces obscuring each other may have to be visited. A last line drawing method is even more efficient, as it

In certain cases, however (e.g., in the case of SHGC's), reduces the amount of ray tracing computations to one per
the boxes don't intersect, and it is possible to sort them parametric patch. The idea of the algorithm is that the
along the ray from front to back. This ensures that only visibility of image contours changes only at T-junctions,
one branch of the tree is visited for each surface patch. where two contours cross each other, and cusps, where the

The complexity of the algorithm can be shown to be contour obscures itself.
O(N.q), where N is the number of pixels and q is the max- T-junctions can be found during the actual drawing of
imum depth of the tree (see [Ponce and Healey, 1988] for the lines, at screen resolution. As limbs, cusps can be com-
details). This should be compared to the O(N.22

q) that puted analytically for generalized cylinders (see [Ponce and
would be achieved by using conventional methods. Chelberg, 19871). At T-junctions and cusps, it is necessary

For additional speed-up, the screen itself is organized in a to evaluate the depth and decide which contour segment is
quadtree. This means that the incident rays are intersected visible (analogous to a pointwise z-buffer). The visibility of
with only a few patches. During shadow computation, how- this contour will not change until the next junction.
ever, such techniques cannot be used, and this is when our It is in fact necessary to add one ray tracing test per_ ]
algorithm proves to be specially useful, object, as it is possible that a patch is completely obscured

Figure 15 shows a ray-traced scene made of a few gener- by an other one, without any junction. This method has
alized cylinders. The scene includes shadows. It has been been implemented in an earlier version of the modelling
computed at a 512 x 512 resolution, antialiasing being taken system, using simpler primitives, and allowed us to reach
care of by using double resolution at the boundaries be- near real-time performances for scenes composed of a dozen
tween surface patches. Thc c3mputing time for this scene primitives.
(equivalent to 40,000 polygons) is of three hours on a lisp Figure 17 shows an example of scene rendered using this
machine, technique. We are currently working on re-implementing
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